Universal fluctuations in interacting dimers

Alessandro Giuliani, Univ. Roma Tre

Based on joint works with V . Mastropietro and F. Toninelli

ICMP 2018, Montreal, July 25, 2018

Outline

(1) Introduction and overview

(2) Non-interacting dimers

(3) Interacting dimers: main results

Universality, scaling limits and Renormalization Group

The scaling limit of the Gibbs measure of a critical stat-mech model is expected to be universal.

Universality, scaling limits and Renormalization Group

The scaling limit of the Gibbs measure of a critical stat-mech model is expected to be universal.

Conceptually, the route towards universality is clear:

Universality, scaling limits and Renormalization Group

The scaling limit of the Gibbs measure of a critical stat-mech model is expected to be universal.

Conceptually, the route towards universality is clear:
(1) Integrate out the small-scale d.o.f., rescale, show that the critical model reaches a fixed point (Wilsonian RG).
(3) Use CFT to classify the possible fixed points (complete classification in 2D; recent progress in 3D).

Known results

Currently known rigorous results (limited to 2D):

Known results

Currently known rigorous results (limited to 2D):

(1) Integrable models: Ising and dimers. Conformal invar. via discrete holomorphicity (Kenyon, Smirnov, Chelkak-Hongler--Izyurov, Dubedat, Duminil-Copin,) Universality: geometric deformations YES; perturbations of Hamiltonian NO

Known results

Currently known rigorous results (limited to 2D):
(1) Integrable models: Ising and dimers. Conformal invar. via discrete holomorphicity (Kenyon, Smirnov, Chelkak-Hongler--Izyurov, Dubedat, Duminil-Copin,) Universality: geometric deformations YES; perturbations of Hamiltonian NO
(2) Non-integrable models: interacting dimers, AT, 8V, 6 V . Bulk scaling limit, via constructive RG (Mastropietro, Spencer, Giuliani, Falco, Benfatto, ...) Universality: geometric deformations NO; perturbations of Hamiltonian YES.

Dimers

In this talk: review selected results on universality of non-integrable 2D models. Focus on: dimer models.

In this talk: review selected results on universality of non-integrable 2D models. Focus on: dimer models.

2D dimer models are highly simplified models of liquids of anisotropic molecules or random surfaces

Dimers

In this talk: review selected results on universality of non-integrable 2D models. Focus on: dimer models.

2D dimer models are highly simplified models of liquids of anisotropic molecules or random surfaces

Note: the height describes a 3D Ising interface with tilted Dobrushin b.c.

At close-packing: family of solvable dimer models. The partition function has a determinant structure.

At close-packing: family of solvable dimer models. The partition function has a determinant structure.

The dimer weights control the average slope of the height. Dimer-dimer correlations decay algebraically; height fluctuations \Rightarrow GFF (liquid/rough phase).

At close-packing: family of solvable dimer models. The partition function has a determinant structure.

The dimer weights control the average slope of the height. Dimer-dimer correlations decay algebraically; height fluctuations \Rightarrow GFF (liquid/rough phase).

At close-packing: family of solvable dimer models. The partition function has a determinant structure.

The dimer weights control the average slope of the height. Dimer-dimer correlations decay algebraically; height fluctuations \Rightarrow GFF (liquid/rough phase).

NB: this proves the existence of a rough phase in 3D Ising at $T=0$ with tilted Dobrushin b.c.

At close-packing: family of solvable dimer models. The partition function has a determinant structure.

The dimer weights control the average slope of the height. Dimer-dimer correlations decay algebraically; height fluctuations \Rightarrow GFF (liquid/rough phase).

Variance of GFF independent of slope \rightsquigarrow Universality

Interacting dimers: main results (in brief)

RG and bosonization suggest that GFF should be robust under non-integrable perturbations.

Interacting dimers: main results (in brief)

RG and bosonization suggest that GFF should be robust under non-integrable perturbations.

We consider a class of interacting dimer models, including 6 V and non-integrable variants thereof.

Interacting dimers: main results (in brief)

RG and bosonization suggest that GFF should be robust under non-integrable perturbations.

We consider a class of interacting dimer models, including 6 V and non-integrable variants thereof.

We prove that height fluct. still converge to GFF, with variance depending on interaction and slope.

RG and bosonization suggest that GFF should be robust under non-integrable perturbations.

We consider a class of interacting dimer models, including 6 V and non-integrable variants thereof.

We prove that height fluct. still converge to GFF, with variance depending on interaction and slope.

