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The Prandtl boundary layer equation

Fluids with small viscosity

Goal: understand the behavior of 2d fluids with small viscosity in a
domain Q C R?.

o’ + (u” - Vu” + Vp” —vAu” =0in Q,
divu” =0in Q, (1)

v o v
Upg =0, uj_g = uj,;.

— Singular perturbation problem.
Formally, if u¥ — uf, and if Au” remains bounded, then uf is a
solution of the Euler system

ouE + (uF - V)uE +VpE =0in Q,

2
divu” =0 in Q. (2)

But what about boundary conditions?



The Prandtl boundary layer equation

Boundary conditions

o Navier-Stokes: parabolic system.

— Dirichlet boundary conditions can be enforced: ur{m = 0.

e Euler: ~ hyperbolic system, with a divergence-free condition
divuf = 0.

— Condition on the normal component only (non-penetration
condition): uf - naq = 0.

Consequence:
> Loss of the tangential boundary condition as v — 0;
» Formation of a boundary layer in the vicinity of 0 to correct
the mismatch between 0(= u” - 75q) and uf - T|oq-
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The Prandtl boundary layer equation

The whole space case

Theorem [Constantin& Wu, '96] If Q = R? or Q = T?, any family
of Leray-Hopf solutions u” € C(Ry, L?) N L2(Ry, HY) of the
Navier-Stokes system converges as v — 0 towards a solution of the
Euler system.

Proof: energy estimate, by considering uf as a solution of
Navier-Stokes with a remainder —vAuf.

Consequence: if convergence fails, problems come from the
boundary.
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The half-space case: Prandtl's Ansatz

Prandtl, 1904: in the limit v <« 1, if Q = Ri,

{ uE(x,y) for y > /v (sol. of 2d Euler),
(u( ) I/VP(,I>>fOI’y N2

The velocity field (u”, vF) satisfies the Prandt| system
P Poy P P P P dpt
Oru” +u" Ogu” + v Oyu — Oyyu :—T(t,x,O)
X

oxuf +ayvP =0,
u‘PyZO =0, lim uP(x,Y) = uo(t,x) := uE(t,x,0),

Y —o00
P P

Ujt=o = Uini-



The Prandtl boundary layer equation

The Prandtl equation: general remarks

B E

Ot + uPou” +vPoyu — dyyu” = —%(t,x, 0)
auf +oyvP =0, p
P - P E (P)

uy_o=0, lim u (x,Y) = uso(t, x) :== u=(t,x,0),

Y —o0
P P
Ult=0 = Uini-
Comments:
» Nonlocal, scalar equation: write v = — OY uf;

> Pressure is given by Euler flow= data;

» Main source of trouble: nonlocal transport term v 9y u® (loss
of one derivative).



The Prandtl boundary layer equation

Questions around the Prandtl system

1. Is the Prandtl system well-posed? (i.e. does there exist a
unique solution?) In which functional spaces? Under which
conditions on the initial data?

2. When the Prandtl system is well-posed, can we justify the
Prandtl Ansatz? i.e. can we prove that

[u” —ui,ll > 0asv —0

in some suitable functional space, where the function ug, is
such that

uf(x, )fory>>\/_

e (6 () Vo o) o



The Prandtl boundary layer equation

Functional spaces

1/2
o (2 space: [|u]l2q) = (J5 [uP?)"?.
e Sobolev spaces H*, s € N: [lul|s = >4 <5 [VEul| 2.

e Space of analytic functions: 3C > 0, s.t. for all k € N9,

sup |VFu(x)| < KT k]t
xeQ

e Gevrey spaces G7, 7 > 0: 93C > 0, s.t. for all k € N9,

sup |V¥u(x)| < KL (kD).

xeQ

If 7 > 1, G” contains non trivial functions with compact support.
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The stationary case

Well-posedness under positivity assumptions

Stationary Prandtl system:

E

0
uou + voyu — dyyu = —%(X, 0)

Oxu+ Oyv = 0, Ujx=0 = Uo (SP)

im u(x,Y) = tso(x).

