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Large scales = non-linear PDEs, stochastic PDEs, ...
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e An interesting story: Wolf’s conjecture on universality classes of 2d interface growth

e 2d discrete interfaces = random tilings, dimer model
e Stochastic growth (random deposition).

Random discrete interfaces




Random discrete interfaces and growth

Links with:
@ macroscopic shapes

o facet singularities
e massless Gaussian field (GFF)

Toninelli



Interfaces, tilings & dimers
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@ Discrete monotone interface
e Lozenge tiling of the plane
e Dimer model (perfect matching of planar bipartite graph)

Link with spin systems: ground state of 3d Ising model
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Tilings & interlaced particles

Lozenge tiling < Interlaced particle system

Xiah < X < Xp

The whole interface/dimer /lozenge picture is still there
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A stochastic deposition model

Continuous-time Markov process. Updates:

h—1 rate=p h rate = p .
— S P
T N R
rate=1—p . orate=1-—pi i L/%\%’/
< R

Jumps respect interlacing conditions
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A stochastic deposition model

Continuous-time Markov process. Updates:

h—1 rate=p h ) rate = p »
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Jumps respect interlacing conditions

e symmetric case p = 1/2: uniform measure is stationary & reversible
@ p # 1/2: growth model, irreversibility. Interesting in infinite volume (or with periodic
boundary conditions)

@ equivalent to zero temperature Glauber dynamics of 3d Ising
p <> magnetic field
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Interface growth: phenomenological picture

Speed of growth v = v(p): asymptotic growth rate for interface of slope p € R? (for us,
d=2)
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Interface growth: phenomenological picture

Speed of growth v = v(p): asymptotic growth rate for interface of slope p € R?
h(-,t)
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Interface growth: phenomenological picture

e Ast — oo, law of gradients
Vh=(hz+é&)—hx), zeZii=1,...,d

should tend to limit stationary, non-reversible measure ,
Eg wp)=pxml g )=L=p)xm( ¥)

o Roughness exponent «: at large distances

\/ Varn, (h(z) = h(y)) ~ c1 + eofw — |

o Growth exponent [3: at large times,

V/Var(h(z,t) — h(z,0)) ~ 3 + c4t”
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Fluctuation field and link with the KPZ equation

Heuristics: large-scales behavior of fluctuations ~» Kardar-Parisi-Zhang equation

relaxes large ﬂwiions tunes strength of non-linearity. Useful in perturbation theory

Dh(z,t) = Ah(w, t) + XV h(, ) Hh(z, 1)) + Emoots (2, 1)

/ T

d x d symmetric matrix smoothed space-time white noise

Quadratic non-linearity from second-order Taylor expansion of hydrodynamic PDE.

H = D?v(p)  (Hessian of speed of growth)
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Fluctuation field and link with the KPZ equation

Oih(z,t) = Ah(x,t) + AM(Vh(z,t), HVh(2, ) + Esmootn (2, )

e Linear case (A = 0): Edwards-Wilkinson (EW) equation.
Stationary state: massless Gaussian field.

agw = (2—4d)/2, Bew = (2 —d)/4.

e d = 1: KPZ ’86 predicted relevance of non-linearity.

5=3 # Bew

Confirmed by exact solutions (1-d KPZ universality class: universal non-Gaussian
limit laws, ...)

@ d > 3: predicted irrelevance of small non-linearity, transition at A..
= see Magnen-Unterberger '17, Gu-Ryzhik-Zeitouni "17 for A < 1
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The critical dimension d = 2 and Wolf’s conjecture

Oh(z,t) = Ah(z,t) + M(Vh(z,t), HVh(2,t)) + Esmootn (T, T)

One-loop perturbative (in A) Renormalization-Group analysis (D. Wolf '91):
o if det(H) > 0, non-linearity relevant, « # agw, 5 # BEw;
e if det(H) < 0, small non-linearity irrelevant. EW Universality class.
Conjecture: Two universality classes:

o Anisotropic KPZ (AKPZ) class: det(D?v(p)) < 0.
Large-scale fixed point: EW equation. aaxpyz = 0, Saxpz = 0.

o KPZ class: det(D?v(p)) > 0. axpyz # 0, fxpz # 0.