Subtle form of universality: the (pre-factor of the) variance equals the anomalous critical exponent of the dimer correlations \Rightarrow Haldane relation.

Outline

(1) Introduction and overview

(2) Non-interacting dimers
(3) Interacting dimers: main results

Dimers and height function

Dimers and height function

Height function:

$$
h\left(f^{\prime}\right)-h(f)=\sum_{b \in C_{f \rightarrow f^{\prime}}} \sigma_{b}\left(\mathbb{1}_{b}-1 / 4\right)
$$

$\sigma_{b}= \pm 1$ if b crossed with white on the right/left.

Non-interacting dimer model

$$
Z_{L}^{0}=\sum_{D \in \mathcal{D}_{L}} \prod_{b \in D} t_{r(b)}
$$

Non-interacting dimer model

$$
z_{L}^{0}=\sum_{D \in D_{b}} \prod_{b \in D} t_{(G)} .
$$

Non-interacting dimer model

$$
Z_{L}^{0}=\sum_{D \in \mathcal{D}_{L}} \prod_{b \in D} t_{r(b)} .
$$

Non-interacting dimer model

$$
z_{L}^{0}=\sum_{D \in D_{b}} \prod_{b \in D} t_{(i)} .
$$

Non-interacting dimer model

$$
Z_{L}^{0}=\sum_{D \in \mathcal{D}_{L}} \prod_{b \in D} t_{r(b)} .
$$

Non-interacting dimer model

$$
Z_{L}^{0}=\sum_{D \in \mathcal{D}_{L}} \prod_{b \in D} t_{r(b)} .
$$

Model parametrized by $t_{1}, t_{2}, t_{3}, t_{4}$ (we can set $t_{4}=1$).

Non-interacting dimer model

$$
z_{i}^{0}=\sum_{D \in D} \prod_{l=0} t_{t(t) \cdot}
$$

Model parametrized by $t_{1}, t_{2}, t_{3}, t_{4}$ (we can set $t_{4}=1$).
The t_{j} 's are chemical potentials fixing the av. slope:

$$
\left\langle h\left(f+e_{i}\right)-h(f)\right\rangle_{0}=\rho_{i}\left(t_{1}, t_{2}, t_{3}\right), \quad i=1,2
$$

Non-interacting dimer model

$$
Z_{L}^{0}=\sum_{D \in \mathcal{D}_{L}} \prod_{b \in D} t_{r(b)} .
$$

Model parametrized by $t_{1}, t_{2}, t_{3}, t_{4}$ (we can set $t_{4}=1$).
The t_{j} 's are chemical potentials fixing the av. slope:

$$
\left\langle h\left(f+e_{i}\right)-h(f)\right\rangle_{0}=\rho_{i}\left(t_{1}, t_{2}, t_{3}\right), \quad i=1,2
$$

The model is exactly solvable, e.g.,
$Z_{L}^{0}=\operatorname{det} K(\underline{t}), \quad$ with $\quad K(\underline{t})=$ Kasteleyn matrix.

Non-interacting dimer correlations

Non-interacting dimer-dimer correlations can be computed exactly (Kasteleyn, Temperley-Fisher):

$$
\left\langle\mathbb{1}_{b(x, 1)} ; \mathbb{1}_{b(y, 1)}\right\rangle_{0}=-t_{1}^{2} K^{-1}(x, y) K^{-1}(y, x)
$$

Non-interacting dimer correlations

Non-interacting dimer-dimer correlations can be computed exactly (Kasteleyn, Temperley-Fisher):

$$
\begin{aligned}
& \left\langle\mathbb{1}_{b(x, 1)} ; \mathbb{1}_{b(y, 1)}\right\rangle_{0}=-t_{1}^{2} K^{-1}(x, y) K^{-1}(y, x), \\
& \text { where : } \quad K^{-1}(x, y)=\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \frac{d^{2} k}{(2 \pi)^{2}} \frac{e^{-i k(x-y)}}{\mu(k)}
\end{aligned}
$$

Non-interacting dimer correlations

Non-interacting dimer-dimer correlations can be computed exactly (Kasteleyn, Temperley-Fisher):

$$
\begin{array}{ll}
\left\langle\mathbb{1}_{b(x, 1)} ; \mathbb{1}_{b(y, 1)}\right\rangle_{0}=-t_{1}^{2} K^{-1}(x, y) K^{-1}(y, x), \\
\text { where : } & K^{-1}(x, y)=\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \frac{d^{2} k}{(2 \pi)^{2}} \frac{e^{-i k(x-y)}}{\mu(k)} \\
\text { and : } \quad \mu(k)=t_{1}+i t_{2} e^{i k_{1}}-t_{3} e^{i k_{1}+i k_{2}}-i e^{i k_{2}} .
\end{array}
$$

