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Random discrete interfaces and growth

2d discrete interfaces =⇒ random tilings, dimer model

Stochastic growth (random deposition).
Large scales =⇒ non-linear PDEs, stochastic PDEs, ...

An interesting story: Wolf’s conjecture on universality classes of 2d interface growth
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Random discrete interfaces and growth

Links with:

macroscopic shapes

facet singularities

massless Gaussian field (GFF)
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Interfaces, tilings & dimers
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Discrete monotone interface

Lozenge tiling of the plane

Dimer model (perfect matching of planar bipartite graph)

Link with spin systems: ground state of 3d Ising model
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Tilings & interlaced particles

Lozenge tiling ⇔ Interlaced particle system
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The whole interface/dimer/lozenge picture is still there
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A stochastic deposition model

Continuous-time Markov process. Updates:

rate = p

rate = 1− p

h− 1 h rate = p

rate = 1− p

Jumps respect interlacing conditions

symmetric case p = 1/2: uniform measure is stationary & reversible

p 6= 1/2: growth model, irreversibility. Interesting in infinite volume (or with periodic
boundary conditions)

equivalent to zero temperature Glauber dynamics of 3d Ising
p↔ magnetic field
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Interface growth: phenomenological picture

Speed of growth v = v(ρ): asymptotic growth rate for interface of slope ρ ∈ Rd (for us,
d = 2)

y = ρx

h(·, 0)

x
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Interface growth: phenomenological picture

Speed of growth v = v(ρ): asymptotic growth rate for interface of slope ρ ∈ Rd

y = ρx

h(·, 0)

h(·, t)

x

v(ρ) = limt→∞
h(x,t)−h(x,0)

t

t > 0
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Interface growth: phenomenological picture

As t→∞, law of gradients

∇h ≡ (h(x+ êi)− h(x)), x ∈ Zd, i = 1, . . . , d

should tend to limit stationary, non-reversible measure πρ

E. g. v(ρ) = p× πρ( )− (1− p)× πρ( )

Roughness exponent α: at large distances√
Varπρ(h(x)− h(y)) ∼ c1 + c2|x− y|α

Growth exponent β: at large times,√
Var(h(x, t)− h(x, 0)) ∼ c3 + c4t

β
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Fluctuation field and link with the KPZ equation

Heuristics: large-scales behavior of fluctuations  Kardar-Parisi-Zhang equation

∂th(x, t) = ∆h(x, t) + λ(∇h(x, t), H∇h(x, t)) + ξsmooth(x, t)

smoothed space-time white noise

relaxes large fluctuations

d× d symmetric matrix

tunes strength of non-linearity. Useful in perturbation theory

Quadratic non-linearity from second-order Taylor expansion of hydrodynamic PDE.

H = D2v(ρ) (Hessian of speed of growth)
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Fluctuation field and link with the KPZ equation

∂th(x, t) = ∆h(x, t) + λ(∇h(x, t), H∇h(x, t)) + ξsmooth(x, t)

Linear case (λ = 0): Edwards-Wilkinson (EW) equation.
Stationary state: massless Gaussian field.

αEW = (2− d)/2, βEW = (2− d)/4.

d = 1: KPZ ’86 predicted relevance of non-linearity.

β =
1

3
6= βEW

Confirmed by exact solutions (1-d KPZ universality class: universal non-Gaussian
limit laws, ...)

d ≥ 3: predicted irrelevance of small non-linearity, transition at λc.
⇒ see Magnen-Unterberger ’17, Gu-Ryzhik-Zeitouni ’17 for λ� 1
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The critical dimension d = 2 and Wolf’s conjecture

∂th(x, t) = ∆h(x, t) + λ(∇h(x, t), H∇h(x, t)) + ξsmooth(x, t)

One-loop perturbative (in λ) Renormalization-Group analysis (D. Wolf ’91):

if det(H) > 0, non-linearity relevant, α 6= αEW , β 6= βEW ;

if det(H) ≤ 0, small non-linearity irrelevant. EW Universality class.

Conjecture: Two universality classes:

Anisotropic KPZ (AKPZ) class: det(D2v(ρ)) ≤ 0.
Large-scale fixed point: EW equation. αAKPZ = 0, βAKPZ = 0.

