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I. The TRP Space: Motivation

• Let G = SU(3). We are considering the symplectic quotient of the product of

three coadjoint orbits of SU(3)

M = Oλ ×Oµ ×Oν//G

where λ, µ, ν ∈ t are in the Lie algebra of the maximal torus of SU(3) (in

other words they are diagonal matrices with purely imaginary entries).

• The moment map for each (co)adjoint orbit is the inclusion map into the Lie

algebra g.

• So if X,Y, Z ∈ Oλ ×Oµ ×Oν , the moment map is φ(X,Y, Z) = X + Y + Z.

• This space has dimension 2 (because the dimension of each of the orbits is 6

and the moment map condition reduces the dimension by 8 , while the

quotient by the group action reduces by a further 8: 18− 8− 8 = 2)



• The triple reduced product space may be identified with a polygon space, a

space of triangles in su(3) with vertices in specific coadjoint orbits.

• These spaces are a prototype for flat connections on the three-punctured

sphere, with the holonomy around each puncture constrained to lie in a

prescribed conjugacy class. (See LJ,c Math. Ann. 1994.)



• The orbit method (Kirillov) has many applications in geometry.

• A tuple of matrices may be identified with a Higgs field.

• In the paper “The triple reduced product and Hamiltonian flows” (L. Jeffrey,

S. Rayan, G. Seal, P. Selick, J. Weitsman, in XXXV WGMP Proceedings),

the main objective was to identify a Hamiltonian function which was the

moment map for a circle action. We were able to do this only indirectly, by

choosing an auxiliary function which maps the triple reduced product onto

the unit interval, and defining the moment map indirectly as a definite

integral involving the auxiliary function.

• Identifying the triple reduced product as a subset of the space of Higgs

bundles gives us another method. A tuple of matrices may be identified with

a Higgs field. Polygon spaces are known to live within parabolic Hitchin

systems. We show that Hamiltonian circle actions arise naturally through

Hitchin systems; see for instance Adams-Harnad-Hurtubise (CMP 1990),

Biswas-Ramanan (JLMS 1994), E. Markman (Comp. Math. 1994).

• We recall also the embedding of the triple reduced product in a loop algebra

(Adler-van Moerbeke, Reyman-Semenov-Tian-Shansky, Mischenko-Fomenko).

• Symplectic volume of triple reduced product is known (Suzuki-Takakura ’08;

LJ- Jia Ji, arXiv:1804.06474)



• Assuming that 0 is a regular value of the moment map, the triple reduced

product is homeomorphic to S2.



2. Higgs bundles

• We may identify the triple reduced product with a compact space of Higgs

bundles over CP 1 \ {0, 1,−1} where the residues of the Higgs fields are

constrained to live in the fixed coadjoint orbits Oλ,Oµ,Oν).

• A Higgs bundle is a pair (P,Φ) where P is a holomorphic principal SU(3)

bundle over CP 1 and Φ is a meromorphic map from CP 1 to ad(P )⊗K(D),

where K ∼= O(−2) is the canonical line bundle. Here D is the divisor

0 + 1 + (−1) (consisting of the three marked points).

• For each z ∈ CP 1, z 6= 0,±1, Φ(z) is trace-free and anti-Hermitian.



3. The spectral curve

• We restrict to the set of bundles P where P is topologically trivial.

So we can write

Φ(z) = (
X

z
+

Y

z − 1
+

Z

z + 1
)dz

or ignore the dz and write

Φ(z) =
X

z
+

Y

z − 1
+

Z

z + 1

• Let

L(z) = z(z − 1)(z + 1)Φ(z) = (Y − Z)z + (Y + Z).

Then

ρ(z, η) = det (L(z)− ηI)

• The spectral curve is obtained by setting

ρ(z, η) = 0



• The Hitchin map sends Φ to its characteristic polynomial :

Φ 7→ det(Φ− ηI).

• The Hitchin map sends Φ to an affine space whose dimension is half the

dimension of M . The fiber of the Hitchin map is the space of bundles of a

fixed degree.

