TOSHIMITSU TAKAESU, Gunma University

Ground States of Quantum Electrodynamics with Cutoffs

We investigate a system of a Dirac field coupled to a quantized radiation field in the Coulomb gauge. The Hilbert space for the system is defined by $\mathcal{F}_{QED} = \mathcal{F}_{Dirac} \otimes \mathcal{F}_{rad}$ where \mathcal{F}_{Dirac} is the fermion Fock space over $L^2(\mathbb{R}^3_p; \mathbb{C}^4)$ and \mathcal{F}_{rad} is the boson Fock space over $L^2(\mathbb{R}^3_k \times \{1,2\})$. The total Hamiltonian is defined by

$$\begin{split} H_{\text{QED}} &= H_{\text{Dirac}} \otimes I + I \otimes H_{\text{rad}} + \kappa_{\text{I}} \sum_{j=1}^{3} \int_{\mathbb{R}^{3}} \chi_{\text{I}}(\mathbf{x}) \left(\psi^{*}(\mathbf{x}) \alpha^{j} \psi(\mathbf{x}) \otimes A^{j}(\mathbf{x}) \right) d\mathbf{x} \\ &+ \kappa_{\text{II}} \int_{\mathbb{R}^{6}} \frac{\chi_{\text{II}}(\mathbf{x}) \chi_{\text{II}}(\mathbf{y})}{|\mathbf{x} - \mathbf{y}|} \left(\psi^{*}(\mathbf{x}) \psi(\mathbf{x}) \psi^{*}(\mathbf{y}) \psi(\mathbf{y}) \otimes I \right) d\mathbf{x} d\mathbf{y}, \end{split}$$

on the Hilbert space. Here H_{Dirac} and H_{rad} denote the field energy Hamiltonians, $\psi(\mathbf{x}) = (\psi^{l}(\mathbf{x}))_{l=1}^{4}$ and $\mathbf{A}(\mathbf{x}) = (A^{j}(\mathbf{x}))_{j=1}^{3}$ denote the field operators with ultraviolet cut-offs, and $(\alpha^{j})_{j=1}^{3}$ denote the Dirac matrices. The total Hamiltonian is self-adjoint and bounded from below. We assume spatially localized conditions and momentum regularity conditions. Then it is proven that the total Hamiltonian has a ground state for all values of coupling constants. In particular, its multiplicity is finite.