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The Prandtl boundary layer equation

Fluids with small viscosity

Goal: understand the behavior of 2d fluids with small viscosity in a
domain Ω ⊂ R2.

∂tu
ν + (uν · ∇)uν +∇pν − ν∆uν = 0 in Ω,

div uν = 0 in Ω,

uν|∂Ω = 0, uν|t=0 = uνini .

(1)

→ Singular perturbation problem.
Formally, if uν → uE , and if ∆uν remains bounded, then uE is a
solution of the Euler system

∂tu
E + (uE · ∇)uE +∇pE = 0 in Ω,

div uν = 0 in Ω.
(2)

But what about boundary conditions?



The Prandtl boundary layer equation

Boundary conditions

• Navier-Stokes: parabolic system.
→ Dirichlet boundary conditions can be enforced: uν|∂Ω = 0.
• Euler: ∼ hyperbolic system, with a divergence-free condition
div uE = 0.
→ Condition on the normal component only (non-penetration
condition): uE · n|∂Ω = 0.

Consequence:
I Loss of the tangential boundary condition as ν → 0;
I Formation of a boundary layer in the vicinity of ∂Ω to correct

the mismatch between 0(= uν · τ|∂Ω) and uE · τ|∂Ω.
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The Prandtl boundary layer equation

The whole space case

Theorem [Constantin& Wu, ’96] If Ω = R2 or Ω = T2, any family
of Leray-Hopf solutions uν ∈ C(R+, L

2) ∩ L2(R+,H
1) of the

Navier-Stokes system converges as ν → 0 towards a solution of the
Euler system.
Proof: energy estimate, by considering uE as a solution of
Navier-Stokes with a remainder −ν∆uE .
Consequence: if convergence fails, problems come from the
boundary.



The Prandtl boundary layer equation

The half-space case: Prandtl’s Ansatz

Prandtl, 1904: in the limit ν � 1, if Ω = R2
+,

uν(x , y) '

{
uE (x , y) for y �

√
ν (sol. of 2d Euler),(

uP
(
x , y√

ν

)
,
√
νvP

(
x , y√

ν

))
for y .

√
ν.

The velocity field (uP , vP) satisfies the Prandtl system

∂tu
P + uP∂xu

P + vP∂Y u
P − ∂YY uP = −∂p

E

∂x
(t, x , 0)

∂xu
P + ∂Y v

P = 0,

uP|Y=0 = 0, lim
Y→∞

uP(x ,Y ) = u∞(t, x) := uE (t, x , 0),

uP|t=0 = uPini .



The Prandtl boundary layer equation

The Prandtl equation: general remarks

∂tu
P + uP∂xu

P + vP∂Y u
P − ∂YY uP = −∂p

E

∂x
(t, x , 0)

∂xu
P + ∂Y v

P = 0,

uP|Y=0 = 0, lim
Y→∞

uP(x ,Y ) = u∞(t, x) := uE (t, x , 0),

uP|t=0 = uPini .

(P)

Comments:

I Nonlocal, scalar equation: write vP = −
∫ Y

0 uPx ;

I Pressure is given by Euler flow= data;

I Main source of trouble: nonlocal transport term vP∂Y u
P (loss

of one derivative).



The Prandtl boundary layer equation

Questions around the Prandtl system

1. Is the Prandtl system well-posed? (i.e. does there exist a
unique solution?) In which functional spaces? Under which
conditions on the initial data?

2. When the Prandtl system is well-posed, can we justify the
Prandtl Ansatz? i.e. can we prove that

‖uν − uνapp‖ → 0 as ν → 0

in some suitable functional space, where the function uνapp is
such that

uνapp(x , y) '

{
uE (x , y) for y �

√
ν(

uP
(
x , y√

ν

)
,
√
νvP

(
x , y√

ν

))
for y .

√
ν.



The Prandtl boundary layer equation

Functional spaces

• L2 space: ‖u‖L2(Ω) =
(∫

Ω |u|
2
)1/2

.

• Sobolev spaces Hs , s ∈ N: ‖u‖Hs =
∑
|k|≤s ‖∇ku‖L2 .

• Space of analytic functions: ∃C > 0, s.t. for all k ∈ Nd ,

sup
x∈Ω
|∇ku(x)| ≤ C |k|+1|k |!.

• Gevrey spaces G τ , τ > 0: ∃C > 0, s.t. for all k ∈ Nd ,

sup
x∈Ω
|∇ku(x)| ≤ C |k|+1(|k |!)τ .

