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@ Integrate out the small-scale d.o.f., pont
rescale, show that the critical model v
reaches a fixed point (Wilsonian RG).  momaes -]

critical 7
point !

,—physical manifold

* renormalized
manifold

@ Use CFT to classify the possible fixed I Wy
points (complete classification in 2D;
recent progress in 3D).
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@ Integrable models: Ising and dimers. Conformal invar. via
discrete holomorphicity (Kenyon, Smirnov, Chelkak-Hongler-
-Izyurov, Dubedat, Duminil-Copin, ....) Universality: geometric
deformations YES; perturbations of Hamiltonian NO

@ Non-integrable models: interacting dimers, AT, 8V, 6V.
Bulk scaling limit, via constructive RG (Mastropietro,
Spencer, Giuliani, Falco, Benfatto, ...) Universality: geometric
deformations NO; perturbations of Hamiltonian YES.
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In this talk: review selected results on universality of
non-integrable 2D models. Focus on: dimer models.

2D dimer models are highly simplified models of
liquids of anisotropic molecules or random surfaces

o “O-‘ C

Note: the height describes a 3D Ising interface with tilted Dobrushin b.c.
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Non-interacting dimers: exact solution and effective theory

At close-packing: family of solvable dimer models.
The partition function has a determinant structure.

The dimer weights control the average slope of the
height. Dimer-dimer correlations decay algebraically;
height fluctuations = GFF (liquid/rough phase).

Variance of GFF independent of slope ~~ Universality
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Interacting dimers: main results (in brief)

RG and bosonization suggest that GFF should be
robust under non-integrable perturbations.

We consider a class of interacting dimer models,
including 6V and non-integrable variants thereof.

We prove that height fluct. still converge to GFF,
with variance depending on interaction and slope.

Subtle form of universality: the (pre-factor of the)
variance equals the anomalous critical exponent of
the dimer correlations = Haldane relation.
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Height function:

h(f') = h(f)= > op(l,—1/4)

bE Cf_)fl

op = £1 if b crossed with white on the right/left.
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ZLO = Z H tr(b)-
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Model parametrized by ti, t, t3, ts (we can set t, = 1).

The t;'s are chemical potentials fixing the av. slope:
<h(f -+ e,-) — h(f)>0 = p,'(tl, b, tg), | = ]., 2.
The model is exactly solvable, e.g.,

Z) =det K(t), with K(t) = Kasteleyn matrix.
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Non-interacting dimer correlations

Non-interacting dimer-dimer correlations can be
computed exactly (Kasteleyn, Temperley-Fisher):

(Lox1y: Doyy)o = —tf KH(x,y) K71y, x),
d2k e—lkx y)
where : “L(x ,Y) / /
( rd o (2m)% p(k)

and : (k) =ty + itye™ — t3€lk1+lk2 — ie'e.

Zeros of u(k) lie at the intersection of two circles
o _ BT itye'™
i+ tzela
‘Generically’: two non-degenerate zeros = K (x, y)
decays as (dist.)"!: the system is critical.
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as |f — f/| = 00 (Kenyon, Kenyon-Okounkov-Sheffield).

NB: the pre-factor # is independent of ty, tr, t3

(connection with maximality/Harnak property of the spectral curve).

The computation is based on: the definition

(h(F) = h(F); h(F) = h(F )= Y ouow(Lp; Lp)o,

b,b'eCr_,pr

the formula for (1; 14 )0, and the path-indep. of the height.



Non-interacting height fluctuations

Height fluctuations grow logarithmically:
1
(h(f) = h(F'); h(f) = h(F"))e ~ — log |f — |
T
as |f — f/| = 00 (Kenyon, Kenyon-Okounkov-Sheffield).

NB: the pre-factor # is independent of ty, tr, t3
(connection with maximality/Harnak property of the spectral curve).
Building upon this (Kenyon):

e height fluctuations converge to massless GFF

e scaling limit is conformally covariant
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Interacting dimers

Interacting model:
Zi= ) (H tr(b)) e 2ren (7:0),
DeD,  beD

where: )\ is small, f is a local function of the dimer
configuration around the origin, 7, translates by x.

NB: for suitable f, the model reduces to 6V.

Generically, the model is non-integrable.
Our results don't depend on specific choice of f.
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At small A: anomalous liquid phase:
Theorem [G.-Mastropietro-Toninelli (2015, 2017, 2018+ )]

Let t;, ty, t3 be s.t. p(k) has two distinct non-degen. zeros, pl
(non-degenerate < o = 9y, u(p2) and 8% = Ok, 1(pl) are not parallel).
Then, for A small enough,

K' K\,
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where: [R),(x)| < [xI7% K2, HD o 0, B2, pL, v(X) are

analytic in \; ¥(A) =1+ aX + --- and, generically, a # 0.
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w,ry M lw,ry s

We don't have closed formulas for these quantities.

Use formula for (1p; 1), in that for height variance:
(h(F) = h(F"): h(F) = h(F)) = > b0 (Lei Ly
bb'eCr_p

it is not obvious that the growth is still logarithmic:
a priori, it may depend on the critical exp. v(\).
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Haldane relation

A and v given by different renormalized expansions.
No hope of showing A = v from diagrammatics.

A(M\) = v(A) e~ Haldane relation in Luttinger liq.:
compressibility = density critical exp.

Previous examples: solvable models (Luttinger, XXZ)
and non-integrable variants (Benfatto-Mastropietro).
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Convergence to GFF

After coarse-graining and rescaling,
d
h(f) ——  o(x)

where ¢ is the massless GFF of covariance

E(6(x)0(y)) = 5

Related results in random surface models: log fluctuations and

log |x — y|.

roughening trans. in: anharmonic crystals, SOS model, 6V,
Ginzburg-Landau type models (Brascamp-Lieb-Lebowitz,
Frohlich-Spencer, Falco, loffe-Shlosman-Velenik, Milos-Peled,

Conlon-Spencer, Naddaf-Spencer, Giacomin-Olla-Spohn, Miller, ...)
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Free model ~» determinant sol. = free fermions
Interacting model = interacting fermions
Multiscale analysis for interacting fermions ~~
constructive RG  (Gawedzki-Kupiainen, Battle-Brydges-
-Federbush, Lesniewski, Benfatto-Gallavotti, Feldman-Magnen-
-Rivasseau-Trubowitz, ...)

Control of the RG flow via reference model:
WiIs, SD eq., non-renormalization of anomalies
Compare asymptotic Wis of ref. model with
exact lattice WIs following from ), . 1, =1
= A/v protected by symmetry, no dressing.

Moments of height ~~ path indep. of height
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Conclusions

o Class of interacting, non-integrable, dimer
models; correlations by constructive RG.

o Dimer correlations: anomalous critical exp. v(A).
Height fluctuations: universal GFF fluctuations.

o Haldane relation: A = v; subtle form of univers.

o Proof based on constructive, fermionic, RG
(key ingredients: WIs, SD eq”, comparison with reference
model, path indep™® of the height).

o Related results, via similar methods, for:
Ashkin-Teller, 8V, 6V, XXZ, non-planar Ising.
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domains (in perspective: conformal covariance - ongoing
progress for energy correlations in non-planar Ising).

o Compute correlations of e’®(f),
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o Generalize to more general Z?-periodic bipartite
planar graphs.

o Logarithmic fluctuations and GFF behavior of
the tilted 3D Ising interface at low temperatures.



Thank you!
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