Non-interacting dimer correlations

Non-interacting dimer-dimer correlations can be computed exactly (Kasteleyn, Temperley-Fisher):

$$
\begin{array}{ll}
\left\langle\mathbb{1}_{b(x, 1)} ; \mathbb{1}_{b(y, 1)}\right\rangle_{0}=-t_{1}^{2} K^{-1}(x, y) K^{-1}(y, x), \\
\text { where : } & K^{-1}(x, y)=\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \frac{d^{2} k}{(2 \pi)^{2}} \frac{e^{-i k(x-y)}}{\mu(k)} \\
\text { and : } \quad \mu(k)=t_{1}+i t_{2} e^{i k_{1}}-t_{3} e^{i k_{1}+i k_{2}}-i e^{i k_{2}} .
\end{array}
$$

Zeros of $\mu(k)$ lie at the intersection of two circles

$$
e^{i k_{2}}=\frac{t_{1}+i t_{2} e^{i k_{1}}}{i+t_{3} e^{i k_{1}}} .
$$

Non-interacting dimer correlations

Non-interacting dimer-dimer correlations can be computed exactly (Kasteleyn, Temperley-Fisher):

$$
\begin{array}{ll}
\left\langle\mathbb{1}_{b(x, 1)} ; \mathbb{1}_{b(y, 1)}\right\rangle_{0}=-t_{1}^{2} K^{-1}(x, y) K^{-1}(y, x), \\
\text { where : } & K^{-1}(x, y)=\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \frac{d^{2} k}{(2 \pi)^{2}} \frac{e^{-i k(x-y)}}{\mu(k)} \\
\text { and : } \quad \mu(k)=t_{1}+i t_{2} e^{i k_{1}}-t_{3} e^{i k_{1}+i k_{2}}-i e^{i k_{2}} .
\end{array}
$$

Zeros of $\mu(k)$ lie at the intersection of two circles

$$
e^{i k_{2}}=\frac{t_{1}+i t_{2} e^{i k_{1}}}{i+t_{3} e^{i k_{1}}}
$$

'Generically': two non-degenerate zeros $\Rightarrow K^{-1}(x, y)$ decays as (dist.) ${ }^{-1}$: the system is critical.

Non-interacting height fluctuations

Height fluctuations grow logarithmically:

$$
\left\langle h(f)-h\left(f^{\prime}\right) ; h(f)-h\left(f^{\prime}\right)\right\rangle_{0} \simeq \frac{1}{\pi^{2}} \log \left|f-f^{\prime}\right|
$$

as $\left|f-f^{\prime}\right| \rightarrow \infty$ (Kenyon, Kenyon-Okounkov-Sheffield).

Non-interacting height fluctuations

Height fluctuations grow logarithmically:

$$
\left\langle h(f)-h\left(f^{\prime}\right) ; h(f)-h\left(f^{\prime}\right)\right\rangle_{0} \simeq \frac{1}{\pi^{2}} \log \left|f-f^{\prime}\right|
$$

as $\left|f-f^{\prime}\right| \rightarrow \infty$ (Kenyon, Kenyon-Okounkov-Sheffield).
NB: the pre-factor $\frac{1}{\pi^{2}}$ is independent of t_{1}, t_{2}, t_{3}
(connection with maximality/Harnak property of the spectral curve).

Non-interacting height fluctuations

Height fluctuations grow logarithmically:

$$
\left\langle h(f)-h\left(f^{\prime}\right) ; h(f)-h\left(f^{\prime}\right)\right\rangle_{0} \simeq \frac{1}{\pi^{2}} \log \left|f-f^{\prime}\right|
$$

as $\left|f-f^{\prime}\right| \rightarrow \infty$ (Kenyon, Kenyon-Okounkov-Sheffield).
NB : the pre-factor $\frac{1}{\pi^{2}}$ is independent of t_{1}, t_{2}, t_{3} (connection with maximality/Harnak property of the spectral curve).

The computation is based on: the definition

$$
\left\langle h(f)-h\left(f^{\prime}\right) ; h(f)-h\left(f^{\prime}\right)\right\rangle_{0}=\sum_{b, b^{\prime} \in C_{f \rightarrow f^{\prime}}} \sigma_{b} \sigma_{b^{\prime}}\left\langle\mathbb{1}_{b} ; \mathbb{1}_{b^{\prime}}\right\rangle_{0},
$$

the formula for $\left\langle\mathbb{1}_{b} ; \mathbb{1}_{b^{\prime}}\right\rangle_{0}$, and the path-indep. of the height.