If τ > 1, G τ contains non trivial functions with compact support.
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The stationary case

Well-posedness under positivity assumptions

Stationary Prandtl system:

u∂xu + v∂Y u − ∂YY u = −∂p
E

∂x
(x , 0)

∂xu + ∂Y v = 0, u|x=0 = u0

u|Y=0 = 0, v|Y=0 = 0, lim
Y→∞

u(x ,Y ) = u∞(x).

(SP)

∼ Non-local, “transport-diffusion” equation .
Theorem [Oleinik, 1962]: Let u0 ∈ C2,α

b (R+), α > 0. Assume that
u0(Y ) > 0 for Y > 0, u′0(0) > 0, u∞ > 0, and that

−∂YY u0 +
∂pE

∂x
(0, 0)) = O(Y 2) for 0 < Y � 1.

Then there exists x∗ > 0 such that (SP) has a unique strong C2

solution in {(x ,Y ) ∈ R2, 0 ≤ x < x∗, 0 ≤ Y }. If ∂pE (x ,0)
∂x ≤ 0,

then x∗ = +∞.



The stationary case

Well-posedness under positivity assumptions

Stationary Prandtl system:

u∂xu + v∂Y u − ∂YY u = −∂p
E

∂x
(x , 0)

∂xu + ∂Y v = 0, u|x=0 = u0

u|Y=0 = 0, v|Y=0 = 0, lim
Y→∞

u(x ,Y ) = u∞(x).

(SP)

∼ Non-local, “transport-diffusion” equation .
Theorem [Oleinik, 1962]: Let u0 ∈ C2,α

b (R+), α > 0. Assume that
u0(Y ) > 0 for Y > 0, u′0(0) > 0, u∞ > 0, and that

−∂YY u0 +
∂pE

∂x
(0, 0)) = O(Y 2) for 0 < Y � 1.

Then there exists x∗ > 0 such that (SP) has a unique strong C2

solution in {(x ,Y ) ∈ R2, 0 ≤ x < x∗, 0 ≤ Y }. If ∂pE (x ,0)
∂x ≤ 0,

then x∗ = +∞.



The stationary case

Comments on Oleinik’s theorem

I The solution lives as long as there is no recirculation, i.e. as
long as u remains positive.

I Proof relies on a nonlinear change of variables [von Mises]:
transforms (SP) into a local diffusion equation (porous
medium type).
→ Maximum principle holds for the new eq. by standard tools
and arguments.

I Maximal existence “time” x∗: if x∗ < +∞, then

(i) either ∂Y u(x∗, 0) = 0
(ii) or ∃Y ∗ > 0, u(x∗,Y ∗) = 0.

I Monotony (in Y ) is preserved by the equation. If u0 is
monotone, scenario (ii) cannot happen.



The stationary case

Illustration of the “separation” phenomenon
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Separation point: ∂u
∂Y |x=x∗,Y=0

= 0.

Figure: Cross-section of a flow past a cylinder (source: ONERA, France)



The stationary case

Goldstein singularity

I Formal computations of a solution by [Goldstein ’48,
Stewartson ’58] (asymptotic expansion in well-chosen
self-similar variables).
Prediction: there exists a solution such that
∂Y u|Y=0(x) ∼

√
x∗ − x as x → x∗.

Heuristic argument by Landau giving the same separation rate.

I [D., Masmoudi, ’18]: rigorous justification of the Goldstein
singularity. Computation of an approximate solution, using
modulation of variables techniques.
Open problem: is

√
x∗ − x the “stable” separation rate?

I Why “singularity”?
Since v = −

∫ Y
0 ux , v becomes infinite as x → x∗: separation.

I In this case, “generically”, recirculation causes separation.
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The stationary case

Open problems for the stationary case

I Remove Goldstein singularity by adding corrector terms in the
equation, coming from the coupling with the outer flow (triple
deck system?);

I Construct solutions with recirculation.



The stationary case

Justification of the Prandtl Ansatz

Overall idea: far from the separation point, as long as there is no
re-circulation, the Prandtl Ansatz can be justified.

I [Guo& Nguyen, ’17]: Navier-Stokes system above a moving
plate (non-zero boundary condition), later extended by [Iyer];

I [Gérard-Varet& Maekawa, ’18]: main order term in Prandtl is
a shear flow;

I [Guo& Iyer, ’18]: main order term in Prandtl is the Blasius
boundary layer (self-similar solution).

All works rely on new coercivity estimates for the Rayleigh operator
R[ϕ] = Us(∂2

Y − k2)ϕ− U ′′s ϕ (in the case of a shear flow), and on
some additional estimates: estimates on v in [GN17], estimates for
the Airy operator in [GVM18], trace estimates in [GI18].
Remark: interestingly, all works except [Iyer] work in a domain of
small size in x ... Actual or technical limitation?
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The time-dependent case

A reminder...