• It turns out that the spectral curve is a Riemann surface of genus 1.

• The spectral curve is invariant under the involution

(z, η) 7→ (z̄,−η̄)

• If we impose the restriction that the residues X,Y, Z of Φ lie in the coadjoint

orbits Oλ,Oµ,Oν , the space P is identified with the triple reduced product.

• The constraint that X + Y + Z = 0 comes from the constraint that the trace

of Φ is zero. It is simply the condition that there are no poles at infinity.



4. Lax form

• A function H gives a Hamiltonian flow along the triple reduced product

which can be written in Lax form.

• The Hamiltonian flow within P is

dΦ

dt
= [dH,Φ]

• This gives

dLs

dt
= i

[
(Y − Z)2z + (Y − Z)(Y + Z) + (Y + Z)(Y − Z), (Y − Z)z + (Y + Z)

]

• This leads to
d(Y − Z)

dt
= 0

d(Y + Z)

dt
= i [(Y + Z)(Y − Z), Y + Z]

or
dY

dt
= i[Y, Y Z + ZY + Z2]

• There is a similar equation for dZ
dt
. We conclude that Y , Z and Y + Z evolve

by conjugation, so Φ(z) and L(z) evolve by conjugation.



5. Hamiltonian Flow

• The Higgs field may be described by

L(z) = Az + S

where

A = Y − Z, S = Y + Z

in terms of the elements Y, Z ∈ g. So A is a diagonal matrix with eigenvalues

α1, α2, α3. Define si,j as the entries of the matrix S.

• Let L̃(z, η) be the matrix of cofactors of L(z)− ηI:

(L(z)− η)L̃(z, η) = ρ(z, η)I

• Here

ρ(z, η) = det
(
z(z2 − 1)Φ(z)

)
= iHz(z2 − 1) +Q0(z) +Q1(z)η − η3,

where the Qj(z) are quadratic functions of z. The function iH can be taken

to be det(Y − Z), or −iTrace(Y − Z)3/3. It is the only coefficient of the

Hitchin map which is not constant on the triple reduced product.

• Here L is linear in z.



• Then we obtain

L̃21(z, η) = −s2,1(α3z − η + s3,3) + s3,1s2,3

L̃3,1(z, η) = −s3,1(α2z − η + s2,2) + s2,1s3,2

• Setting these two equations equal to zero we get a unique solution set z0, η0

leading to unique solutions z0, ζ0 with z0((z0)
2 − 1)ζ0 = η0.

• It is also true that L̃1,1(z0, η0) = 0

• It was shown by M. Adams, J. Harnad and J. Hurtubise (Lett. Math. Phys.

1997) that z0 and ζ0 are Darboux coordinates for this system. See also papers

of the same authors in Commun. Math. Phys. 1990, 1993.



6. Constructing the Hamiltonian flow

• Let

G(z,H) :=

∫ z0

ζ(z,H)dz.

• Then
∂G

∂z0
= ζ0.

• If we define

t(z0) =
∂G

∂H
=

∫ z0

0

∂ρ/∂H

z(z2 − 1)∂ρ/∂η
dz =

∫ z0

0

dz

Q1(z)− 3η2
.

• This follows because (by the chain rule)

∂ρ

∂H
=

∂ρ

∂η

∂η

∂H
.

If we flow around a closed cycle γ , we find that the period is

T (H) =

∫

γ

dz

Q1(z)− 3η2
.

.



• There is a function F (H) whose Hamiltonian flow generates the S1 action

(because H is constant under the S1 action).

• The Hamiltonian vector field is

XV =
dF

dH
XH

• So the period of F is the period of H divided by dF/dH .

• It follows (since the period of F is 1) that the period of H is

T (H) =
dF

dH
.



• Examining the equation for G and looking at ∂G/∂z0 = ζ0, we have

F (H) =

∫

γ

η(a,H)dz.

• Since z and ζ are Darboux coordinates, we have found action-angle variables

for our system.