Non-interacting height fluctuations

Height fluctuations grow logarithmically:

$$
\left\langle h(f)-h\left(f^{\prime}\right) ; h(f)-h\left(f^{\prime}\right)\right\rangle_{0} \simeq \frac{1}{\pi^{2}} \log \left|f-f^{\prime}\right|
$$

as $\left|f-f^{\prime}\right| \rightarrow \infty$ (Kenyon, Kenyon-Okounkov-Sheffield).
NB: the pre-factor $\frac{1}{\pi^{2}}$ is independent of t_{1}, t_{2}, t_{3} (connection with maximality/Harnak property of the spectral curve).

Building upon this (Kenyon):

- height fluctuations converge to massless GFF
- scaling limit is conformally covariant

Outline

(1) Introduction and overview

(2) Non-interacting dimers
(3) Interacting dimers: main results

Interacting dimers

Interacting model:

$$
Z_{L}^{\lambda}=\sum_{D \in \mathcal{D}_{L}}\left(\prod_{b \in D} t_{r(b)}\right) e^{\lambda \sum_{x \in \Lambda} f\left(\tau_{x} D\right)},
$$

where: λ is small, f is a local function of the dimer configuration around the origin, τ_{x} translates by x.

Interacting dimers

Interacting model:

$$
Z_{L}^{\lambda}=\sum_{D \in \mathcal{D}_{L}}\left(\prod_{b \in D} t_{r(b)}\right) e^{\lambda \sum_{x \in \Lambda} f\left(\tau_{x} D\right)},
$$

where: λ is small, f is a local function of the dimer configuration around the origin, τ_{x} translates by x.

Interacting dimers

Interacting model:

$$
Z_{L}^{\lambda}=\sum_{D \in \mathcal{D}_{L}}\left(\prod_{b \in D} t_{r(b)}\right) e^{\lambda \sum_{x \in \Lambda} f\left(\tau_{x} D\right)},
$$

where: λ is small, f is a local function of the dimer configuration around the origin, τ_{x} translates by x.

NB: for suitable f, the model reduces to 6 V .
Generically, the model is non-integrable.
Our results don't depend on specific choice of f.

Main results: interacting dimer-dimer correlation

At small λ : anomalous liquid phase:

Main results: interacting dimer-dimer correlation

At small λ : anomalous liquid phase:
Theorem [G.-Mastropietro-Toninelli (2015, 2017, 2018+)]:
Let t_{1}, t_{2}, t_{3} be s.t. $\mu(k)$ has two distinct non-degen. zeros, $p_{ \pm}^{0}$ (non-degenerate $\Leftrightarrow \alpha_{\omega}^{0}=\partial_{k_{1}} \mu\left(\rho_{\omega}^{0}\right)$ and $\beta_{\omega}^{0}=\partial_{k_{2}} \mu\left(\rho_{\omega}^{0}\right)$ are not parallel).
Then, for λ small enough,

Main results: interacting dimer-dimer correlation

At small λ : anomalous liquid phase:
Theorem [G.-Mastropietro-Toninelli (2015, 2017, 2018+)]:
Let t_{1}, t_{2}, t_{3} be s.t. $\mu(k)$ has two distinct non-degen. zeros, $p_{ \pm}^{0}$ (non-degenerate $\Leftrightarrow \alpha_{\omega}^{0}=\partial_{k_{1}} \mu\left(\rho_{\omega}^{0}\right)$ and $\beta_{\omega}^{0}=\partial_{k_{2}} \mu\left(\rho_{\omega}^{0}\right)$ are not parallel).
Then, for λ small enough,

$$
\begin{aligned}
& \left\langle\mathbb{1}_{b(x, r)} ; \mathbb{1}_{b\left(0, r^{\prime}\right)}\right\rangle_{\lambda}=-\frac{1}{4 \pi^{2}} \sum_{\omega= \pm} \frac{K_{\omega, r}^{\lambda} K_{\omega, r^{\prime}}^{\lambda}}{\left(\beta_{\omega}^{\lambda} x_{1}-\alpha_{\omega}^{\lambda} x_{2}\right)^{2}} \\
& -\frac{1}{4 \pi^{2}} \sum_{\omega= \pm} \frac{H_{\omega, r}^{\lambda} H_{-\omega, r^{\prime}}^{\lambda}}{\left|\beta_{\omega}^{\lambda} x_{1}-\alpha_{\omega}^{\lambda} x_{2}\right|^{2 \nu(\lambda)}} e^{-i\left(p_{\omega}^{\lambda}-p_{-\omega}^{\lambda}\right) \cdot x}+R_{r, r^{\prime}}^{\lambda}(x),
\end{aligned}
$$

where: $\left|R_{r, r^{\prime}}^{\lambda}(x)\right| \lesssim|x|^{-3}$;