Numerics (Halpin-Healy et al.): in KPZ class, universal exponents
aKpyz ~ 0.39..., BKPZ ~ 0.24....
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Back to the deposition process

Envelope property: h(t = 0) = h) v A = n(t) = kY () v b (1)

ARSI

(1)
R (2 h

Then, superadditivity argument (T. Seppéldinen, F. Rezakhanlou) implies that v(-) exists
and is convex.

Natural candidate for KPZ class. No math results on stationary states or critical
exponents akpyz, fkpz
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. rate =p

umps constrained only

[ J
' ' by interlacement conditions
rate=1—p Lo

. A. Borodin & P. Ferrari ’08
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A long-jump variant

| - .

1 7~ ' Jumps constrained only

| ' ' by interlacement conditions
! I I

! . L . A. Borodin & P. Ferrari ’08

Should the universality class change? not obvious a priori.

In fact, it does change
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AKPZ signature

o Stationary states free-fermionic

(determinantal correlations)

® - Roughness exponent: a = ()
logarithmic fluctuations,

scaling to massless Gaussian field

! ® . Growthexponent § =0
@ wniform given@ Vary, (h(z,t) — h(z,0)) = O(log)
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Speed and Hydrodynamic limit

Theorem (M. Legras, F.T. ’17)
If

liH(l) eh(e te,t =0) = po(z), VreR?
€E—
with ¢o(-) convex, then
lim eh(e tz, e 1t) = ¢(x,t), t>0
e—0

(with high probability as e — 0) where ¢ solves

{ Ohp(x,t) = v(Vo(x,t))
¢(z,0) = ¢o(x).

Speed of growth v(p): explicit and det D?v(p) < 0
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Comments on hydrodynamic equation

o Non-linear Hamilton-Jacobi equation = singularities in finite time

o Physically relevant solution: viscosity solution.
(V) = v(Ve) + eAp, €— 07T

e v(-) non convex = no variational formula (like “minimal action”) for viscosity
solution.
For convex profile, variational formula.

o Technical difficulty: long jumps, possible pathologies
(tools: from works of T. Seppéldinen)
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Previous results on the model

Theorem (A. Borodin, P. Ferrari "08)
For “triangular-array Gibbs-type initial conditions”, hydrodynamic limit and central limit
theorem on scale /log .
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Smooth phases and singularities of v(-)

For equilibrium 2d discrete interface models, smooth (or “rigid”) (as opposed to: rough)
phases at special slopes

Exponential decay of correlations, no fluctuation growth:

sup Var(h(z) — h(0)) < oo,

E.g. SOS model at low temperature; dimers (“gas phases”),...
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Smooth phases and singularities of v(-)

Questions:

o AKPZ growth models with smooth stationary states?
o We implicitly assumed that speed v(:) is differentiable (H = D?v in KPZ Eq.)

What if it is not?
o Still Edwards-Wilkinson behavior?
e Link with smooth stationary states?
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An AKPZ model with a smooth phase

Together with S. Chhita, we studied a growth model where:
o height function is h: Z? > x + h(x) € Z
e Growth process in discrete time: ho(-), hi(:), ha(-), ...

e Local update rule: h,(x) — hpt1(z) ~» random function of neighboring values

ha(y), ly—xl=1

Stationary states m, of Vh are

o logarithmically rough for p # 0, i.e. Vary, (h(x) — h(y)) ~ log|z — y|
o smooth for p =0, i.e. Varg, (h(z) — h(y)) = O(1)

For experts: dynamics is domino-shuffling algorithm with 2-periodic weights (J. Propp)
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An AKPZ model with a smooth phase

Theorem (S. Chhita, F.T. "18)
For p # 0, AKPZ signature:

o Logarithmic growth of fluctuations:
Var, (h(z,t) — h(z,0)) = O(logt)
o Twice differentiable speed and
det(D%v(p)) < 0.

