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A few years ago, Christian Pfrang, Govind Menon and PD [PDM12], initiated a
statistical study of the performance of various standard algorithms to compute the
eigenvalues of random real symmetric matrices H. In each case, an initial matrix H0

is diagonalized either by
a sequence of isospectral iterates Hm

H0 → H1 → H2 → · · · → Hm → · · ·

or by
an isospectral flow

t 7→ H(t) with H(t = 0) = H0.

In the discrete case, as k→∞,
Hk converges to a diagonal matrix.

Given ε > 0, it follows that for some (first) time k, the off-diagonal entries of Hk are
O(ε) , and hence the diagonal entries of Hk give the eigenvalues of H0 to O(ε). The
situation is similar for continuous algorithms t 7→ H(t) as t→∞.

Christian W. Pfrang, Percy Deift, and Govind Menon. How long does it take to compute the eigenvalues
of a random symmetric matrix? arXiv Prepr. arXiv1203.4635, mar 2012
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The QR algorithm is a prototypical example of such a discrete algorithm:

1. Write H0 = Q0R0, Q0 orthogonal, R0 upper triangular, (R0)ii > 0

2. Set H1 = R0Q0 = QT
0 H0Q0

3. Write H1 = Q1R1

4. Set H2 = R1Q1
...

And the Toda algorithm is an example of such a continuous algorithm:

Solve

dH(t)
dt

= [H(t),B(H(t))] = HB− BH, H(0) = H0

where B(H) = H− − HT
−.

Both of these are completely integrable Hamiltonian flows, a fact to which we will
return later.
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The main finding in [PDM12] was that, surprisingly,

the fluctuations in the stopping times were universal (1)

independent of the ensemble considered for the matrices H. More precisely,
I for N × N real symmetric matrices H,
I chosen from an ensemble E , and
I for a given algorithm A, and
I a desired accuracy ε,

let

T(H) = Tε,N,A,E(H) (2)

be the stopping time (see later) for the algorithm A applied to the N × N matrix H
chosen from the ensemble E , to achieve an accuracy ε.
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Let T̃(H) = T̃ε,N,A,E(H) be the normalized stopping time

T̃ε,N,A,E(H) =
Tε,N,A,E(H)− 〈Tε,N,A,E〉

σε,N,A,E
(3)

where 〈Tε,N,A,E〉 is the sample average and σ2
ε,N,A,E = 〈(Tε,N,A,E − 〈Tε,N,A,E〉)2〉 is

the sample variance, taken over a large number (5,000-15,000) of samples of
matrices H chosen from E . Then for a given algorithm A, and ε and N in a suitable
scaling region,

the histogram for T̃ε,N,A,E(H) is independent of E . (4)

In general, the histogram will depend on A, but for a given A and ε and N in the
scaling region, the histogram is independent of E .

— such two-component universality is analogous to the classical central limit
theorem for iid {Xi},

X1 + · · ·+ XN − µN
σN

d⇒ standard Gaussian.
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Here are two examples, the first is for the QR algorithm and the second is for the
Toda algorithm.
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Figure: Universality for T̃ε,N,A,E when (a)A is the QR eigenvalue algorithm and when (b)A
is the Toda algorithm. Panel (a) displays the overlay of two histograms for T̃ε,N,A,E in the case
of QR, one for each of the two ensembles E = BE, consisting of iid mean-zero Bernoulli
random variables and E = GOE, consisting of iid mean-zero normal random variables. Here
ε = 10−10 and N = 100. Panel (b) displays the overlay of two histograms for T̃ε,N,A,E in the
case of the Toda algorithm, and again E = BE or GOE. And here ε = 10−8 and N = 100.
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The stopping times, or halting times, for a given algorithm can be chosen in various
ways, depending on which aspects of the given algorithm one wants to investigate. In
the above figures, the stopping times take into account the phenomenon known as
deflation, i.e., Tε,N,A,E(H) is the first time k (or t in the continuous case) such that Hk

(or H(t)) has block form

Hk =

(
H11 H12

H21 H22

)
,

with H11 j× j, H22 (N − j)× (N − j) such that

‖H12‖ = ‖H21‖ ≤ ε

for some 1 ≤ j ≤ N − j. Then the eigenvalues {λj} of H differ from the eigenvalues
{λ̂j} of the deflated matrix