Main results: interacting dimer-dimer correlation

At small λ : anomalous liquid phase:
Theorem [G.-Mastropietro-Toninelli (2015, 2017, 2018+)]:
Let t_{1}, t_{2}, t_{3} be s.t. $\mu(k)$ has two distinct non-degen. zeros, $p_{ \pm}^{0}$ (non-degenerate $\Leftrightarrow \alpha_{\omega}^{0}=\partial_{k_{1}} \mu\left(\rho_{\omega}^{0}\right)$ and $\beta_{\omega}^{0}=\partial_{k_{2}} \mu\left(\rho_{\omega}^{0}\right)$ are not parallel).
Then, for λ small enough,

$$
\begin{aligned}
& \left\langle\mathbb{1}_{b(x, r)} ; \mathbb{1}_{b\left(0, r^{\prime}\right)}\right\rangle_{\lambda}=-\frac{1}{4 \pi^{2}} \sum_{\omega= \pm} \frac{K_{\omega, r}^{\lambda} K_{\omega, r^{\prime}}^{\lambda}}{\left(\beta_{\omega}^{\lambda} x_{1}-\alpha_{\omega}^{\lambda} x_{2}\right)^{2}} \\
& -\frac{1}{4 \pi^{2}} \sum_{\omega= \pm} \frac{H_{\omega, r}^{\lambda} H_{-\omega, r^{\prime}}^{\lambda}}{\left|\beta_{\omega}^{\lambda} x_{1}-\alpha_{\omega}^{\lambda} x_{2}\right|^{2 \nu(\lambda)}} e^{-i\left(p_{\omega}^{\lambda}-p_{-\omega}^{\lambda}\right) \cdot x}+R_{r, r^{\prime}}^{\lambda}(x),
\end{aligned}
$$

where: $\left|R_{r, r^{\prime}}^{\lambda}(x)\right| \lesssim|x|^{-3} ; K_{\omega, r}^{\lambda}, H_{\omega, r}^{\lambda}, \alpha_{\omega}^{\lambda}, \beta_{\omega}^{\lambda}, p_{\omega}^{\lambda}, \nu(\lambda)$ are analytic in λ;

Main results: interacting dimer-dimer correlation

At small λ : anomalous liquid phase:
Theorem [G.-Mastropietro-Toninelli (2015, 2017, 2018+)]:
Let t_{1}, t_{2}, t_{3} be s.t. $\mu(k)$ has two distinct non-degen. zeros, $p_{ \pm}^{0}$ (non-degenerate $\Leftrightarrow \alpha_{\omega}^{0}=\partial_{k_{1}} \mu\left(\rho_{\omega}^{0}\right)$ and $\beta_{\omega}^{0}=\partial_{k_{2}} \mu\left(\rho_{\omega}^{0}\right)$ are not parallel).
Then, for λ small enough,

$$
\begin{aligned}
& \left\langle\mathbb{1}_{b(x, r)} ; \mathbb{1}_{b\left(0, r^{\prime}\right)}\right\rangle_{\lambda}=-\frac{1}{4 \pi^{2}} \sum_{\omega= \pm} \frac{K_{\omega, r}^{\lambda} K_{\omega, r^{\prime}}^{\lambda}}{\left(\beta_{\omega}^{\lambda} x_{1}-\alpha_{\omega}^{\lambda} x_{2}\right)^{2}} \\
& -\frac{1}{4 \pi^{2}} \sum_{\omega= \pm} \frac{H_{\omega, r}^{\lambda} H_{-\omega, r^{\prime}}^{\lambda} \frac{\beta_{\omega}^{\lambda} x_{1}-\left.\alpha_{\omega}^{\lambda} x_{2}\right|^{2 \nu(\lambda)}}{e^{-i\left(p_{\omega}^{\lambda}-p_{-\omega}^{\lambda}\right) \cdot x}+R_{r, r^{\prime}}^{\lambda}(x),}}{}=\text {, }
\end{aligned}
$$

where: $\left|R_{r, r^{\prime}}^{\lambda}(x)\right| \lesssim|x|^{-3} ; K_{\omega, r}^{\lambda}, H_{\omega, r}^{\lambda}, \alpha_{\omega}^{\lambda}, \beta_{\omega}^{\lambda}, p_{\omega}^{\lambda}, \nu(\lambda)$ are analytic in $\lambda ; \nu(\lambda)=1+a \lambda+\cdots$ and, generically, $a \neq 0$.