KPZ class: det(D2v(ρ)) > 0. αKPZ 6= 0, βKPZ 6= 0.

Numerics (Halpin-Healy et al.): in KPZ class, universal exponents
αKPZ ≈ 0.39..., βKPZ ≈ 0.24....
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Back to the deposition process

rate = 1

rate = 0

Envelope property: h(t = 0) = h(1) ∨ h(2) =⇒ h(t) = h(1)(t) ∨ h(2)(t)

h(1) h(2)

h(1) ∨ h(2)

h(2)

h(1)

Then, superadditivity argument (T. Seppäläinen, F. Rezakhanlou) implies that v(·) exists
and is convex.

Natural candidate for KPZ class. No math results on stationary states or critical
exponents αKPZ, βKPZ
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A long-jump variant

rate = p

rate = 1− p

Jumps constrained only
by interlacement conditions

A. Borodin & P. Ferrari ’08

Should the universality class change? not obvious a priori.

In fact, it does change
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AKPZ signature

Theorem (F.T., 15) Stationary states πρ are “locally uniform”

uniform given

Stationary states free-fermionic

(determinantal correlations)

Roughness exponent α = 0

scaling to massless Gaussian field

logarithmic fluctuations,

Growth exponent β = 0

Varπρ(h(x, t)− h(x, 0)) t→∞= O(log t)

:

F. Toninelli (CNRS & Lyon 1) Stochastic Interface Dynamics XIX ICMP, Montréal 15 / 30



Speed and Hydrodynamic limit

Theorem (M. Legras, F.T. ’17)
If

lim
ε→0

εh(ε−1x, t = 0) = φ0(x), ∀x ∈ R2

with φ0(·) convex, then

lim
ε→0

εh(ε−1x, ε−1t) = φ(x, t), t > 0

(with high probability as ε→ 0) where φ solves{
∂tφ(x, t) = v(∇φ(x, t))
φ(x, 0) = φ0(x).

Speed of growth v(ρ): explicit and detD2v(ρ) < 0
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Comments on hydrodynamic equation

Non-linear Hamilton-Jacobi equation ⇒ singularities in finite time

Physically relevant solution: viscosity solution.

v(∇φ) 7→ v(∇φ) + ε∆φ, ε→ 0+

v(·) non convex ⇒ no variational formula (like “minimal action”) for viscosity
solution.
For convex profile, variational formula.

Technical difficulty: long jumps, possible pathologies
(tools: from works of T. Seppäläinen)
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Previous results on the model

Theorem (A. Borodin, P. Ferrari ’08)
For “triangular-array Gibbs-type initial conditions”, hydrodynamic limit and central limit
theorem on scale

√
log t.

2

uniform given
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Smooth phases and singularities of v(·)

For equilibrium 2d discrete interface models, smooth (or “rigid”) (as opposed to: rough)
phases at special slopes
Exponential decay of correlations, no fluctuation growth:

sup
x

Var(h(x)− h(0)) <∞,

E.g. SOS model at low temperature; dimers (“gas phases”),...
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Smooth phases and singularities of v(·)

Questions:

AKPZ growth models with smooth stationary states?

We implicitly assumed that speed v(·) is differentiable (H = D2v in KPZ Eq.)

What if it is not?

Still Edwards-Wilkinson behavior?
Link with smooth stationary states?
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An AKPZ model with a smooth phase

Together with S. Chhita, we studied a growth model where:

height function is h : Z2 3 x 7→ h(x) ∈ Z
Growth process in discrete time: h0(·), h1(·), h2(·), . . .
Local update rule: hn(x)→ hn+1(x)  random function of neighboring values

hn(y), |y − x| = 1

Stationary states πρ of ∇h are

logarithmically rough for ρ 6= 0, i.e. Varπρ(h(x)− h(y)) ∼ log |x− y|
smooth for ρ = 0, i.e. Varπ0(h(x)− h(y)) = O(1)

For experts: dynamics is domino-shuffling algorithm with 2-periodic weights (J. Propp)
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An AKPZ model with a smooth phase

Theorem (S. Chhita, F.T. ’18)
For ρ 6= 0, AKPZ signature:

Logarithmic growth of fluctuations:

Varπρ(h(x, t)− h(x, 0)) = O(log t)

Twice differentiable speed and

det(D2v(ρ)) < 0.

