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Universality, scaling limits and Renormalization Group

The scaling limit of the Gibbs measure of a critical
stat-mech model is expected to be universal.

Conceptually, the route towards universality is clear:

1 Integrate out the small-scale d.o.f.,
rescale, show that the critical model
reaches a fixed point (Wilsonian RG).

2 Use CFT to classify the possible fixed
points (complete classification in 2D;
recent progress in 3D).
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Known results

Currently known rigorous results (limited to 2D):

1 Integrable models: Ising and dimers. Conformal invar. via
discrete holomorphicity (Kenyon, Smirnov, Chelkak-Hongler-

-Izyurov, Dubedat, Duminil-Copin, ....) Universality: geometric
deformations YES; perturbations of Hamiltonian NO

2 Non-integrable models: interacting dimers, AT, 8V, 6V.
Bulk scaling limit, via constructive RG (Mastropietro,

Spencer, Giuliani, Falco, Benfatto, ...) Universality: geometric
deformations NO; perturbations of Hamiltonian YES.
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In this talk: review selected results on universality of
non-integrable 2D models. Focus on: dimermodels.

2D dimer models are highly simplified models of
liquids of anisotropic molecules or random surfaces

Note: the height describes a 3D Ising interface with tilted Dobrushin b.c.
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Non-interacting dimers: exact solution and effective theory

At close-packing: family of solvable dimer models.
The partition function has a determinant structure.

The dimer weights control the average slope of the
height. Dimer-dimer correlations decay algebraically;
height fluctuations ⇒ GFF (liquid/rough phase).
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Non-interacting dimers: exact solution and effective theory

At close-packing: family of solvable dimer models.
The partition function has a determinant structure.

The dimer weights control the average slope of the
height. Dimer-dimer correlations decay algebraically;
height fluctuations ⇒ GFF (liquid/rough phase).

Variance of GFF independent of slope Universality



Interacting dimers: main results (in brief)

RG and bosonization suggest that GFF should be
robust under non-integrable perturbations.

We consider a class of interacting dimer models,
including 6V and non-integrable variants thereof.

We prove that height fluct. still converge to GFF,
with variance depending on interaction and slope.

Subtle form of universality: the (pre-factor of the)
variance equals the anomalous critical exponent of
the dimer correlations ⇒ Haldane relation.
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Height function:

h(f ′)− h(f ) =
∑

b∈Cf→f ′

σb(1b − 1/4)

σb = ±1 if b crossed with white on the right/left.
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Non-interacting dimer model

Z 0
L =

∑
D∈DL

∏
b∈D

tr(b).

Type r = 4

Model parametrized by t1, t2, t3, t4 (we can set t4 = 1).

The tj ’s are chemical potentials fixing the av. slope:

〈h(f + ei)− h(f )〉0 = ρi(t1, t2, t3), i = 1, 2.

The model is exactly solvable, e.g.,

Z 0
L = detK (t), with K (t) = Kasteleyn matrix.



Non-interacting dimer correlations

Non-interacting dimer-dimer correlations can be
computed exactly (Kasteleyn, Temperley-Fisher):

〈1b(x ,1);1b(y ,1)〉0 = −t2
1 K

−1(x , y)K−1(y , x),

where : K−1(x , y) =

∫ π

−π

∫ π

−π

d2k

(2π)2

e−ik(x−y)

µ(k)

and : µ(k) = t1 + it2e
ik1 − t3e

ik1+ik2 − ie ik2.

Zeros of µ(k) lie at the intersection of two circles

e ik2 =
t1 + it2e

ik1

i + t3e ik1
.

‘Generically’: two non-degenerate zeros ⇒K−1(x , y)
decays as (dist.)−1: the system is critical.
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Non-interacting height fluctuations

Height fluctuations grow logarithmically:

〈h(f )− h(f ′); h(f )− h(f ′)〉0 '
1

π2
log |f − f ′|

as |f − f ′| → ∞ (Kenyon, Kenyon-Okounkov-Sheffield).

NB: the pre-factor 1
π2 is independent of t1, t2, t3

(connection with maximality/Harnak property of the spectral curve).
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as |f − f ′| → ∞ (Kenyon, Kenyon-Okounkov-Sheffield).

NB: the pre-factor 1
π2 is independent of t1, t2, t3
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The computation is based on: the definition

〈h(f )− h(f ′); h(f )− h(f ′)〉0 =
∑

b,b′∈Cf→f ′

σbσb′〈1b;1b′〉0,

the formula for 〈1b;1b′〉0, and the path-indep. of the height.



Non-interacting height fluctuations

Height fluctuations grow logarithmically:

〈h(f )− h(f ′); h(f )− h(f ′)〉0 '
1

π2
log |f − f ′|

as |f − f ′| → ∞ (Kenyon, Kenyon-Okounkov-Sheffield).

NB: the pre-factor 1
π2 is independent of t1, t2, t3

(connection with maximality/Harnak property of the spectral curve).

Building upon this (Kenyon):

height fluctuations converge to massless GFF

scaling limit is conformally covariant
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Interacting dimers

Interacting model:

Zλ
L =

∑
D∈DL

(∏
b∈D

tr(b)

)
eλ
∑

x∈Λ f (τxD),

where: λ is small, f is a local function of the dimer
configuration around the origin, τx translates by x .