Remarks

Proof \Rightarrow algorithm for computing $K_{\omega, r}^{\lambda}, H_{\omega, r}^{\lambda}, \ldots$
We don't have closed formulas for these quantities.

Proof \Rightarrow algorithm for computing $K_{\omega, r}^{\lambda}, H_{\omega, r}^{\lambda}, \ldots$
We don't have closed formulas for these quantities.
Use formula for $\left\langle\mathbb{1}_{b} ; \mathbb{1}_{b^{\prime}}\right\rangle_{\lambda}$ in that for height variance:
$\left\langle h(f)-h\left(f^{\prime}\right) ; h(f)-h\left(f^{\prime}\right)\right\rangle_{\lambda}=\sum_{b} \sigma_{b} \sigma_{b^{\prime}}\left\langle\mathbb{1}_{b} ; \mathbb{1}_{b^{\prime}}\right\rangle_{\lambda}$

$$
b, b^{\prime} \in C_{f \rightarrow f^{\prime}}
$$

it is not obvious that the growth is still logarithmic:
a priori, it may depend on the critical exp. $\nu(\lambda)$.

Main results: interacting height fluctuations

Theorem [G.-Mastropietro-Toninelli (2015, 2017, 2018+)]:
Same hypotheses as previous theorem. Then:

Main results: interacting height fluctuations

Theorem [G.-Mastropietro-Toninelli (2015, 2017, 2018+)]:

Same hypotheses as previous theorem. Then:

- Height fluctuations still grow logarithmically:

$$
\left\langle h(f)-h\left(f^{\prime}\right) ; h(f)-h\left(f^{\prime}\right)\right\rangle_{\lambda} \simeq \frac{A(\lambda)}{\pi^{2}} \log \left|f-f^{\prime}\right|
$$

Main results: interacting height fluctuations

Theorem [G.-Mastropietro-Toninelli (2015, 2017, 2018+)]:

Same hypotheses as previous theorem. Then:

- Height fluctuations still grow logarithmically:

$$
\left\langle h(f)-h\left(f^{\prime}\right) ; h(f)-h\left(f^{\prime}\right)\right\rangle_{\lambda} \simeq \frac{A(\lambda)}{\pi^{2}} \log \left|f-f^{\prime}\right|
$$

where

$$
A(\lambda)=\left[\frac{K_{\omega, 3}^{\lambda}+K_{\omega, 4}^{\lambda}}{\beta_{\omega}^{\lambda}}\right]^{2}=\left[\frac{K_{\omega, 2}^{\lambda}+K_{\omega, 3}^{\lambda}}{\alpha_{\omega}^{\lambda}}\right]^{2} .
$$

Main results: interacting height fluctuations

Theorem [G.-Mastropietro-Toninelli (2015, 2017, 2018+)]:

Same hypotheses as previous theorem. Then:

- Height fluctuations still grow logarithmically:

$$
\left\langle h(f)-h\left(f^{\prime}\right) ; h(f)-h\left(f^{\prime}\right)\right\rangle_{\lambda} \simeq \frac{A(\lambda)}{\pi^{2}} \log \left|f-f^{\prime}\right|
$$

where

$$
A(\lambda)=\left[\frac{K_{\omega, 3}^{\lambda}+K_{\omega, 4}^{\lambda}}{\beta_{\omega}^{\lambda}}\right]^{2}=\left[\frac{K_{\omega, 2}^{\lambda}+K_{\omega, 3}^{\lambda}}{\alpha_{\omega}^{\lambda}}\right]^{2} .
$$

- In general, $A(\lambda)$ depends on $\lambda, f, t_{1}, t_{2}, t_{3}$. Moreover,

Main results: interacting height fluctuations

Theorem [G.-Mastropietro-Toninelli (2015, 2017, 2018+)]:

Same hypotheses as previous theorem. Then:

