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Elliptic equations

We consider

-V-(avu)=0 in U,
u="f on OU.

. Td dxd
a:R? >R random

At <a(x) <A
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Elliptic equations

We consider

-v-(avu)=0 in U,
u="f on OU.

. Td dxd
a:R? >R random
At <a(x) <A

translation-invariant law

finite range of dependence
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-V-(a(e*)vu)=0 in U,
u.=f on OU.
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Homogenization

-v-(a(et)Vu.) =0 in U,
u.=f on oU.

There exists a matrix 3 s.t.

L2
u. — u
e—0
—V'(§VU) =0 in U,
ug="f on dU.
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Law of large numbers

A law of large numbers. ..
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Law of large numbers

A law of large numbers. .. But

azE[a] !
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Numerical approximations

Very interesting result from a computational point of view.
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Numerical approximations

Very interesting result from a computational point of view.

@ Computation of 3 and then of &.
@ Higher-order approximations; approximations in law; CLT.
e Efficient algorithms for exact computation at fixed «.

Goal: estimate rates of convergence.
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Approach

Difficulty:
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coefficient field.
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concentration inequalities (cf. also Naddaf-Spencer).

Jc Mourrat Quantitative stochastic homogenization



Approach

Difficulty: solutions are non-local, non-linear functions of the
coefficient field.

@ 1st approach (Gloria, Neukamm, Otto, ...): “non-linear”
concentration inequalities (cf. also Naddaf-Spencer).

@ 2nd approach (Armstrong, Kuusi, M., Smart, ...):
renormalization, focus on energy quantities.
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@ Develop tools that will hopefully shed light on variety of
other problems: other equations, Gibbs measures,
interacting particle systems, etc.
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@ Prove stronger results

@ Renormalization: very inspiring, broad and powerful idea,
with still a lot of potential as a mathematical technique

@ Develop tools that will hopefully shed light on variety of
other problems: other equations, Gibbs measures,
interacting particle systems, etc.

@ Suggests new numerical algorithms
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Problem reduction

For p € R9, write a-harmonic function with slope p as
p

X p-X+op(x),

that is,
-v-a(p+Ve,) =0.
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Problem reduction

For p € R9, write a-harmonic function with slope p as
p

X p-X+op(x),
that is,
-v-a(p+Ve,) =0.

(0o () < Ix| 7

Quantify

Spat. av. V¢, -0
Spat. av. a(p+ V¢,) — ap.
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Gradual homogenization

If 1-d<a(x)<1+4,

then |a-[E[a]| < Co°.
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Gradual homogenization

If 1-d<a(x)<1+4,

then |a-[E[a]| < Co°.

Gradual homogenization a(x) ~ a,(x) ~ a
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Gradual homogenization

If 1-d<a(x)<1+4,

then |a-[E[a]| < Co°.

Gradual homogenization a(x) ~ a,(x) ~ a

Linearization for r > 1.
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Dal Maso, Modica 1986:

U,p) := f ][
v(U.p) veeLrL(U)Q Vv-avy.
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Dal Maso, Modica 1986:

1
U,p):= inf —][V -avv.
v(U.p) veeplﬂqrg(U)Q ] Y

U~ v(U,p) is sub-additive.
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Dal Maso, Modica 1986:

U,p) := f ][
v(U.p) veeLrL(U)Q Vv-avy.

U~ v(U,p) is sub-additive.

v(U,p) = %fra(U)p-

a.s. ]- _—
v(O,p) —— S p-ap.
D‘—>oo 2
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Coarse-grained coefficients

v, := minimizer for v(U, p)
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Coarse-grained coefficients

v, := minimizer for v(U, p)

Vv, =
£,

qg-a(U)p= ]{vaanvp

a(U)p= ]{java.
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o Get a small rate of convergence: 3a >0 s.t.

) ] e

1 _
v(8,p) -~ 5p-ap
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o Get a small rate of convergence: 3a >0 s.t.

) ] e

1 _
v(8,p) -~ 5p-ap

e Coarse-grained coefficients vary by +|0|~¢, so
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o Get a small rate of convergence: 3a >0 s.t.

1 = -«
v(B,p) - 5p-ap| [0

e Coarse-grained coefficients vary by +|0|~¢, so

v(o,p) -2 Y v(z+0', p)| S [l

z

@ Control of fluctuations

v(@,p) - E (o, p)]| § 0] 23,
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o Get a small rate of convergence: 3a >0 s.t.

1 = -«
v(B,p) - 5p-ap| [0

e Coarse-grained coefficients vary by +|0|~¢, so

v(o,p) -2 Y v(z+0', p)| S [l

z

@ Control of fluctuations

v(@,p) - E (o, p)]| § 0] 23,

e =  Exponent improvement a - (2a) A 1.
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Corrector estimates

For O, := ]—é; é[d,

a(x+0,)~a+ W, (x), where W, (x) ~ N(0,r 9).
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Corrector estimates

"

a(x+0,)~a+ W, (x), where W, (x) ~ N(0,r 9).

For O, := ]—é;

NI~

Recall that -V -a(p+ V¢,) =0. For

1,
=N}

¢p,r = ¢p *
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Corrector estimates

"

a(x+0,)~a+ W, (x), where W, (x) ~ N(0,r 9).

For O, := ]—é;

NI~

Recall that -V -a(p+ V¢,) =0. For

1,
=N}

¢p,r = ¢p *

we expect
-V-(@+ W(x) (p+Vp,) = 0.

Jc Mourrat Quantitative stochastic homogenization



Corrector estimates

73+ W) (p+ Tp,) =0,
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Corrector estimates

73+ W) (p+ Tp,) =0,

-V (3+W,) Vo, = V- (W,p).
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Corrector estimates

-V (@+ W) (p+Vép,)~0.
-V (3+W,) Vo, = V- (W,p).

—  [Véplsrt.
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Corrector estimates

-V (@+ W) (p+Vép,)~0.
-V (3+W,) Vo, = V- (W,p).

=  |Vop lsr2.

~-V-aVp, = V- (er)-
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Corrector estimates

-v-(@+W,)(p+Vep,)=~0.
V- (@+W,)Vép, = V- (W,p).

—  [Vop st
~V-aVa,, = V- (W,p).

law

= ri(Va,)(r ) o V(GFF).
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Correctors
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Correctors
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GFF -v-avé=v-W




GFF -v-avé=v-W
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Perspectives and dreams

@ Optimal error estimates, next-order information, new
numerical algorithms
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Perspectives and dreams

@ Optimal error estimates, next-order information, new
numerical algorithms

@ Expand the reach of rigorous renormalization techniques

@ New tools to attack other models, e.g. other equations,
gradient Gibbs measures, interacting particle systems, ...

@ Check out our book!
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Thank you!
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