U‘ Y=0 — 07 V|Y:0 - 07 Y|—>oo

~ Non-local, “transport-diffusion” equation .



The stationary case

Well-posedness under positivity assumptions

Stationary Prandtl system:

E

0
uou + voyu — dyyu = faLX(X, 0)

Oxu+ Oyv = 0, Ujx=0 = Uo (SP)

Uy—0=0, vy—o=0, im u(x,Y) = too(x).

N
~ Non-local, “transport-diffusion” equation .

Theorem [Oleinik, 1962]: Let up € Co*(Ry), a > 0. Assume that
up(Y) >0 for Y >0, uy(0) >0, us >0, and that

p°

_ 2
O (0,0)) = O(Y?) for0< Y < 1.

—Oyyuo +
Then there exists x* > 0 such that (SP) has a unique strong C?
solution in {(x, Y) € R% 0 < x < x*, 0< Y}, If 220 <
then x* = +o0.



The stationary case

Comments on Oleinik's theorem

» The solution lives as long as there is no recirculation, i.e. as
long as u remains positive.

» Proof relies on a nonlinear change of variables [von Mises|:
transforms (SP) into a local diffusion equation (porous
medium type).

— Maximum principle holds for the new eq. by standard tools
and arguments.

» Maximal existence “time” x*: if x* < +o00, then
(i) either Oy u(x*,0) =0
(i) or 3Y* >0, u(x*,Y*)=0.

» Monotony (in Y) is preserved by the equation. If ug is
monotone, scenario (ii) cannot happen.



The stationary case

lllustration of the “separation” phenomenon
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Figure: Cross-section of a flow past a cylinder (source: ONERA, France)



The stationary case

Goldstein singularity

» Formal computations of a solution by [Goldstein '48,
Stewartson '58] (asymptotic expansion in well-chosen
self-similar variables).

Prediction: there exists a solution such that
Oy ujy—(x) ~ v/x* — x as x = x*.

Heuristic argument by Landau giving the same separation rate.
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singularity. Computation of an approximate solution, using
modulation of variables techniques.

Open problem: is /x* — x the “stable” separation rate?



The stationary case

Goldstein singularity

» Formal computations of a solution by [Goldstein '48,
Stewartson '58] (asymptotic expansion in well-chosen
self-similar variables).

Prediction: there exists a solution such that
Oy ujy—(x) ~ v/x* — x as x = x*.
Heuristic argument by Landau giving the same separation rate.

» [D., Masmoudi, '18]: rigorous justification of the Goldstein
singularity. Computation of an approximate solution, using
modulation of variables techniques.

Open problem: is /x* — x the “stable” separation rate?

» Why “singularity”?

Since v = — foy Uy, v becomes infinite as x — x*: separation.

> In this case, “generically”, recirculation causes separation.



The stationary case
Open problems for the stationary case

» Remove Goldstein singularity by adding corrector terms in the
equation, coming from the coupling with the outer flow (triple
deck system?);

» Construct solutions with recirculation.



The stationary case

Justification of the Prandtl Ansatz

Overall idea: far from the separation point, as long as there is no
re-circulation, the Prandtl Ansatz can be justified.

» [Guo& Nguyen, '17]: Navier-Stokes system above a moving
plate (non-zero boundary condition), later extended by [lyer];

» [Gérard-Varet& Maekawa, '18]: main order term in Prandtl is
a shear flow;

> [Guo& lyer, '18]: main order term in Prandtl is the Blasius
boundary layer (self-similar solution).

All works rely on new coercivity estimates for the Rayleigh operator
R[] = Us(03 — k?)¢ — U (in the case of a shear flow), and on
some additional estimates: estimates on v in [GN17], estimates for
the Airy operator in [GVM18], trace estimates in [GI18].