Ĥ =

(
H11 0
0 H22

)
,

by O(ε). The algorithm is then applied to the (smaller) matrices H11 and H22, etc.
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Subsequent to [PDM12], Govind Menon, Sheehan Olver, Tom Trogdon and PD
[DMOT14], raised the question of whether the universality results in the study
[PDM12] were limited to eigenvalue algorithms, or whether they were present more
generally in numerical computation. And indeed the authors in [DMOT14] found
similar universality results for a wide variety of numerical algorithms, including

(a) more general eigenvalue algorithms such as the Jacobi eigenvalue algorithm, and
also algorithms for Hermitian ensembles,

(b) the conjugate gradient and GMRES algorithms to solve linear N × N systems
Hx = b,

(c) an iterative algorithm to solve the Dirichlet problem ∆u = 0 on a random
star-shaped region Ω ⊂ R2 with random boundary data f on ∂Ω,

(d) a genetic algorithm to compute the equilibrium measure for orthogonal
polynomials on the line, and

(e) decision making algorithms.

P A Deift, G Menon, S Olver, and T Trogdon. Universality in numerical computations with random data.
Proc. Natl. Acad. Sci. U. S. A., 111(42):14973–8, oct 2014
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Some comments on (a)

(a): In all the calculations in [PDM12], M was real and symmetric with independent
entries. Here we considered N × N Hermitian M = M∗ from various unitary
invariant ensembles with distributions proportional to

e−NtrV(M)dM

where V(x) : R→ R grows sufficiently rapidly. The entries are independent iff V is
proportional to x2: non-trivial matter to sample ensembles for general V (see Olver,
Rao and Trogdon (2015) [ORT15]).

Histograms for the deflation time fluctuations are given below.
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Dependent QR Fluctuations
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Figure: The observation of two-component universality for τε,N,A,E whenA = QR,
E = QUE, COSH, GUE and ε = 10−10. Here we are using deflation time ( = halting time), as
in [2012]. The left figure displays three histograms, one each for GUE, COSH and QUE, when
N = 70. The right figure displays the same information for N = 150. All histograms are
produced with 16,000 samples. Again, we see that two-component universality emerges for N
sufficiently large: the histograms follow a universal (independent of E) law. This is surprising
because COSH and QUE have eigenvalue distributions that differ significantly from GUE in
that they do not follow the so-called semi-circle law.
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Some comments on (a)

The Gaussian Unitary Ensemble (GUE) is a complex, unitary invariant ensemble
with probability distribution proportional to e−NtrM2

dM.

The Quartic Unitary Ensemble (QUE) is a complex, unitary invariant ensemble with
probability distribution proportional to e−NtrM4

dM.

The Cosh Unitary Ensemble (COSH) has its distribution proportional to e−tr cosh MdM.

Both QUE and COSH do not follow the semi-circle law for the global distribution of
the eigenvalues.
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Some comments on (b): Conjugate gradient fluctuations

(b): Here the authors started to address the question of whether two-component
universality is just a feature of eigenvalue computation, or is present more generally
in numerical computation. In particular, the authors considered the solution of the
linear system of equations Wx = b where W is a real and positive definite, using the
conjugate gradient (CG) method.

The method is iterative and at iteration k of the algorithm an approximate solution xk

of Wx = b is found and the residual rk = Wxk − b is computed. For any given ε > 0,
the method is halted when ‖rk‖2 < ε, and the halting time kε(W, b) recorded.

Here the authors considered N × N matrices A chosen from two different positive
definite ensembles E and vectors b = (bj) chosen independently with iid entries {bj}.
Given ε (small) and N (large), and (W, b) ∈ E , the authors record the halting time
kε,N,A,E , A = CG, and compute the fluctuations τε,N,A,E(W, b). The histograms for
τε,N,A,E are given below, and again, two-component universality is evident.
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Conjugate Gradient Fluctuations
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Figure: The observation of two-component universality for τε,N,A,E whenA = CG and
E = cLOE, cPBE with ε = 10−10. The left figure displays two histograms, one for cLOE and
one for cPBE, when N = 100. The right figure displays the same information for N = 500. All
histograms are produced with 16,000 samples. Again, we see two-component universality
emerges for N sufficiently large: the histograms follow a universal (independent of E) law. With
the chosen scaling, we see two-component universality emerge for N sufficiently large: the
histograms follow a universal (independent of E) law.
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The critically-scaled Laguerre Orthogonal Ensemble (cLOE) is given by XXT/m
where X is an N × m matrix with iid Gaussian (mean zero, variance one) entries. The
critically-scaled positive definite Bernoulli ensemble (cPBE) is given by XXT/m
where X is an N × m matrix consisting of iid Bernoulli variables taking the values
±1 with equal probability.