Time-dependent Prandtl equation (P):

∂tu + u∂xu + v∂Y u − ∂YY u = −∂p
E

∂x
(t, x , 0)

∂xu + ∂Y v = 0,

u|Y=0 = 0, lim
Y→∞

u(x ,Y ) = u∞(t, x) := uE (t, x , 0),

u|t=0 = uini .

∼ (Degenerate) heat equation ∂tu − ∂YY u
+ local transport term u∂xu
+ non-local transport term with loss of one derivative
v∂Y u = −

∫ Y
0 ux .
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The time-dependent case

Well-posedness in high regularity settings

Theorem [Sammartino& Caflisch, ’98]: Let uini be analytic in x
with Sobolev regularity in Y . Then there exists a time T0 > 0 such
that a solution of the Prandtl system (P) exists on (0,T0).
Furthermore, on the existence time of the solution, the Prandtl
Ansatz holds true.
Idea of the proof: use of Cauchy-Kowalevskaya theorem, after
filtering out the heat semi-group.
Extensions: [Kukavica& Vicol, ’13; Gérard-Varet& Masmoudi,
’14] WP results for data that belong to Gevrey spaces with Gevrey
regularity > 1. Use of clever non-linear cancellations to go above
Gevrey regularity 1 (analytic functions).
[Maekawa, ’14] When the initial vorticity ωνini = ∂yu

ν
ini − ∂xvνini is

supported far from the wall y = 0, the Prandtl solution exists on
an interval of size O(1) and the Prandtl Ansatz can be justified.
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The time-dependent case

Monotone setting

Theorem [Oleinik, ’63-’66]: If uini is such that ∂Y uini (x ,Y ) > 0
for Y > 0 (monotonicity in Y ), then existence of a local solution
in Sobolev spaces.
Proof relies on a nonlinear change of variables (Crocco transform:
new vertical variable is u, new unknown is ∂Y u.)
[Masmoudi & Wong, ’15; Alexandre, Wang, Xu & Yang, ’15] Proof
of the same result by using energy estimates and non linear
cancellations only (no change of variables).
Relies on estimates for the quantity

ω − ∂Yω

ω
u,

where ω := ∂Y u (vorticity).
In this setting, the validity of the Prandtl Ansatz has been proved
[Gérard-Varet, Maekawa& Masmoudi, ’16], in the Gevrey setting,
for concave shear flow boundary layers.
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The time-dependent case

Singularity formation in Sobolev spaces

• [E& Engquist, ’97] For suitable initial data, satisfying
uini (0, y) = 0 for all y > 0, proof of blow-up in Sobolev spaces by
a virial type method (look for energy inequalities on the quantity
∂xu(t, 0, y)).
• Later extended by [Kukavica, Vicol, Wang, ’15]
Justification of the van Dommelen-Shen singularity.



The time-dependent case

Prandtl instabilities in Sobolev spaces

Starting point: consider a shear flow (Us(Y ), 0), and the
linearized Prandtl equation around it

∂tu + Us∂xu + v∂YUs − ∂YY u = 0,

∂xu + ∂Y v = 0,

u|Y=0 = v|Y=0 = 0, lim
Y→∞

u(t, x ,Y ) = 0.

(LP)

Look for spectral instabilities of the above system. The
well-posedness results in the monotonic case suggest that no
instability should occur if Us is monotone.
Theorem [Gérard-Varet& Dormy, ’10] Let (Us(Y , 0)) be a shear
flow such that Us has a non-degenerate critical point. Then

I There exist approximate solutions whose k-th Fourier mode
grows like exp(α

√
kt) for some α > 0;

I As a consequence, (LP) is ill-posed in Sobolev spaces.

Former description (at a formal level) in [Cowley et al., ’84].
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The time-dependent case

Nature of the instability in [Cowley; Gérard-Varet&Dormy]

Eq. (LP) has cst. coeff. in x → Fourier in x , t →ODE in Y .
Look for an instability → high frequency analysis in space&time.
Asymptotic expansion: close to a non-degenerate critical point a,
the solution looks like

vP(t, x ,Y ) ' exp(ik(ωt+x))

 va(Y )︸ ︷︷ ︸
inviscid sol.

+ ε1/2τ1y>a + ε1/2τV

(
y − a

ε1/4

)
︸ ︷︷ ︸

viscous correction


where ε := 1/|k| � 1, ω = −Us(a) + ε1/2τ , where τ ∈ C is such

that =(τ) < 0.
Conclusion: the k-th mode grows like exp(|=(τ)|

√
|k|t).