Remark: interestingly, all works except [lyer] work in a domain of
small size in x... Actual or technical limitation?
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The time-dependent case

A reminder...

Time-dependent Prandtl equation (P):

Otu + udgu + vOyu — Oyyu = —aapf(t,x, 0)
Oxu + Oyv =0,

uy—o =0, Ylinoo u(x,Y) = ux(t,x) := uE(t,X, 0),
Ujt=0 = Uini-

~ (Degenerate) heat equation 0;u — Jyyu

+ local transport term udyu

+ non-local transport term with loss of one derivative
vOyu = — fOY Us.
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The time-dependent case
Well-posedness results and justification of the Ansatz



The time-dependent case

Well-posedness in high regularity settings

Theorem [Sammartino& Caflisch, '98|: Let ujn; be analytic in x
with Sobolev regularity in Y. Then there exists a time Tog > 0 such
that a solution of the Prandtl system (P) exists on (0, Tp).
Furthermore, on the existence time of the solution, the Prandt/
Ansatz holds true.

Idea of the proof: use of Cauchy-Kowalevskaya theorem, after
filtering out the heat semi-group.




The time-dependent case

Well-posedness in high regularity settings

Theorem [Sammartino& Caflisch, '98|: Let ujn; be analytic in x
with Sobolev regularity in Y. Then there exists a time Tog > 0 such
that a solution of the Prandtl system (P) exists on (0, Tp).
Furthermore, on the existence time of the solution, the Prandt/
Ansatz holds true.

Idea of the proof: use of Cauchy-Kowalevskaya theorem, after
filtering out the heat semi-group.

Extensions: [Kukavica& Vicol, '13; Gérard-Varet& Masmoudi,
'14] WP results for data that belong to Gevrey spaces with Gevrey
regularity > 1. Use of clever non-linear cancellations to go above
Gevrey regularity 1 (analytic functions).

[Maekawa, '14] When the initial vorticity w¥. = 0, u},. — OV} is
supported far from the wall y = 0, the Prandtl solution exists on
an interval of size O(1) and the Prandtl Ansatz can be justified.




The time-dependent case

Monotone setting

Theorem [Oleinik, '63-"66]: If uj; is such that Oy ujni(x,Y) >0
for Y > 0 (monotonicity in Y'), then existence of a local solution
in Sobolev spaces.

Proof relies on a nonlinear change of variables (Crocco transform:
new vertical variable is u, new unknown is dyu.)
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[Masmoudi & Wong, '15; Alexandre, Wang, Xu & Yang, '15] Proof
of the same result by using energy estimates and non linear
cancellations only (no change of variables).

Relies on estimates for the quantity

Oyw

__u’

where w := Jdyu (vorticity).



The time-dependent case

Monotone setting

Theorem [Oleinik, '63-"66]: If uj; is such that Oy ujni(x,Y) >0
for Y > 0 (monotonicity in Y'), then existence of a local solution
in Sobolev spaces.

Proof relies on a nonlinear change of variables (Crocco transform:
new vertical variable is u, new unknown is dyu.)

[Masmoudi & Wong, '15; Alexandre, Wang, Xu & Yang, '15] Proof
of the same result by using energy estimates and non linear
cancellations only (no change of variables).

Relies on estimates for the quantity

Oyw

__u’

where w := Jyu (vorticity).

In this setting, the validity of the Prandtl Ansatz has been proved
[Gérard-Varet, Maekawa& Masmoudi, '16], in the Gevrey setting,
for concave shear flow boundary layers.
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The time-dependent case

Ill-posedness results



The time-dependent case

Singularity formation in Sobolev spaces

e [E& Engquist, '97] For suitable initial data, satisfying

uini(0,y) = 0 for all y > 0, proof of blow-up in Sobolev spaces by
a virial type method (look for energy inequalities on the quantity
Oxu(t,0,y)).

o Later extended by [Kukavica, Vicol, Wang, "15]

Justification of the van Dommelen-Shen singularity.