The critical scaling refers to the choice m = N + 2b
√

Nc.
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Some comments on (b): The GMRES Algorithm

The authors again considered the solution of Wx = b but here W has the form I + X
and X ≡ Xn is a random, real non-symmetric matrix and b = (bj) is independent with
uniform iid entries {bj}. As W = I + X is (almost surely) no longer positive definite
the conjugate gradient algorithm breaks down, and the authors solve (I + X)x = b
using the Generalized Minimal Residual (GMRES) algorithm.

Again, the algorithm is iterative and at iteration k of the algorithm an approximate
solution xk of (I + X)x = b is found and the residual rk = (I + X)xk − b is
computed. As before, for any given ε > 0, the method is halted when ‖rk‖2 < ε and
kε,n,A,E(X, b) is recorded. For these computations X is chosen from two distinct
ensembles. As in the conjugate gradient problem, the authors compute the
histograms for the fluctuations of the halting time τε,n,A,E for two ensembles E,
where now A = GMRES. The results are given below, where again two component
universality is evident.
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Some comments on (b)

The critically-scaled shifted Bernoulli Ensemble (cSBE) is given by I + X/
√

N
where X is an N × N matrix consisting of iid Bernoulli variables taking the values
±1 with equal probability. The critically-scaled shifted Ginibre Ensemble (cSGE) is
given by I + X/

√
N where X is an N × N matrix of iid Gaussian variables with mean

zero and variance one.

The scaling is chosen so that P(|‖X/
√

N‖ − 2| > ε) tends to zero as N →∞.
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GMRES Fluctuations
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Figure: The observation of two-component universality for τε,N,A,E whenA = GMRES,
E = cSGE, cSBE and ε = 10−8. The left figure displays two histograms, one for cSGE and
one for cSBE, when N = 100. The right figure displays the same information for N = 500. All
histograms are produced with 16,000 samples. We see two-component universality emerge for
N sufficiently large: the histograms follow a universal (independent of E) law.
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Some comments on (c): Infinite-dimensional problems

(c): Here the authors raised the issue of whether two-component universality is just a
feature of finite-dimensional computation, or is also present in problems which are
intrinsically infinite dimensional.

What about PDEs?

In particular, is the universality present in numerical computations for PDEs? As a
case study, the authors consider the numerical solution of the Dirichlet problem
∆u = 0 in a star-shaped region Ω ⊂ R2 with u = f on ∂Ω. In this case, the boundary
is described by a periodic function of the angle θ, r = r(θ), and similarly f = f (θ),
0 ≤ θ ≤ 2π.

Two ensembles, BDE and UDE (described below), are derived from a discretization
of the problem with specific choices for r, defined by a random Fourier series. The
boundary condition f is chosen randomly by letting {f ( 2πj

N )}N−1
j=0 be iid uniform on

[−1, 1]. Histograms for the halting time τε,N,A,E from these computations are given
below and again, two-component universality is evident.
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Let Ω be the star-shaped region interior to the curve
(x, y) = (r(θ) cos(θ), r(θ) sin(θ)) where r(θ) is given by

r(θ) = 1 +
m∑

j=1

(Xj cos(jθ) + Yj sin(jθ)), 0 ≤ θ < 2π

and Xj and Yj are iid random variables taking values in [−1/(2m), 1/(2m)]. Dividing
by 2m eliminates the possibility that r vanishes. The double-layer potential
formulation of the boundary integral equation

πu(P)−
∫
∂Ω

u(P)
∂

∂nQ
log |P− Q|dSQ = −f (P), P ∈ ∂Ω,

is solved by discretizing in θ with N points and applying the trapezoidal rule
choosing N = 2m.

The Bernoulli Dirichlet Ensemble (BDE) is the case where Xm and Ym are Bernoulli
variables taking values ±1/(2m) with equal probability. The Uniform Dirichlet
Ensemble (UDE) is the case where Xm and Ym are uniform variables on
[−1/(2m), 1/(2m)].
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More GMRES Fluctuations
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Figure: The observation of two-component universality for τε,N,A,E whenA = GMRES,
E = UDE, BDE and ε = 10−8. The left figure displays two histograms, one for UDE and
BDE, when N = 100. The right figure displays the same information for N = 500. All
histograms are produced with 16,000 samples. We see two-component universality emerge for
N sufficiently large: the histograms follow a universal (independent of E) law.
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The following figure conflates the previous computations from GMRES applied to
the shifted ensembles and GMRES applied to the Dirichlet problem given above.
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All GMRES Fluctuations
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Figure: This figure consists of four histograms, two taken from GMRES applied to the previous
shifted ensembles and two taken from GMRES applied to the Dirichlet problem.
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What is surprising, and quite remarkable, about these computations is that the
histograms in the case of the Dirichlet problem are the same as the histograms for the
shifted ensembles. In other words, UDE and BDE are structured with random
components, whereas cSGE and cSBE have no structure, yet they produce the same
statistics.
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Some comments on (d): A genetic algorithm