7. Hamiltonian for circle action

• Starting from

α3z0 − η0 =
s3,1s2,3
s2,1

− s3,3

α1z0 − η0 =
s2,1s3,2
s3,1

− s2,2

we subtract to get

z0 =
1

α3 − α2

(
s2,1s3,2
s3,1

−
s3,1s2,3
s2,1

− s2,2 + s3,3

)

• The function F (H) takes values in an interval.



The symplectic volume of the reduced product

Joint work with Jia Ji (University of Toronto)

arXiv:1804.06474



Outline:

1. Background

2. SU(3), N = 3

3. Generalizations

4. Suzuki-Takakura



References

[GLS] V. Guillemin, E. Lerman, S. Sternberg, Symplectic Fibrations and

Multiplicity Diagrams, Cambridge University Press, 1996.

[JK95] L. Jeffrey, F. Kirwan, Localization for Nonabelian Group Actions,

Topology 34 (1995) 291–327.

[ST08] T. Suzuki, T. Takakura, Symplectic Volumes of Certain Symplectic

Quotients Associated with the Special Unitary Group of Degree Three, Tokyo J.

Math. 31 (2008) 1–26.

[W92] E. Witten, Two-dimensional gauge theories revisited. J. Geom. Phys. 9

(1992) 303–368.



1. Background

Let ξ1, . . . , ξN ∈ t. Assumption 1: All of O(ξ1), · · · ,O(ξN ) are diffeomorphic to

the homogeneous space G/T . This assumption is equivalent to the assumption

that all of the stabilizer groups StabG(ξ1), · · · , StabG(ξN) are conjugate to the

chosen maximal torus T . If all of ξ1, · · · , ξN are contained in t∗ ⊆ g∗, then this

assumption is saying that

StabG(ξ1) = · · · = StabG(ξN) = T.

Remark: Since every coadjoint orbit O(ξ) can be written as O(ξ′) for some

ξ′ ∈ t∗ ⊆ g∗, we can always assume that ξ = (ξ1, · · · , ξN) satisfies that ξj ∈ t∗ ⊆ g∗

for all j.

The Cartesian product M(ξ) = O(ξ1)× · · · × O(ξN ) carries a natural symplectic

structure ωξ defined by:

ωξ := π∗
1ωO(ξ1) + · · ·+ π∗

NωO(ξN ) (1)

where πj : O(ξ1)×· · ·×O(ξN ) → O(ξj) is the projection onto the j-th component.

Let G act on M(ξ) = O(ξ1)× · · · × O(ξN ) by the diagonal action ∆:

∆(g)(η1, · · · , ηN ) := (K(g)(η1), · · · ,K(g)(ηN )) (2)



for all g ∈ G, ηj ∈ O(ξj). Here K(g) denotes the (co)adjoint action of g.

The symplectic form ωξ is clearly G-invariant, and we also have the following.

Proposition: The diagonal action ∆ of G on (M(ξ), ωξ) is a Hamiltonian

G-action with the moment map µξ : M(ξ) → g∗ being:

µξ(η) =

N∑

j=1

ηj (3)

for all η := (η1, · · · , ηN ) ∈ M(ξ).

We assume that:

Assumption 2: 0 ∈ g∗ is a regular value for µξ : M(ξ) → g∗ and µ−1
ξ (0) 6= ∅.

Remark: By Sard’s theorem, the set where the previous two assumptions hold is

nonempty and has nonempty interior in t∗ × · · · × t∗.

Then, the level set M0(ξ) := µ−1
ξ (0) is a closed, thus compact, submanifold of

M(ξ) and the diagonal action ∆ of G restricts to an action on M0(ξ). Therefore,

we can form the quotient space with respect to this action of G on M0(ξ):

M(ξ) := M0(ξ)/G. (4)

Sometimes, the above quotient space is also denoted by M//G. Note that this



quotient space is compact.

If the G-action on M0(ξ) is free and proper (in our situation, properness is

automatically satisfied), then the quotient space M(ξ) = M0(ξ)/G is a smooth

manifold. However, in our situation, the G-action on M0(ξ) is in general not free.