- Height fluctuations still grow logarithmically:

$$
\left\langle h(f)-h\left(f^{\prime}\right) ; h(f)-h\left(f^{\prime}\right)\right\rangle_{\lambda} \simeq \frac{A(\lambda)}{\pi^{2}} \log \left|f-f^{\prime}\right|
$$

where

$$
A(\lambda)=\left[\frac{K_{\omega, 3}^{\lambda}+K_{\omega, 4}^{\lambda}}{\beta_{\omega}^{\lambda}}\right]^{2}=\left[\frac{K_{\omega, 2}^{\lambda}+K_{\omega, 3}^{\lambda}}{\alpha_{\omega}^{\lambda}}\right]^{2} .
$$

- In general, $A(\lambda)$ depends on $\lambda, f, t_{1}, t_{2}, t_{3}$. Moreover,

$$
A(\lambda)=\nu(\lambda)
$$

Haldane relation

A and ν given by different renormalized expansions. No hope of showing $A=\nu$ from diagrammatics.

Haldane relation

A and ν given by different renormalized expansions. No hope of showing $A=\nu$ from diagrammatics.
$A(\lambda)=\nu(\lambda) \nVdash$ Haldane relation in Luttinger liq.: compressibility $=$ density critical \exp.

Haldane relation

A and ν given by different renormalized expansions. No hope of showing $A=\nu$ from diagrammatics.
$A(\lambda)=\nu(\lambda) \leftrightarrow \nrightarrow$ Haldane relation in Luttinger liq.: compressibility $=$ density critical \exp.

Previous examples: solvable models (Luttinger, XXZ) and non-integrable variants (Benfatto-Mastropietro).

Convergence to GFF

After coarse-graining and rescaling,

$$
h(f) \xrightarrow{d} \phi(x)
$$

where ϕ is the massless GFF of covariance

$$
\mathbb{E}(\phi(x) \phi(y))=-\frac{A(\lambda)}{2 \pi^{2}} \log |x-y| .
$$

Convergence to GFF

After coarse-graining and rescaling,

$$
h(f) \xrightarrow{d} \phi(x)
$$

where ϕ is the massless GFF of covariance

$$
\mathbb{E}(\phi(x) \phi(y))=-\frac{A(\lambda)}{2 \pi^{2}} \log |x-y| .
$$

Related results in random surface models:

Convergence to GFF

After coarse-graining and rescaling,

$$
h(f) \xrightarrow{d} \phi(x)
$$

where ϕ is the massless GFF of covariance

$$
\mathbb{E}(\phi(x) \phi(y))=-\frac{A(\lambda)}{2 \pi^{2}} \log |x-y|
$$

Related results in random surface models: \log fluctuations and roughening trans. in: anharmonic crystals, SOS model, 6V,
Ginzburg-Landau type models (Brascamp-Lieb-Lebowitz,
Fröhlich-Spencer, Falco, loffe-Shlosman-Velenik, Milos-Peled,
Conlon-Spencer, Naddaf-Spencer, Giacomin-Olla-Spohn, Miller, ...)

Ideas of the proof

(1) Free model \rightsquigarrow determinant sol. \Rightarrow free fermions

Ideas of the proof

(1) Free model \rightsquigarrow determinant sol. \Rightarrow free fermions
(2) Interacting model \Rightarrow interacting fermions

Ideas of the proof

(1) Free model \rightsquigarrow determinant sol. \Rightarrow free fermions
(2) Interacting model \Rightarrow interacting fermions

- Multiscale analysis for interacting fermions \rightsquigarrow constructive RG (Gawedzki-Kupiainen, Battle-Brydges--Federbush, Lesniewski, Benfatto-Gallavotti, Feldman-Magnen--Rivasseau-Trubowitz, ...)

Ideas of the proof

(1) Free model \rightsquigarrow determinant sol. \Rightarrow free fermions
(2) Interacting model \Rightarrow interacting fermions

- Multiscale analysis for interacting fermions \rightsquigarrow constructive RG (Gawedzki-Kupiainen, Battle-Brydges--Federbush, Lesniewski, Benfatto-Gallavotti, Feldman-Magnen--Rivasseau-Trubowitz, ...)
- Control of the RG flow via reference model: WIs, SD eq., non-renormalization of anomalies

Ideas of the proof

(1) Free model \rightsquigarrow determinant sol. \Rightarrow free fermions
(2) Interacting model \Rightarrow interacting fermions

- Multiscale analysis for interacting fermions \rightsquigarrow constructive RG (Gawedzki-Kupiainen, Battle-Brydges--Federbush, Lesniewski, Benfatto-Gallavotti, Feldman-Magnen--Rivasseau-Trubowitz, ...)
- Control of the RG flow via reference model: WIs, SD eq., non-renormalization of anomalies
- Compare asymptotic WIs of ref. model with exact lattice WIs following from $\sum_{b \rightarrow x} \mathbb{1}_{b}=1$ $\Rightarrow A / \nu$ protected by symmetry, no dressing.