(d): In all the computations discussed so far, the randomness in the computations
resides in the initial data. In the next set of computations in [DMOT14], the authors
considered an algorithm which is intrinsically stochastic. In particular, they
considered a genetic algorithm, which they used to compute Fekete points. Such
points P∗ = (P∗1 ,P

∗
2 , . . . ,P

∗
N) ∈ RN are the global minimizers of the objective

function

H(P) =
2

N(N − 1)

∑
1≤i6=j≤N

log |Pi − Pj|−1 +
1
N

N∑
i=1

V(Pi)

for real-valued functions V = V(x) which grow sufficiently rapidly as |x| → ∞. It is
well-known that as N →∞, the counting measures δP∗ = 1

N

∑N
i=1 δP∗

i
converge to

the so-called equilibrium measure µV which plays a key role in the asymptotic theory
of the orthogonal polynomials generated by the measure e−NV(x)dx on R. Genetic
algorithms are particularly useful for large scale optimization problems, such as those
that occur, for example, in the financial industry, and involve two basic components ,
“mutation” and “crossover”. The authors implemented the genetic algorithm in the
following way.
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Fix a distribution D on R. Draw an initial population P0 = P = {Pi}n
i=1 consisting

of n = 100 vectors in RN , N large, with elements that are iid uniform on [−4, 4]. The
random map FD(P) : (RN)n → (RN)n is defined by one of the following two
procedures:

P

P1

P2

P100

× × · · · ×
× × · · · ×

...
× × · · · ×︸ ︷︷ ︸

N
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Mutation

Pick one individual P ∈ P at random (uniformly). Then pick two integers n1, n2

from {1, 2, . . . ,N} at random (uniformly and independent). Three new individuals
are created.

I P̃1 — draw n1 iid numbers {x1, . . . , xn1} from D and perturb the first n1

elements : (P̃1)i = (P)i + xi, i = 1, . . . , n1, and (P̃1)i = (P)i for i > n1.
I P̃2 — draw N − n2 iid numbers {yn2+1, . . . , yN} from D and perturb the last

N − n2 elements of P: (P̃2)i = (P)i + yi, i = n2 + 1, . . . ,N, and (P̃2)i = (P)i

for i ≤ n2.
I P̃3 — draw |n1 − n2| iid numbers {z1, . . . , z|n1−n2|} from D and perturb

elements n∗1 = 1 + min(n1, n2) through n∗2 = max(n1, n2):
(P̃3)i = (P)i + zi−n∗1 +1, i = n∗1 , . . . , n

∗
2 , and (P̃3)i = (P)i for i 6∈ {n∗1 , . . . , n∗2}.
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Crossover

Pick two individuals P, Q from P at random (independent and uniformly). Then
pick two numbers n1, n2 from {1, 2, . . . ,N} (independent and uniformly). Two new
individuals are created.

I P̃4 — Replace the n1th element of P with the n2th element of Q and perturb it
(additively) with a sample of D.

I P̃5 — Replace the n1th element of Q with the n2th element of T and perturb it
(additively) with a sample of D.
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At each step, the application of either crossover or mutation is chosen with equal
probability.

The new individuals are appended to P (after mutation we have
P̃ = P ∪ {P̃1, P̃2, P̃3} and after crossover we have P̃ = P ∪ {P̃4, P̃5}) and
P 7→ P ′ = FD(P) ∈ (RN)n is constructed by choosing the 100 Pi’s in P̃ which
yield the smallest values of H(P). The algorithm produces a sequence of populations
P1,P2, . . . ,Pk, . . . in (RN)n, Pk+1 = FD(Pk), n = 100, and halts, with halting time
recorded, for a given ε, when minP∈Pk H(P)− infP∈RN H(P) < ε.