For p = 0, new picture:
@ bounded fluctuations:
Varﬂo<h(xv t) - h(LE’, 0)) - 0(1)

e Non-differentiability of v(-) at 0
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Smooth phases, facets and singularities of v(+)

Non-differentiability related to facets of macroscopic shapes

p related to “facet singularities” h i h(wg + €) ~ 32
/ 0 p=20 \3
Lo w(p) = |plf(0) + [l f2(6) T
0 -

Zo T

non-differentiability Pokrovsky-Talapov law
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Smooth phases, facets and singularities of v(+)

Non-differentiability related to facets of macroscopic shapes

related to “facet singularities” h i h(wg + €) ~ 32
p—0 \
v(p) "= |plfi(0) + |pl* f2(0) -

Zo T

non-differentiability Pokrovsky-Talapov law




A more general AKPZ class

e A more general class of interlaced-particle dynamics that includes both previous
examples (Borodin & Ferrari '08)
o Fluctuation & hydrodynamic results have been extended to this context
e Puzzling points:
o explicit computation of speed = det(D?v) < 0 without clear connection to Wolf’s
heuristics.
e speed is harmonic w.r.t. suitable complex structure

Any pattern behind?
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AKPZ growth and Euler-Lagrange equation

A geometric argument behind det(D?v(p)) < 0 for AKPZ models
(A. Borodin, F.T., ’18)

o Common feature of most known AKPZ growth models: stationary, non-reversible
Gibbs measures m,:

Vh(t =0) ~ 1, = Vh(t) ~ 7,
e Gibbs states m: probability measures such that
law of h(x) given h|z2\ (5 depends only on {A(y)}y—z|=1-

In many examples, 7, locally uniform, free-fermionic
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AKPZ growth and Euler-Lagrange equation

@ 7 continuum of non-translation-invariant Gibbs measures and
Vh(t =0) ~ 70 = Vh(t) ~ 70,

e Macroscopically, typical height profile sampled from Gibbs state is minimizer ¢ of
surface tension functional
/ o(Vo)dz
RQ

with o(+) convex, i.e. solution of Euler-Lagrange equation

2

S 0y (V)2, 6 =0, (oi(p) i= 82y, 0(0)).

ij=1
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AKPZ growth and Euler-Lagrange equation

Preservation of Gibbs property = hydrodynamic PDE
op =v(Vo)
preserves solutions of Euler-Lagrange:
¢(t = 0) solves Euler-Lagrange = ¢(t) does too

Theorem (A. Borodin, F.T.) This gives a non-linear relation between D?v and D?c,
that implies det(D?v) < 0.

For dimer models, solutions of Euler-Lagrange parametrized by complex variable
z=2(V¢) (R. Kenyon & A. Okounkov '07)

Theorem (A. Borodin, F.T.) Hydrodynamic PDE preserves Euler-Lagrange equation
<= speed v(-) is harmonic function of z.
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Where do we star

The world of 2d stochastic growth processes

Gibbs-preserving dynamics

Models with envelope property

Is any of the two classes “generic”?

How to guess universality class from symmetries of generator?
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Things that were left out
rate = %
- reversible dynamics

e Bounds O(L?"¢) on mixing time in finite L x L domain (P. Caputo, B. Laslier, F.
Martinelli, F.T.)

e Convergence to non-linear parabolic PDE for long-jump symmetric dynamics (B.
Laslier, F.T. ’17)

rate = 1
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We discussed Wolf’s conjecture on universality classes of 2d stochastic interface growth.
For a class of AKPZ growth models:

@ hydrodynamic limits

@ logarithmic bounds on fluctuation growth, aaxpz = Baxpz =0

e singularities of v(-) «— smooth phases, facets

e origin of det D?v < 0: preservation in time of Gibbs property

F. Toninelli (CN & Lyon 1)
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We discussed Wolf’s conjecture on universality classes of 2d stochastic interface growth.
For a class of AKPZ growth models:

@ hydrodynamic limits

@ logarithmic bounds on fluctuation growth, aaxpz = Baxpz =0

e singularities of v(-) «— smooth phases, facets

e origin of det D?v < 0: preservation in time of Gibbs property
Open problem:

e Full convergence to Edwards-Wilkinson fixed point? (proven in limiting regimes: A.
Borodin, I. Corwin & F.T. 17, A. Borodin, I. Corwin & P. Ferrari ’17)
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We discussed Wolf’s conjecture on universality classes of 2d stochastic interface growth.
For a class of AKPZ growth models:

@ hydrodynamic limits

@ logarithmic bounds on fluctuation growth, aaxpz = Baxpz =0

e singularities of v(-) «— smooth phases, facets

e origin of det D?v < 0: preservation in time of Gibbs property
Open problem:

e Full convergence to Edwards-Wilkinson fixed point? (proven in limiting regimes: A.
Borodin, I. Corwin & F.T. 17, A. Borodin, I. Corwin & P. Ferrari ’17)

Thanks!
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