Ideas of the proof

(1) Free model \rightsquigarrow determinant sol. \Rightarrow free fermions
(2) Interacting model \Rightarrow interacting fermions

- Multiscale analysis for interacting fermions \rightsquigarrow constructive RG (Gawedzki-Kupiainen, Battle-Brydges--Federbush, Lesniewski, Benfatto-Gallavotti, Feldman-Magnen--Rivasseau-Trubowitz, ...)
- Control of the RG flow via reference model: WIs, SD eq., non-renormalization of anomalies
- Compare asymptotic WIs of ref. model with exact lattice WIs following from $\sum_{b \rightarrow x} \mathbb{1}_{b}=1$ $\Rightarrow A / \nu$ protected by symmetry, no dressing.
- Moments of height \rightsquigarrow path indep. of height

Conclusions

- Class of interacting, non-integrable, dimer models; correlations by constructive RG.
- Class of interacting, non-integrable, dimer models; correlations by constructive RG.
- Dimer correlations: anomalous critical exp. $\nu(\lambda)$. Height fluctuations: universal GFF fluctuations.
- Class of interacting, non-integrable, dimer models; correlations by constructive RG.
- Dimer correlations: anomalous critical exp. $\nu(\lambda)$. Height fluctuations: universal GFF fluctuations.
- Haldane relation: $A=\nu$; subtle form of univers.
- Class of interacting, non-integrable, dimer models; correlations by constructive RG.
- Dimer correlations: anomalous critical exp. $\nu(\lambda)$. Height fluctuations: universal GFF fluctuations.
- Haldane relation: $A=\nu$; subtle form of univers.
- Proof based on constructive, fermionic, RG (key ingredients: WIs, SD eq ${ }^{n}$, comparison with reference model, path indep ${ }^{\text {nce }}$ of the height).
- Class of interacting, non-integrable, dimer models; correlations by constructive RG.
- Dimer correlations: anomalous critical exp. $\nu(\lambda)$. Height fluctuations: universal GFF fluctuations.
- Haldane relation: $A=\nu$; subtle form of univers.
- Proof based on constructive, fermionic, RG (key ingredients: WIs, SD eq ${ }^{n}$, comparison with reference model, path indep ${ }^{\text {nce }}$ of the height).
- Related results, via similar methods, for: Ashkin-Teller, $8 \mathrm{~V}, 6 \mathrm{~V}, \mathrm{XXZ}$, non-planar Ising.

Open problems and perspectives

- Get rid of periodic b.c., work with general domains (in perspective: conformal covariance - ongoing progress for energy correlations in non-planar Ising).

Open problems and perspectives

- Get rid of periodic b.c., work with general domains (in perspective: conformal covariance - ongoing progress for energy correlations in non-planar Ising).
- Compute correlations of $e^{i \alpha h(f)}$.
(Connected: spin correlations in non-planar Ising).

Open problems and perspectives

- Get rid of periodic b.c., work with general domains (in perspective: conformal covariance - ongoing progress for energy correlations in non-planar Ising).
- Compute correlations of $e^{i \alpha h(f)}$.
(Connected: spin correlations in non-planar Ising).
- Generalize to more general \mathbb{Z}^{2}-periodic bipartite planar graphs.

Open problems and perspectives

- Get rid of periodic b.c., work with general domains (in perspective: conformal covariance - ongoing progress for energy correlations in non-planar Ising).
- Compute correlations of $e^{i \alpha h(f)}$.
(Connected: spin correlations in non-planar Ising).
- Generalize to more general \mathbb{Z}^{2}-periodic bipartite planar graphs.
- Logarithmic fluctuations and GFF behavior of the tilted 3D Ising interface at low temperatures.

Open problems and perspectives

- Get rid of periodic b.c., work with general domains (in perspective: conformal covariance - ongoing progress for energy correlations in non-planar Ising).
- Compute correlations of $e^{i \alpha h(f)}$.
(Connected: spin correlations in non-planar Ising).
- Generalize to more general \mathbb{Z}^{2}-periodic bipartite planar graphs.
- Logarithmic fluctuations and GFF behavior of the tilted 3D Ising interface at low temperatures.
- ...

Thank you!