The histograms for the fluctuations τε,N,A,E , with A = Genetic are given below, for
two choices of V , V(x) = x2 and V(x) = x4 − 3x2, and different choices of E ' D.
Again, two-component universality is evident.
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Figure: The observation of two-component universality for τε,N,A,E whenA = Genetic,
ε = 10−2 and E ' D where D is chosen to be either uniform on [−1/(10N), 1/(10N)] or
taking values ±1/(10N) with equal probability. The top row is created with the choice
V(x) = x2 and the bottom row with V(x) = x4 − 3x2. Each of the plots in the left column
displays two histograms, one for each choice of D when N = 10. The right column displays the
same information for N = 40. All histograms are produced with 16,000 samples. The
equilibrium measure for V(x) = x2 is supported on one interval whereas the equilibrium
measure for V(x) = x4 − 3x2 is supported on two intervals. It is evident that the histograms
collapse onto a universal curve, one for each V .
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Some comments on (e): Decision making model
(e): In the final set of computations in [DMOT14], the authors picked up on a
common notion in neuroscience that the human brain is a computer with software
and hardware. If this is indeed so, then one may speculate that two-component
universality should be present certainly in some cognitive actions.

The authors focused on recent work of Bakhtin and Correll [BC12], who have
conducted and analyzed the data obtained from experiments with 45 human
participants. The participants are shown 200 pairs of images. The images in each pair
consist of nine black disks of variable size. The disks in the images within each pair
have approximately the same area so that there is no a priori bias.

The participants are then asked to decide which of the two images covers the larger
(black) area. Bakhtin and Correll then record the time T that it takes for each
participant to make a decision. For each participant, the decision times for the 200
pairs are collected and the fluctuation histogram is tabulated. They then compare
their experimental results with a dynamical Curie–Weiss model frequently used in
describing decision processes, resulting in good agreement.

Y Bakhtin and J Correll. A neural computation model for decision-making times. J. Math. Psychol.,
56(5):333–340, 2012
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Some comments on (e): Decision making model

Y. Bakhtin, J. Correll / Journal of Mathematical Psychology 56 (2012) 333–340 337

Fig. 3. An example of a pair of images generated for using in the experiment.

Fig. 4. Histogram of correct guess rates x normalized according to (4) with
superimposed standard Gaussian density.

3.2. Results

Due to the small (2%) difference in areas, most participants
performed not much better than chance. The average number of
correct guesses was about 55.8%, only slightly better than 50%
accuracy. If n is the total number of non-discarded trials and m is
the number of correct guesses, then

x = m � n
2q

n · 1
2 · 1

2

(4)

is the normalized deviation from the expected result of completely
random choices. The histogram of these 45 values is shown on
Fig. 4. We see that most of these values do not significantly deviate
from 0, so the results for most individual subjects do not allow us
to reject the hypothesis that their choices are essentially random.
However, the 5.8%deviation for the combined 8521measurements
is a significant one.

No evidence of learning emerged in the data. In fact, the correct
guess rate over the last 100 trials was only 54.3%, less than 55.8%
correct guesses on average in the complete experiment.

It turns out that the data showmore regularity and consistency
with the theoretical distribution if we omit an interval of observa-
tions in the beginning of the experiment. These observations corre-
spond to the phase of adaptation to the new task and settling onto a
statistically steady regime, so omitting them leads to amore homo-
geneous sample. Accordingly, subsequent computations omit the
first quarter of trials (about 50 out of about 200), although the re-
sults are not very sensitive to this precise fraction. Even without
the omission of the initial trials, we obtain good agreement with
the theoretical distribution for about two-thirds of the subjects. By
omitting the initial unstable interval we obtain good agreement in
about 90% of cases.

We begin with visualizations of the data. Fig. 5 shows
quantile–quantile plots for data vs. theoretical distribution for

Fig. 5. Quantile–quantile graphs for participants 1, 6, 11, 16, 21, 26, 31, 36, and 41.

participants 1, 6, 11, 16, 21, 26, 31, 36, and 41. For each participant,
we plot nine points. For the k-th point, k = 1, . . . , 9, its first
coordinate is the k-th decile of the theoretical ⇥-distribution, and
its second coordinate is the k-th decile of the response time sample
for the participant. We connect the nine points sequentially by
straight lines.

If the data perfectly agree with the type of ⇥-distribution
(i.e., up to dilation and translation) then all nine points will be on
the same straight line. The coefficients a and b in the equation of
that line y = ax + b are the dilation and translation coefficients
that one needs to apply to achieve agreement with the data. If the
data strongly disagree with the type of ⇥-distribution then there
will be a significant deviation of the quantile–quantile plot from a
straight line.

Fig. 5 shows that most of the quantile–quantile plots reveal a
fairly straight line, demonstrating agreement of the data with the
theoretical model.

Data histograms along with a fitted density of ⇥-distribution
for every fifth subject are shown on Fig. 6.