The time-dependent case

Prandtl instabilities in Sobolev spaces

Starting point: consider a shear flow (Us(Y),0), and the
linearized Prandtl equation around it

Oru + UsOxu + vOy Us — Oyyu = 0,
ax'J""_aY\/:Ov (LP)
U|y20 = V|y20 = O7 Yl[;ﬂoo U(t./X, Y) =0.

Look for spectral instabilities of the above system. The
well-posedness results in the monotonic case suggest that no
instability should occur if Us is monotone.



The time-dependent case

Prandtl instabilities in Sobolev spaces

Starting point: consider a shear flow (Us(Y),0), and the
linearized Prandtl equation around it

Oru + UsOxu + vOy Us — Oyyu = 0,
aXU+8YV:O, (LP)
U|y20 = V|y20 = 07 Yl[;ﬂoo U(t./X, Y) =0.

Look for spectral instabilities of the above system. The
well-posedness results in the monotonic case suggest that no
instability should occur if Us is monotone.
Theorem [Gérard-Varet& Dormy, '10] Let (Us(Y,0)) be a shear
flow such that Us has a non-degenerate critical point. Then

» There exist approximate solutions whose k-th Fourier mode

grows like exp(a/kt) for some o > 0;
» As a consequence, (LP) is ill-posed in Sobolev spaces.

Former description (at a formal level) in [Cowley et al., '84].



The time-dependent case

Nature of the instability in [Cowley; Gérard-Varet&Dormy]

Eq. (LP) has cst. coeff. in x — Fourier in x,t —ODE in Y.
Look for an instability — high frequency analysis in space&time.



The time-dependent case

Nature of the instability in [Cowley; Gérard-Varet&Dormy]

Eq. (LP) has cst. coeff. in x — Fourier in x,t —ODE in Y.

Look for an instability — high frequency analysis in space&time.
Asymptotic expansion: close to a non-degenerate critical point a,
the solution looks like

vP(t,x, V) ~ exp(ik(wt+x)) | va(Y) +?71,0, 4 €27V <y1_ a>
—— el/4

inviscid sol.
viscous correction

where ¢ .= 1/]k| < 1, w = —Us(a) + €*/?7, where 7 € C is such
that ¥(7) < 0.

Conclusion: the k-th mode grows like exp(|S(7)[\/|k|t).
Remark: Viscosity induced instability.



The time-dependent case

Interactive boundary layer models

Intuition: [Catherall& Mangler; Le Balleur; Carter; Veldman...]

At the point where a singularity is formed in the Prandtl system
and the expansion ceases to be valid, the coupling with the interior
flow must be considered at a higher order in v, with potential
stabilizing effects.

Cornerstone: notion of blowing velocity/displacement thickness:
note that

vP(x,Y):—/ = —Y0Oxloo — 8/ P uy)
0

="blowing velocity”

Interactive boundary layer model: couple the Euler and the
boundary layer systems by prescribing the following coupling
condition:

vE(t, x,0) = /vo, /Oo(uOC —uP(t,x,Y))dY.
J0



The time-dependent case

Instabilities for the IBL system

Unfortunately, the linearized IBL system has even worse properties
than Prandtl...
Theorem [D., Dietert, Gérard-Varet, Marbach, '17]

» For any monotone shear flow Us, there exist solutions of the
linearized IBL system around Us whose k-th mode grows like
exp(a®/*kt) in the regime |k| > v=3/4.

» If Us is monotone and UZ(0) > 0, there exist solutions
growing like exp(av|k|3t), in the regime
v 3 <« k| < v1/2,

Remark: profiles are stable for Prandtl (monotone). Instabilities
are much stronger than in the Prandtl case, and also stronger than
Tollmien Schlichting instabilities.