NB: for suitable f , the model reduces to 6V.
Generically, the model is non-integrable.
Our results don’t depend on specific choice of f .
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Main results: interacting dimer-dimer correlation

At small λ: anomalous liquid phase:

Theorem [G.-Mastropietro-Toninelli (2015, 2017, 2018+)]:

Let t1, t2, t3 be s.t. µ(k) has two distinct non-degen. zeros, p0
±

(non-degenerate ⇔ α0
ω = ∂k1µ(p0

ω) and β0
ω = ∂k2µ(p0

ω) are not parallel).

Then, for λ small enough,

〈1b(x ,r);1b(0,r ′)〉λ = − 1

4π2

∑
ω=±

Kλ
ω,rK

λ
ω,r ′

(βλωx1 − αλωx2)2

− 1

4π2

∑
ω=±

Hλ
ω,rH

λ
−ω,r ′

|βλωx1 − αλωx2|2ν(λ)
e−i(p

λ
ω−pλ−ω)·x + Rλ

r ,r ′(x) ,

where: |Rλ
r ,r ′(x)| . |x |−3; Kλ

ω,r , H
λ
ω,r , α

λ
ω, βλω, pλω, ν(λ) are

analytic in λ; ν(λ) = 1 + aλ + · · · and, generically, a 6= 0.
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Remarks

Proof ⇒ algorithm for computing Kλ
ω,r ,H

λ
ω,r , ...

We don’t have closed formulas for these quantities.

Use formula for 〈1b;1b′〉λ in that for height variance:

〈h(f )− h(f ′); h(f )− h(f ′)〉λ =
∑

b,b′∈Cf→f ′

σbσb′〈1b;1b′〉λ

it is not obvious that the growth is still logarithmic:
a priori, it may depend on the critical exp. ν(λ).
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Main results: interacting height fluctuations

Theorem [G.-Mastropietro-Toninelli (2015, 2017, 2018+)]:

Same hypotheses as previous theorem. Then:

Height fluctuations still grow logarithmically:

〈h(f )− h(f ′); h(f )− h(f ′)〉λ '
A(λ)

π2
log |f − f ′|

where

A(λ) =

[
Kλ
ω,3 + Kλ

ω,4

βλω

]2

=

[
Kλ
ω,2 + Kλ

ω,3

αλω

]2

.

In general, A(λ) depends on λ, f , t1, t2, t3. Moreover,

A(λ) = ν(λ)
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Haldane relation

A and ν given by different renormalized expansions.
No hope of showing A = ν from diagrammatics.

A(λ) = ν(λ) ! Haldane relation in Luttinger liq.:
compressibility = density critical exp.

Previous examples: solvable models (Luttinger, XXZ)
and non-integrable variants (Benfatto-Mastropietro).
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Convergence to GFF

After coarse-graining and rescaling,

h(f )
d−−−−−→ φ(x)

where φ is the massless GFF of covariance

E(φ(x)φ(y)) = −A(λ)

2π2
log |x − y |.

Related results in random surface models: log fluctuations and

roughening trans. in: anharmonic crystals, SOS model, 6V,

Ginzburg-Landau type models (Brascamp-Lieb-Lebowitz,

Fröhlich-Spencer, Falco, Ioffe-Shlosman-Velenik, Milos-Peled,

Conlon-Spencer, Naddaf-Spencer, Giacomin-Olla-Spohn, Miller, . . . )
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Ideas of the proof

1 Free model  determinant sol. ⇒ free fermions

2 Interacting model ⇒ interacting fermions

3 Multiscale analysis for interacting fermions  
constructive RG (Gawedzki-Kupiainen, Battle-Brydges-

-Federbush, Lesniewski, Benfatto-Gallavotti, Feldman-Magnen-

-Rivasseau-Trubowitz, ...)

4 Control of the RG flow via reference model:
WIs, SD eq., non-renormalization of anomalies

5 Compare asymptotic WIs of ref. model with
exact lattice WIs following from

∑
b→x 1b = 1

⇒ A/ν protected by symmetry, no dressing.

6 Moments of height  path indep. of height
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Conclusions

Class of interacting, non-integrable, dimer
models; correlations by constructive RG.

Dimer correlations: anomalous critical exp. ν(λ).
Height fluctuations: universal GFF fluctuations.

Haldane relation: A = ν; subtle form of univers.

Proof based on constructive, fermionic, RG
(key ingredients: WIs, SD eqn, comparison with reference

model, path indepnce of the height).

Related results, via similar methods, for:
Ashkin-Teller, 8V , 6V , XXZ , non-planar Ising.
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Open problems and perspectives

Get rid of periodic b.c., work with general
domains (in perspective: conformal covariance - ongoing

progress for energy correlations in non-planar Ising).

Compute correlations of e iαh(f ).
(Connected: spin correlations in non-planar Ising).

Generalize to more general Z2-periodic bipartite
planar graphs.

Logarithmic fluctuations and GFF behavior of
the tilted 3D Ising interface at low temperatures.

...
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Thank you!


	Introduction and overview
	Non-interacting dimers
	Interacting dimers: main results