The graphs suggest a reasonably good fit between data and
theory. We now turn to rigorous statistical inference using the
classical Pearson �2 statistic to test the agreement of these data
with the fitted distribution. To fit the distribution we have two
parameters at our disposal: we are testing if there are coefficients
a and b such that the data are consistent with the distribution of
a⇥ + b.

We base our test on deciles. For any values of a and b, all nine
deciles of the distribution of a⇥ + b can be found by applying
the transformation x 7! ax + b to the deciles of the distribution
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Some comments on (e): Decision making model
(e): In the final set of computations in [DMOT14], the authors picked up on a
common notion in neuroscience that the human brain is a computer with software
and hardware. If this is indeed so, then one may speculate that two-component
universality should be present certainly in some cognitive actions.

The authors focused on recent work of Bakhtin and Correll [BC12], who have
conducted and analyzed the data obtained from experiments with 45 human
participants. The participants are shown 200 pairs of images. The images in each pair
consist of nine black disks of variable size. The disks in the images within each pair
have approximately the same area so that there is no a priori bias.

The participants are then asked to decide which of the two images covers the larger
(black) area. Bakhtin and Correll then record the time T that it takes for each
participant to make a decision. For each participant, the decision times for the 200
pairs are collected and the fluctuation histogram is tabulated. They then compare
their experimental results with a dynamical Curie–Weiss model frequently used in
describing decision processes, resulting in good agreement.

Y Bakhtin and J Correll. A neural computation model for decision-making times. J. Math. Psychol.,
56(5):333–340, 2012
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Fig. 6. Histograms for subjects 1, 6, 11, 16, 21, 26, 31, 36, and 41.

of ⇥ . Those in turn can be easily computed using quantiles of the
standard Gaussian distribution.

The resulting quantiles divide the real axis into 10 parts, each of
which is assigned a probability of 0.1 according to the distribution
of a⇥ + b. For each participant and any values of a and b, we can
find the empirical distribution of observations between these 10
cells and compare it to the uniform distribution using the standard
�2 statistics. We then minimize the value of �2 by the brute force
search through all possible values of a a 2 [0, 5] and b 2 [0, 5]
looking only at multiples of 0.01. The optimal values of a and
b found this way are reasonable candidates for the coefficients
of the transformation ax + b that approximates the data. The
values for the dilation coefficient, a, range from 0.13 to 2.5, and
for the translation coefficient, b, from 0.24 to 3.25. Although these
parameters are strongly correlated, we shall shortly see that both
are essential.

We use �2 statistics with 10 � 1 � 2 = 7 degrees of freedom,
where 10 is the number of cells used in the evaluation of �2

statistics, 1 degree of freedom is lost since the frequencies for any
9 cells uniquely determine the frequency for the 10th one, and 2
is the number of parameters used to approximate the distribution.
At significance level ↵ = 0.05, the critical value of �2 distribution
with 7 degrees of freedom is approximately 14.067.

We report the values of the �2 statistics for our data on 45
subjects in the form of histograms, see Fig. 7. Clearly, all but six
observed values of �2 statistics are below the critical value. It
means that at the significance level of 0.05 we can reject our
hypothesis only for 6 out of 45 participants, i.e., inmore than 85% of
cases there is no statistical evidence against the hypothesis under
consideration. The corresponding histograms for the rejected cases
still exhibit a remarkable resemblance to the graph of the density
of ⇥ even though these cases have to be rejected according to our
formal statistical procedure.

As mentioned above, the parameters a and b of our model
are strongly correlated (see Wagenmakers and Brown (2007)).
However, Fig. 8 shows that linear regression prediction of one
parameter, given the other one, often produces relative errors of
the order of 50%. Also, elimination of either parameter leads to 60%
rejection rate at 0.05 significance level. Both parameters are thus
essential for an adequate description of the data.

4. Discussion

In Section 3, we showed that our models are consistent with
most experimental results. Both models describe a symmetric

The solid curve is the (shifted and scaled) Gumbel distribution

fBC(x) = σg(σx + µ), g(z) = exp(−x− e−x)

predicted by the Curie–Weiss model of Bakhtin–Correll.
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At its essence the model is Glauber dynamics on the hypercube {−1, 1}N with a
microscopic approximation of a drift-diffusion process. Consider N variables
{Xi(t)}N

i=1, Xi(t) ∈ {−1, 1}. The state of the system at time t is
X(t) = (X1(t),X2(t), . . . ,XN(t)). The transition probabilities are given through the
expressions

P(Xi(t + ∆t) 6= Xi(t)|X(t) = x) = ci(x)∆t + o(∆t),

where ci(x) is the spin flip intensity. The observable considered is

M(X(t)) =
1
N

N∑
i=1

Xi(t) ∈ [−1, 1],

and the initial state of the system is chosen so that M(X(0)) = 0, a state with no a
priori bias, as in the case of the experimental setup.