The time-dependent case

Invalidity of the Prandtl Ansatz - 1

Starting point: Look at solution of the Navier-Stokes system with
viscosity v and initial data close to (Us(y/+/v),0).

Question: does the solution of the Navier-Stokes system remain
close to (et Us)(y/v/V) ?

Answer: generically, no...

More precisely:

Theorem [Grenier, Guo, Nguyen, '16]:

> [If the profile Us is unstable for the Rayleigh equation, there
are modal solutions of the linearized NS system, of spatial
frequency ~ v—3/8 that grow like exp(ctr—1/4)
(Tollmien-Schlichting waves);

» Similar result (in a possibly different regime) for profiles that
are stable for the Rayleigh equation!



The time-dependent case

Scheme of proof

Look for a solution of the linearized Navier-Stokes system in the
form

u’ = V1Y, where ¢V (t,x,y) = ¢ (%) exp (\I/—k;(x — wt)) )

Then ¢ solves the Orr-Sommerfeld equation:

(Us — )@ ~ K)o — U6 — V(5% — kYo =0,
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Scheme of proof

Look for a solution of the linearized Navier-Stokes system in the
form

u’ = V1Y, where ¢V (t,x,y) = ¢ (%) exp (\I/—k;(x — wt)) )

Then ¢ solves the Orr-Sommerfeld equation:

(Us —)(@ — k)0 — ULo — V(0% — k2P =0,
e v = 0: Rayleigh equation (involved in stability of Euler).
Instability criteria: Rayleigh (3 inflexion point), Fjgrtoft.
e If Us is unstable for Rayleigh, construction of an approximate
solution starting from an inviscid unstable mode and adding a
viscous correction: sublayer of size 3/* within the boundary layer

of size \/v.



The time-dependent case

Scheme of proof

Look for a solution of the linearized Navier-Stokes system in the
form

u’ = V1Y, where ¢V (t,x,y) = ¢ (%) exp (\I/—k;(x — wt)) )

Then ¢ solves the Orr-Sommerfeld equation:

N4
ik
e v = 0: Rayleigh equation (involved in stability of Euler).
Instability criteria: Rayleigh (3 inflexion point), Fjgrtoft.

e If Us is unstable for Rayleigh, construction of an approximate
solution starting from an inviscid unstable mode and adding a
viscous correction: sublayer of size 3/* within the boundary layer
of size \/v.

e For a stable mode, the construction is similar (but more
complicated!)

(Us — w)(0y — k)¢ — Ulp — ¥=(05 — k*)*¢ = 0.



The time-dependent case

Invalidity of the Prandtl Ansatz - 2

As a consequence of the previous construction, one obtains:

Theorem [Grenier '00; Grenier& Nguyen '18]: There exists a
solution of the Navier-Stokes system (Us(y/+/v),0) with source
term FY, with the following properties: for any N,s (large), there

exists 69 > 0, cg > 0, and a solution u” of NS with source term fV,
such that:

> Jlu”(t =0) — (U(-/vP),0)[|s < vN;
> ([ — FY[| Lo (0, 701, H5) < vN;
> u”(t = T%) = (U(-/x/9), 0|10 > S0, with TV ~ Con/7| Inv].




The time-dependent case

e Stationary case: the only mathematical setting in which
solutions are known up to now is the case of positive solutions.
For such a setting, we have a good understanding of singularities
close to the separation point, and we are able to justify the Ansatz
far from the separation.

e Time-dependent case: WP in high regularity settings and for
monotone data.

In the non-monotone case, creation of vorticity close to the wall,
that destabilizes the boundary layer. Strong instabilities in Sobolev
spaces; the boundary layer Ansatz fails.



The time-dependent case

Conclusion

e Small scale structures (both in x AND y) appear close to the
wall in general (cf. instabilities).

e The boundary layer Ansatz should be replaced by something else,
accounting for small scale vortices. But... what ?

THANK YOU FOR YOUR ATTENTION !
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