Remark: Viscosity induced instability.
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The time-dependent case

Interactive boundary layer models

Intuition: [Catherall& Mangler; Le Balleur; Carter; Veldman...]
At the point where a singularity is formed in the Prandtl system
and the expansion ceases to be valid, the coupling with the interior
flow must be considered at a higher order in ν, with potential
stabilizing effects.
Cornerstone: notion of blowing velocity/displacement thickness:
note that

vP(x ,Y ) = −
∫ Y

0
uPx = −Y ∂xu∞ − ∂x

∫ Y

0
(uP − u∞)︸ ︷︷ ︸

=“blowing velocity”

.

Interactive boundary layer model: couple the Euler and the
boundary layer systems by prescribing the following coupling
condition:

vE (t, x , 0) =
√
ν∂x

∫ ∞
0

(u∞ − uP(t, x ,Y )) dY .



The time-dependent case

Instabilities for the IBL system

Unfortunately, the linearized IBL system has even worse properties
than Prandtl...
Theorem [D., Dietert, Gérard-Varet, Marbach, ’17]

I For any monotone shear flow Us , there exist solutions of the
linearized IBL system around Us whose k-th mode grows like
exp(αν3/4k2t) in the regime |k | � ν−3/4.

I If Us is monotone and U ′′s (0) > 0, there exist solutions
growing like exp(αν|k |3t), in the regime
ν−1/3 � |k | � ν−1/2.

Remark: profiles are stable for Prandtl (monotone). Instabilities
are much stronger than in the Prandtl case, and also stronger than
Tollmien Schlichting instabilities.



The time-dependent case

Invalidity of the Prandtl Ansatz - 1

Starting point: Look at solution of the Navier-Stokes system with
viscosity ν and initial data close to (Us(y/

√
ν), 0).

Question: does the solution of the Navier-Stokes system remain
close to (et∆Us)(y/

√
ν) ?

Answer: generically, no...
More precisely:
Theorem [Grenier, Guo, Nguyen, ’16]:

I If the profile Us is unstable for the Rayleigh equation, there
are modal solutions of the linearized NS system, of spatial
frequency ∼ ν−3/8 that grow like exp(ctν−1/4)
(Tollmien-Schlichting waves);

I Similar result (in a possibly different regime) for profiles that
are stable for the Rayleigh equation!



The time-dependent case

Scheme of proof

Look for a solution of the linearized Navier-Stokes system in the
form

uν = ∇⊥ψν , where ψν(t, x , y) = φ

(
y√
ν

)
exp

(
ik√
ν

(x − ωt)

)
.

Then φ solves the Orr-Sommerfeld equation:

(Us − ω)(∂2
Y − k2)φ− U ′′s φ−

√
ν

ik
(∂2

Y − k2)2φ = 0.

• ν = 0: Rayleigh equation (involved in stability of Euler).
Instability criteria: Rayleigh (∃ inflexion point), Fjørtoft.
• If Us is unstable for Rayleigh, construction of an approximate
solution starting from an inviscid unstable mode and adding a
viscous correction: sublayer of size ν3/4 within the boundary layer
of size

√
ν.

• For a stable mode, the construction is similar (but more
complicated!)
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The time-dependent case

Invalidity of the Prandtl Ansatz - 2

As a consequence of the previous construction, one obtains:

Theorem [Grenier ’00; Grenier& Nguyen ’18]: There exists a
solution of the Navier-Stokes system (Us(y/

√
ν), 0) with source

term F ν , with the following properties: for any N, s (large), there
exists δ0 > 0, c0 > 0, and a solution uν of NS with source term f ν ,
such that:

I ‖uν(t = 0)− (U(·/
√
ν), 0)‖Hs ≤ νN ;

I ‖f ν − F ν‖L∞([0,Tν ],Hs) ≤ νN ;

I ‖uν(t = T ν)− (U(·/
√
ν), 0)‖L∞ ≥ δ0, with T ν ∼ C0

√
ν| ln ν|.



The time-dependent case

Summary

• Stationary case: the only mathematical setting in which
solutions are known up to now is the case of positive solutions.
For such a setting, we have a good understanding of singularities
close to the separation point, and we are able to justify the Ansatz
far from the separation.
• Time-dependent case: WP in high regularity settings and for
monotone data.
In the non-monotone case, creation of vorticity close to the wall,
that destabilizes the boundary layer. Strong instabilities in Sobolev
spaces; the boundary layer Ansatz fails.



The time-dependent case

Conclusion

• Small scale structures (both in x AND y) appear close to the
wall in general (cf. instabilities).
• The boundary layer Ansatz should be replaced by something else,
accounting for small scale vortices. But... what ?

Thank you for your attention !
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