Given ε ∈ (0, 1), which may not be small, the halting (or decision) time for this
model is k = inf{t : |M(X(t))| ≥ ε}, the time at which the system makes a decision.
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Following standard procedures, this model is simulated by first sampling an
exponential random variable with mean(∑

i

ci(X(t))

)−1

to find the time increment ∆t at which the system changes state. With probability
one, just a single spin flipped.

One determines which spin flips by sampling a random variable Y with distribution

P(Y = i) =
ci(X(t))∑

i ci(X(t))
, i = 1, 2, . . . ,N,

so producing an integer j. Define

Xi(t + s) ≡ Xi(t) if s ∈ [0,∆t) for i = 1, 2, . . . ,N,

Xi(t + ∆t) ≡ Xi(t), if i 6= j,

Xj(t + ∆t) ≡ −Xj(t).

This procedure is repeated with t replaced by t + ∆t to evolve the system.
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Central to the application of the model is the assumption on the statistics of the spin
flip intensity ci(x). The authors in the present paper raised the following question.

If one changes the basic statistics of the ci’s, will the limiting histograms for the
fluctuations of k be affected as N becomes large?

In response to this question the authors considered the following choices for
E ' ci(x) (β = 1.3):

1. ci(x) = oi(x) = e−βxiM(x) (the case studied by [BC12]),

2. ci(x) = ui(x) = e−βxi(M(x)−M3(x)/5),

3. ci(x) = vi(x) = e−βxi(M(x)+M8(x)).
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The histograms for the fluctuations τε,N,A,E of k are given below for all three choices
of ci. Once again, two-component universality is evident. Thus these computations
demonstrate two-component universality for a range of decision process models.
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Figure: The observation of two-component universality for τε,N,A,E whenA = Curie–Weiss,
E ' oi, ui, vi, ε = .5 and β = 1.3. The left figure displays three histograms, one for each
choice of E when N = 50. The right figure displays the same information for N = 200. All
histograms are produced with 16,000 samples. The histogram for E = oi corresponds to the
case studied by [BC12]. It is clear from these computations that the fluctuations collapse on to
the universal curve for E = oi. Thus, reasonable changes in the spin flip intensity do not appear
to change the limiting histogram. This indicates why the specific choice made in [BC12] of
E = oi is perhaps enough to capture the behavior of many individuals.
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Two interesting observations
(1) Google searches: When you perform a Google search, it actually tells you how
long the search took and one can look at the halting time histogram. Trogdon et al
considered ensembles of 3000 english words and 3000 Turkish words and they found
the following:
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L Sagun, T Trogdon, and Y LeCun. Universal halting times in optimization and machine learning. Q.
Appl. Math., nov 2017
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Two interesting observations

(2) Universality in incubation times: Figure and caption reproduced from [Bah18].

Solid curves are Gumbel densities fBC predicted in [OLSS17] using a graphical
model. (a) Data from an outbreak of food-borne streptococcal sore throat, reported
by Sartwell (1995) [Sar50], time measured in days. (b) Data from a study of bladder
tumors among workers following occupational exposure to a carcinogen in a dye
plant, see Goldblatt (1949) [Gol49]. Time measured in years.

Y Bahktin. Universal Statistics of Incubation Periods and Other Detection Times via Diffusion Models.
draft, 2018

B Ottino-Loffler, J G Scott, and S H Strogatz. Evolutionary dynamics of incubation periods. Elife, 6, dec
2017
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Bakhtin was able to reproduce the fBC Gumbel distribution using no-called reactive
paths for a simple stochastic ODE

dx(t) = b(x(t))dt + σ(x(t))dW(t)

W — Wiener process

So we have an interesting conundrum. What is it exactly that is in common with
I the neural stochastics of the participants in the Bakhtin–Correll experiment
I the universality of the Curie–Weiss model
I the Google searches, and
I the statistics of incubation times?
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All the above results are numerical and experimental. In order to establish
universality as a bona fide phenomenon in numerical analysis, and not just an artifact,
suggested, however strongly, by certain computations as above, the authors in
[DT2016] analyzed a particular algorithm of interest, viz, the Toda algorithm to
compute the largest eigenvalue of a random N × N symmetric matrix. More
precisely, they considered the Toda lattice given before

dH
dt

= [H,B(H)], B(H) = H− − HT
−

with H(0) = H but now with stopping time T = Tε,N,A,E given by

E(T) =
N∑

j=2

|H1j(T)|2 = ε2.