For ρ = 0, new picture:

bounded fluctuations:
Varπ0(h(x, t)− h(x, 0)) = O(1)

Non-differentiability of v(·) at 0
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Smooth phases, facets and singularities of v(·)
Non-differentiability related to facets of macroscopic shapes

θ

0

ρ

v(ρ)
ρ→0≈ |ρ|f1(θ) + |ρ|3f2(θ)

non-differentiability

related to “facet singularities” h(x0 + ε) ∼ ε3/2

x

h

x0

Pokrovsky-Talapov law
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A more general AKPZ class

A more general class of interlaced-particle dynamics that includes both previous
examples (Borodin & Ferrari ’08)

Fluctuation & hydrodynamic results have been extended to this context

Puzzling points:

explicit computation of speed =⇒ det(D2v) < 0 without clear connection to Wolf’s
heuristics.
speed is harmonic w.r.t. suitable complex structure

Any pattern behind?
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AKPZ growth and Euler-Lagrange equation

A geometric argument behind det(D2v(ρ)) ≤ 0 for AKPZ models
(A. Borodin, F.T., ’18)

Common feature of most known AKPZ growth models: stationary, non-reversible
Gibbs measures πρ:

∇h(t = 0) ∼ πρ =⇒ ∇h(t) ∼ πρ
Gibbs states π: probability measures such that

law of h(x) given h|Z2\{x} depends only on {h(y)}|y−x|=1.

In many examples, πρ locally uniform, free-fermionic
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AKPZ growth and Euler-Lagrange equation

∃ continuum of non-translation-invariant Gibbs measures and

∇h(t = 0) ∼ π(0) =⇒ ∇h(t) ∼ π(t).

Macroscopically, typical height profile sampled from Gibbs state is minimizer φ of
surface tension functional ∫

R2

σ(∇φ)dx

with σ(·) convex, i.e. solution of Euler-Lagrange equation

2∑
i,j=1

σij(∇φ)∂2
xixjφ = 0, (σij(ρ) := ∂2

ρiρjσ(ρ)).
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AKPZ growth and Euler-Lagrange equation

Preservation of Gibbs property =⇒ hydrodynamic PDE

∂tφ = v(∇φ)

preserves solutions of Euler-Lagrange:

φ(t = 0) solves Euler-Lagrange =⇒ φ(t) does too

Theorem (A. Borodin, F.T.) This gives a non-linear relation between D2v and D2σ,
that implies det(D2v) ≤ 0.

For dimer models, solutions of Euler-Lagrange parametrized by complex variable
z = z(∇φ) (R. Kenyon & A. Okounkov ’07)

Theorem (A. Borodin, F.T.) Hydrodynamic PDE preserves Euler-Lagrange equation
⇐⇒ speed v(·) is harmonic function of z.
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Where do we stand?

AKPZ

KPZ

Gibbs-preserving dynamics

Models with envelope property

The world of 2d stochastic growth processes

Is any of the two classes “generic”?

How to guess universality class from symmetries of generator?
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Things that were left out

rate = 1
2

reversible dynamics

Bounds O(L2+ε) on mixing time in finite L× L domain (P. Caputo, B. Laslier, F.
Martinelli, F.T.)

Convergence to non-linear parabolic PDE for long-jump symmetric dynamics (B.
Laslier, F.T. ’17)

rate = 1
n

n
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Summary

We discussed Wolf’s conjecture on universality classes of 2d stochastic interface growth.

For a class of AKPZ growth models:

hydrodynamic limits

logarithmic bounds on fluctuation growth, αAKPZ = βAKPZ = 0

singularities of v(·)←→ smooth phases, facets

origin of detD2v ≤ 0: preservation in time of Gibbs property

Open problem:

Full convergence to Edwards-Wilkinson fixed point? (proven in limiting regimes: A.
Borodin, I. Corwin & F.T. ’17, A. Borodin, I. Corwin & P. Ferrari ’17)

Thanks!
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