Hence, in general the quotient space is only an orbifold. To avoid this

complication, we will assume:

Assumption 3: The quotient space M(ξ) = M0(ξ)/G is a smooth compact

manifold.

Remark: The above assumption will put further restrictions on which

ξ ∈ t∗ × · · · × t∗ we can choose as initial data. Thus we only choose initial data

from the following set in this talk:

A′ :=






ξ ∈

N
︷ ︸︸ ︷

t∗ × · · · × t∗ : previous 3 assumptions hold






(5)

Suzuki and Takakura also made this assumption in their paper [ST] (in Section

2.3). It seems reasonable to us to assume that even after Assumption 3 is

imposed, the initial data set A′ is still nonempty and still has nonempty interior

in t∗ × · · · × t∗. Notice that since the elements in the center of G always act



trivially on M(ξ) and M0(ξ), Assumption 3 is valid if PG = G/Z(G) acts freely

on M0(ξ). This happens for G = SU(n) if all the coadjoint orbits O(ξi) are

generic.

Then, we have the following well known theorem:

Theorem:[Marsden-Weinstein] The smooth compact manifold M(ξ) = M0(ξ)/G

carries a unique symplectic structure ω(ξ) such that

i∗ωξ = π∗ω(ξ) (6)

where i : M0(ξ) →֒ M(ξ) is the inclusion map and π : M0(ξ) → M(ξ) is the

associated projection map.



2. The case G = SU(3), N = 3

In this section, we study 3-fold reduced products, or triple reduced products for

G = SU(3). See [TRP1], [TRP2] for recent studies about these objects. Our focus

is on the symplectic volume of triple reduced products.

The Setup for the case G = SU(3)

The setup here is due to Suzuki-Takakura [ST].

• Let G = SU(3) and let T be its standard maximal torus, i.e., T consists of

diagonal matrices in SU(3).

• In this case, we know that the corresponding Weyl group W is isomorphic to

the permutation group S3.

• The Weyl group W acts on t∗ ∼= t by permutations of diagonal entries.

• The elements

H1 := 2πi








1 0 0

0 −1 0

0 0 0








, H2 := 2πi








0 0 0

0 1 0

0 0 −1








in t are generators of the integral lattice exp−1(I) ⊂ t. The elements H1, H2

form a basis of t.



• Let ω1, ω2 be the basis of t∗ dual to H1, H2, i.e., ωi(Hj) = δij. Under the

identification t∗ ∼= t, ω1, ω2 correspond to the elements

Ω1 :=
2πi

3








2 0 0

0 −1 0

0 0 −1








, Ω2 :=
2πi

3








1 0 0

0 1 0

0 0 −2








in t, respectively.

• Let t∗+ := R≥0ω1 +R≥0ω2 and Λ+ := Z≥0ω1 +Z≥0ω2. So t∗+ is a positive Weyl

chamber and Λ+ is the associated set of dominant integral weights. Any

element ξ of t∗+ or Λ+ can be written as

ξ = (ℓ−m)ω1 +mω2, ℓ ≥ m ≥ 0. (7)

• Under the identification t∗ ∼= t, ξ corresponds to the element

X = (ℓ−m)Ω1 +mΩ2. (8)

• Every coadjoint orbit can be written as Oξ for some ξ ∈ FWC, and in this

case, Oξ ∩ t∗ is the W -orbit through ξ, and Oξ ∩ FWC = {ξ}.

• If ξ = (ℓ−m)ω1 +mω2 ∈ FWC with ℓ > m > 0, then StabG(ξ) = T and Oξ



is diffeomorphic to the homogeneous space G/T .

• Let ξ1, ξ2, ξ3 ∈ FWC so that ξi = (ℓi −mi)ω1 +miω2 with ℓi > mi > 0. Let

ξ := (ξ1, ξ2, ξ3).

• Then ξ determines a triple reduced product (M(ξ), ω(ξ)).