By perturbation theory

|H11(T)− λj| ≤ ε

for some eigenvalue λj of H = H(0).
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As Toda is an ordering algorithm, λj = λN , the largest eigenvalue of H, and so with
high probability as N →∞, T controls the computation of the largest eigenvalue of
H. Here H = H(0) is chosen from a very wide variety of invariant ensembles (IEs)
and Wigner ensembles (WEs), and it turns out that the analysis of T = Tε,N,A,E(H)
depends in a crucial way on recent results from random matrix theory (RMT) that are
at the forefront of current knowledge.
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The gap λN − λN−1 between the two largest eigenvalues of H plays a central role in
describing the statistics of T . The following definition quantifies the distribution Fgap

β

of the inverse of λN − λN−1 on the appropriate scale (β = 1 real symmetric, β = 2
complex Hermitian)

Fgap
β (t) = lim

N→∞
Prob

(
1

c2/3
V 2−2/3N2/3(λN − λN−1)

≤ t

)
, t > 0, (5)

where cV is an explicit constant which depends on the ensemble. It is a non-trivial
result in RMT that the limit (5) exists.
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The main result in [DT16] is the following.

Theorem 1
Universality for the Toda algorithm Let σ > 5/3 be fixed and let (ε,N) be in the
scaling region

log ε−1

log N
≥ σ.

Then if H is distributed according to an real (β = 1) or complex (β = 2) invariant or
Wigner ensemble

lim
N→∞

Prob

(
T

c̃2/3
V 2−2/3N2/3(log ε−1 − 2

3 log N)
≤ t

)
= Fgap

β (t), t ≥ 0.

Furthermore

ε−1|λN − H11(T)|

converges to zero in probability as N →∞.

P Deift and T Trogdon. Universality for the Toda Algorithm to Compute the Largest Eigenvalue of a
Random Matrix. Commun. Pure Appl. Math., 71(3):505–536, mar 2018

P. Deift Universality in numerical computation



Thus T , suitably scaled, behaves statistically as N →∞, like the inverse gap
(λN − λN−1)

−1.

Some comments:
(1): For β = 2 one can show that for (ε,N) in the scaling region

E(T) = c̃3/2
V 2−2/3N2/3(log ε−1 − 2

3
log N)E(ξ)(1 + o(1))

= c̃3/2
V 2−2/3N2/3 log N

(
log ε−1

log N
− 2

3

)
E(ξ)(1 + o(1))

where ξ is a random variable with distribution Fgap
β=2(t) and an analogous result for

Var(T)1/2.

This kind of result

E(t) ∼ N2/3 log N

is new: standard results on the statistics of eigenvalue computation give bounds
which are typically too large.
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Numerical comparisons
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Figure: The simulated rescaled histogram for T for both BUE and GUE. Here ε = 10−14 and
N = 500 with 250,000 samples. The solid curve is the rescaled density f gap

2 (t) = d/dtFgap
2 (t).
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(2): Note that if ε = 10−16 and N < 109 then

log ε−1

log N
=

16
9
>

5
3

so computations that arise in practice typically lie in the scaling region.

(3): Similar theorems have been proved for other algorithms such as QR on
ensembles of positive definite matrices [DT17].

P Deift and T Trogdon. Universality for Eigenvalue Algorithms on Sample Covariance Matrices. SIAM
J. Numer. Anal., 55(6):2835–2862, jan 2017
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(4): The proof of the theorem rests on the fact that the Toda lattice is completely
integrable. Using results from Moser from the 1970’s one obtains an explicit formula
for E(t) in terms of the eigenvalues {λj} and the first components of the associated
eigenvectors {u1j} of H, Huj = λjuj

E(t) =

N∑
j=1

(λj − H11(t))2|u1j(t)|2,

H11(t) =

N∑
j=1

λj|u1j(t)|2,

u1j(t) = u1jeλjt/

(
N∑

i=1

|u1i(t)|2e2λit

)1/2

.
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The analysis of the condition

E(T) = ε2

thus reduces to calculus with random variables {λj}, {uj}, whose precise statistical
properties have only been established in the last 3-6 years due to the works of Yau,
Erdős, Bourgade and their collaborators.

Most recently, together with Steve Miller, we have been investigating universality
properties of cyber algorithms, such as RSA, but that is another story...
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