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Elliptic equations

We consider

{ ∂tu −∇ ⋅ (a∇u) = 0 in U ,
u = f on ∂U .

a ∶ Rd → Rd×d
sym

random

Λ−1 ⩽ a(x) ⩽ Λ

translation-invariant law

finite range of dependence
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Coefficients
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Scaling

{ −∇ ⋅ (a(ε−1⋅)∇uε) = 0 in U ,
uε = f on ∂U .
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Homogenization

{ −∇ ⋅ (a(ε−1⋅)∇uε) = 0 in U ,
uε = f on ∂U .

There exists a matrix a s.t.

uε
L2

ÐÐ→
ε→0

ū,

{ −∇ ⋅ (a∇ū) = 0 in U ,
ū = f on ∂U .

∇uε ⇀ ∇ū, a(ε−1⋅)∇uε ⇀ a∇ū.
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Law of large numbers
A law of large numbers. . .

But

a ≠ E[a] !
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Numerical approximations

Very interesting result from a computational point of view.

Computation of a and then of ū.
Higher-order approximations; approximations in law; CLT.
Efficient algorithms for exact computation at fixed ε.

Goal: estimate rates of convergence.
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Approach

Difficulty:

solutions are non-local, non-linear functions of the
coefficient field.

1st approach (Gloria, Neukamm, Otto, . . . ): “non-linear”
concentration inequalities (cf. also Naddaf-Spencer).
2nd approach (Armstrong, Kuusi, M., Smart, . . . ):
renormalization, focus on energy quantities.
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Motivations

Prove stronger results
Renormalization: very inspiring, broad and powerful idea,
with still a lot of potential as a mathematical technique
Develop tools that will hopefully shed light on variety of
other problems: other equations, Gibbs measures,
interacting particle systems, etc.
Suggests new numerical algorithms
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Problem reduction

For p ∈ Rd , write a-harmonic function with slope p as

x ↦ p ⋅ x + φp(x),

that is,
−∇ ⋅ a(p +∇φp) = 0.

∣φp(x)∣ ≪ ∣x ∣ ?

Quantify

Spat. av. ∇φp → 0
Spat. av. a(p +∇φp)→ ap.
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Gradual homogenization

If 1 − δ ⩽ a(x) ⩽ 1 + δ,

then ∣a −E[a]∣ ⩽ Cδ2.

Gradual homogenization a(x)↝ ar(x)↝ a

Linearization for r ≫ 1.
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Energies

Dal Maso, Modica 1986:

ν(U ,p) ∶= inf
v∈`p+H1

0 (U)
1
2 ⨏U

∇v ⋅ a∇v .

U ↦ ν(U ,p) is sub-additive.

ν(U ,p) =∶ 1
2
p ⋅ a(U)p.

ν(◻,p) a.s.ÐÐÐ→
∣◻∣→∞

1
2
p ⋅ ap.
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Coarse-grained coefficients

vp ∶= minimizer for ν(U ,p)

⨏
U
∇vp = p

q ⋅ a(U)p = ⨏
U
∇vq ⋅ a∇vp

a(U)p = ⨏
U
a∇vp.
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Strategy

Get a small rate of convergence: ∃α > 0 s.t.

∣ν(◻,p) − 1
2
p ⋅ ap∣ ≲ ∣◻∣−α.

Coarse-grained coefficients vary by ±∣◻∣−α, so

∣ν(◻,p) − 2−d∑
z

ν(z + ◻′,p)∣ ≲ ∣◻∣−2α.

Control of fluctuations

∣ν(◻,p) −E [ν(◻,p)]∣ ≲ ∣◻∣−(2α)∧ 1
2 .

Ô⇒ Exponent improvement α → (2α) ∧ 1
2 .
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Corrector estimates

For ◻r ∶= ]− r
2 ; r

2[
d
,

a(x + ◻r) ≃ a +Wr(x), where Wr(x) ≃ N (0, r−d).

Recall that −∇ ⋅ a (p +∇φp) = 0. For

φp,r ∶= φp ⋆
1◻r

∣◻r ∣
,

we expect
−∇ ⋅ (a +Wr(x)) (p +∇φp,r) ≃ 0.
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Corrector estimates

−∇ ⋅ (a +Wr) (p +∇φp,r) ≃ 0.

−∇ ⋅ (a +Wr)∇φp,r ≃ ∇ ⋅ (Wrp).

Ô⇒ ∣∇φp,r ∣ ≲ r−
d
2 .

−∇ ⋅ a∇φp,r ≃ ∇ ⋅ (Wrp).

Ô⇒ r
d
2 (∇φp)(r ⋅ )

lawÐÐ→
r→∞ ∇(GFF ).
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Correctors
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GFF −∇ ⋅ a∇Φ = ∇ ⋅W
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Perspectives and dreams

Optimal error estimates, next-order information, new
numerical algorithms

Expand the reach of rigorous renormalization techniques

New tools to attack other models, e.g. other equations,
gradient Gibbs measures, interacting particle systems, . . .

Check out our book!
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Thank you!
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