Symplectic Volume of a Triple Reduced Product

• By nonabelian localization [JK95],
∫

M eiω can be expressed as a finite sum of

contributions indexed by the fixed point set MT of M under the action of

the maximal torus T :

MT = {(w1 · ξ1, w2 · ξ2, w3 · ξ3) : w1, w2, w3 ∈ W} . (9)

• More precisely, we have

∫

M
eiω =

∑

w∈W 3

∫

X∈t
̟2(X)

ei〈µ(w·ξ),X〉

ew·ξ(X)
dX, (10)

• Here

• w = (w1, w2, w3) ∈ W 3, ξ = (ξ1, ξ2, ξ3)

w · ξ := (w1 · ξ1, w2 · ξ2, w3 · ξ3), (11)

• ̟(X) =
∏

α 〈α,X〉 with α running over all positive roots of G = SU(3)

• eF (X) is the equivariant Euler class of the normal bundle to the fixed point

F . In this case,

ew·ξ(X) = sgn(w)̟3(X), (12)



where sgn(w) := sgn(w1)sgn(w2)sgn(w3).

• This is the Fourier transform of the Duistermaat-Heckman oscillatory integral

evaluated at 0.



• The DH oscillatory integral decomposes as a sum of finitely many terms.

None of these terms separately admits a Fourier transform, but it is possible

to define a Fourier transform of each term provided one picks polarizations

consistently at each term (Guillemin-Lerman-Sternberg, op. cit., 1983).

• In the special case when t = R, a choice of a polarization is a choice to

replace R by R+ iǫ where the choice of polarization is the choice of sign of ǫ.



Theorem:
∫

M
eiω =

∑

w∈W 3

sgn(w)

∫

X∈t

ei〈µ(w·ξ),X〉

̟(X)
dX. (13)

The symplectic volume of the reduced space µ−1
η,T (0)/T of the Hamiltonian system

(Oη, ωη, T, µη,T ), where µη,T : Oη →֒ t∗ ⊂ g∗ is the moment map associated to the

Hamiltonian group action (in this case, the coadjoint action) on Oη by the

standard maximal torus T , is expressed by the following formula, known from

[GLS] and [JK95] (using Atiyah-Bott-Berline-Vergne localization).



• Theorem:

SV ol(µ−1
η,T (0)/T ) =

1

2πi

∑

w∈W

sgn(w)

∫

X∈t

ei〈w·η,X〉

̟(X)
dX. (14)

• Let

f(η) := 2πiVol(µ−1
η,T (0)/T ) =

∑

w∈W

sgn(w)

∫

X∈t

ei〈w·η,X〉

̟(X)
dX. (15)

• Then, by writing w2 = w1w
−1
1 w2, w3 = w1w

−1
1 w3 and letting

w′
2 = w−1

1 w2, w′
3 = w−1

1 w3, we obtain
∫

M
eiω =

∑

w′

2
∈W

∑

w′

3
∈W

sgn(w′
2)sgn(w

′
3)f(ξ1 + w′

2 · ξ2 + w′
3 · ξ3). (16)

• On the other hand, it is known from [JK95] (from Atiyah-Bott-Berline-Vergne

localization formula and nonabelian localization) that



Theorem:

Vol(µ−1
η,T (0)/T ) =

∑

w∈W

sgn(w)Hβ(w · η) (17)

• Here β = (β1, β2, β3) and β1, β2, β3 are the positive roots of SU(3), and

Hβ(ξ) := vola

{

(s1, s2, s3) ∈ R
3
≥0 :

3∑

i=1

siβi = ξ

}

(18)

• Here, vola here denotes the standard a-dimensional Euclidean volume

multiplied by a normalization constant, and

a = r − dimT (19)

• Here r is the number of positive roots of SU(3). Notice that in this case

a = 1.

• Therefore
∫

M eiω can also be expressed as

2πi
∑

w′

2
∈W

∑

w′

3
∈W

sgn(w′
2)sgn(w

′
3)

∑

w1∈W

sgn(w1)Hβ(w1·(ξ1+w′
2·ξ2+w′

3·ξ3)). (20)



• By letting w′
2 = w−1

1 w2, w′
3 = w−1

1 w3, we then obtain
∫

M
eiω = 2πi

∑

w∈W 3

sgn(w)Hβ(µ(w · ξ)). (21)

So we obtain the volume formula for triple reduced products for G = SU(3):



Theorem:

SV ol(M(ξ)) =
∑

w∈W 3

sgn(w)Hβ(µ(w · ξ)). (22)

Here, Hβ : t∗ → R is called the Duistermaat-Heckman function. For a general

semisimple compact connected Lie group G, it can be defined as follows:



• Definition:

Hβ(ξ) = vola

{

(s1, · · · , sr) : si ≥ 0,
r∑

i=1

siβi = ξ

}

(23)

• β = (β1, · · · , βr) and β1, · · · , βr ∈ t∗ are all the positive roots of G and

a = r − dimT .

• For G = SU(3), there are two simple roots β1, β2 (with < β1, β2 >= 2π/3)

and one additional positive root β3 = β1 + β2. Expressing ξ as (ξ1, ξ2) where

ξj =< βj , ξ >, we have

Hβ(ξ) = ξ1

if ξ2 > ξ1 and

Hβ(ξ) = ξ2

if ξ1 > ξ2. Notice that the two definitions agree when ξ1 = ξ2. The function is

continuous along that line, but its first derivatives are not continuous there.



• Remark: It is clear from the above definition that Hβ is supported in the

cone

Cβ :=

{
r∑

i=1

siβi : si ≥ 0

}

⊆ t∗. (24)



• In the case G = SU(3), we have r = 3 and

•

β1 = H1, β2 = H2, β3 = H1 +H2.

• If ξ = (ℓ−m)Ω1 +mΩ2 = (ℓ−m) · (2H1 +H2)/3 +m · (H1 + 2H2)/3, then

we obtain:

Hβ(ξ) = κ ·max

{

min

{
2

3
ℓ−

1

3
m,

1

3
ℓ+

1

3
m

}

, 0

}

(25)

where κ is a normalization constant.

• We fix the basis {Ω1,Ω2 − Ω1} for t. Then, each ξi = (ℓi −mi)Ω1 +miΩ2 ∈ t

has (ℓi,mi) as its coordinates in this basis. Hence, ξ = (ξ1, ξ2, ξ3) can be

represented in this basis by the vector

(ℓ1, ℓ2, ℓ3,m1,m2,m3) ∈ R
6. (26)



Hence, the symplectic volume of a triple reduced product for G = SU(3) can be

computed explicitly by the following formula:

• Theorem:

SV ol(l1, l2, l3,m1,m2,m3) = (27)

κ

5∑

i,j,k=0

(−1)i+j+k max

{

min

{

(
2

3
π1 −

1

3
π2)(Pijk),

(
1

3
π1 +

1

3
π2)(Pijk)

}

, 0

}

• Here,

Pijk(l1, l2, l3,m1,m2,m3) = vi ·




l1

m1



+ vj ·




l2

m2



+ vk ·




l3

m3



 (28)

and π1, π2 : R
2 → R are the standard projections to the first and second

coordinates, respectively.



3. Generalizations

Symplectic volume of triple reduced products for general semisimple

compact connected Lie group G

• Our method applies to any semisimple compact connected Lie group G.

Therefore the above theorems still hold in this more general situation.

• The set of positive roots is now different and the Duistermaat-Heckman

function Hβ should be replaced by the general one above.



• Symplectic volume of N-fold reduced products for general

semisimple compact connected Lie group G

• We can also generalize our results from the triple reduced product (symplectic

quotient of product of three orbits) to the N -fold reduced product (symplectic

quotient of product of N orbits). The formulas are similar, although we no

longer get a piecewise linear function (the formulas are piecewise polynomial).

• Theorem:
∫

M
eiω =

∑

w∈WN

sgn(w)

∫

X∈t

ei〈µ(w·ξ),X〉

̟N−2(X)
dX (29)



• where ξ = (ξ1, · · · , ξN ), w = (w1, · · · , wN ) ∈ WN and

̟(X) =
∏

α

〈α,X〉 (30)

where α runs over all the positive roots of G.



• Proof: In this case, the equivariant Euler class is

ew·ξ(X) = (sgn(w))N ̟N (X). (31)

In addition, the symplectic volume of M can be computed by a similar

formula involving Duistermaat-Heckman functions:

• Theorem:

SV ol(M) =
∑

w∈WN

sgn(w)H(N−2)·β(µ(w · ξ)) (32)

Here, β = (β1, · · · , βr) with β1, · · · , βr being all the positive roots of G and

the Duistermaat-Heckman function H(N−2)·β is defined as follows:

•

H(N−2)·β(ξ) := vola

{

(s
(1)
1 , · · · , s(1)r , · · · , s

(N−2)
1 , · · · , s(N−2)

r ) : (33)

s
(j)
i ≥ 0 for all i and j and

N−2∑

j=1

r∑

i=1

s
(j)
i βi = ξ







where r is the number of positive roots of G and a = (N − 2) · r − dimT .



• Remark: Notice that here the Duistermaat-Heckman function is piecewise

polynomial.



4. Suzuki-Takakura

In 2008, Suzuki and Takakura [ST] gave a result about the symplectic volume of

an N -fold reduced product M(ξ) for G = SU(3) and N ≥ 3, with ξ lying in a

discrete set. from geometric invariant theory and representation theory).

In particular, their result for N = 3 is as follows.

Definition: A 6-tuple (I1, · · · , I6), where each Ii is a subset of {1, 2, 3}, is called

a 6-partition of {1, 2, 3}, if I1 ∪ · · · ∪ I6 = {1, 2, 3} and Ii ∩ Ij = ∅ if i 6= j.

• Now let ξi = (ℓi −mi)ω1 +miω2 ∈ Λ+ with ℓi > mi > 0, ℓi,mi ∈ Z, for

i ∈ {1, 2, 3}.

• Let L := ℓ1 + ℓ2 + ℓ3 and M := m1 +m2 +m3.

• They assume the following condition (in order to apply GIT techniques):

L+M is divisible by 3.

• Definition: For any I ⊂ {1, 2, 3}, define

ℓI =
∑

i∈I

ℓi, mI =
∑

i∈I

mi. (34)



If I and J are disjoint subsets of {1, 2, 3}, define

ℓI,J = ℓI + ℓJ =
∑

i∈I∪J

ℓi, mI,J = mI +mJ =
∑

i∈I∪J

mi. (35)

Let ξ = (ξ1, ξ2, ξ3).

• Definition: Denote by Iξ the set of all 6-partitions (I1, · · · , I6) such that

ℓI1,I2 +mI4,I5 <
1

3
(L+M), ℓI3,I4 +mI6,I1 <

1

3
(L+M), (36)

and denote by Jξ the set of all 6-partitions (I1, · · · , I6) such that

ℓI3,I4 +mI6,I1 >
1

3
(L+M), ℓI5,I6 +mI2,I3 >

1

3
(L+M). (37)

• Notice that Iξ and Jξ are disjoint for any ξ.

• Definition: Define the functions Aξ : Iξ → R and Bξ : Jξ → R as follows:

Aξ(I1, · · · , I6) :=
−(−1)|I1|+|I3|+|I5|

6
(
L+M

3
− ℓI1,I2 −mI4,I5), (38)

Bξ(I1, · · · , I6) :=
−(−1)|I1|+|I3|+|I5|

6
(ℓI5,I6 +mI2,I3 −

L+M

3
). (39)

• Then Suzuki and Takakura conclude that the symplectic volume of M(ξ) is



given by the following formula:

• Theorem:

V(ξ) =
∑

(I1,··· ,I6)∈Iξ

Aξ(I1, · · · , I6) +
∑

(I1,··· ,I6)∈Jξ

Bξ(I1, · · · , I6). (40)

• Since both our formula and the formula of Suzuki and Takakura describe the

symplectic volume for the same object, they should agree. There is numerical

evidence that they indeed agree.




