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Overview

This talk presents two recent results in quantum chaos
Central ingredient: fractal uncertainty principle (FUP)

No function can be localized
in both position and frequency

near a fractal set

Using tools from
Microlocal analysis ( classical/quantum correspondence )
Hyperbolic dynamics ( classical chaos )
Fractal geometry
Harmonic analysis
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Lower bound on mass

First result: lower bound on mass

(M, g) compact hyperbolic surface (Gauss curvature ≡ −1)
Geodesic flow on M: a standard model of classical chaos
(perturbations diverge exponentially from the original geodesic)
Eigenfunctions of the Laplacian −∆g studied by quantum chaos

M

(−∆g − λ2)u = 0, ‖u‖L2 = 1

Theorem 1 [D–Jin ’17, using D–Zahl ’15 and Bourgain–D ’16]

Let Ω ⊂ M be a nonempty open set. Then there exists c depending on M,Ω but not on λ s.t.
‖u‖L2(Ω) ≥ c > 0

For bounded λ this follows from unique continuation principle
The new result is in the high frequency limit λ→∞
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Let Ω ⊂ M be a nonempty open set. Then there exists c depending on M,Ω but not on λ s.t.
‖u‖L2(Ω) ≥ c > 0

The chaotic nature of geodesic flow is important
For example, Theorem 1 is false if M is the round sphere
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Lower bound on mass

Theorem 1
Let M be a hyperbolic surface and Ω ⊂ M a nonempty open set. Then there exists cΩ > 0 s.t.

(−∆g − λ2)u = 0 =⇒ ‖u‖L2(Ω) ≥ cΩ‖u‖L2(M)

Application to control theory (using standard techniques e.g. Burq–Zworski ’04, ’12):

Theorem 2 [Jin ’17]

Fix T > 0 and nonempty open Ω ⊂ M. Then there exists C = C (T ,Ω) such that

‖f ‖2L2(M) ≤ C

∫ T

0

∫
Ω
|e it∆g f (x)|2 dxdt for all f ∈ L2(M)

Control by any nonempty open set previously known only for flat tori: Haraux ’89, Jaffard ’90

Work in progress

Datchev–Jin: an estimate on cΩ in terms of Ω (using Jin–Zhang ’17)
D–Jin–Nonnenmacher: Theorems 1 and 2 for surfaces of variable negative curvature
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Weak limits of eigenfunctions

Weak limits of eigenfunctions
Theorem 1 arose from trying to understand high frequency sequences of eigenfunctions

(−∆g − λ2
j )uj = 0, ‖uj‖L2 = 1, λj →∞

in terms of weak limit: probability measure µ on M such that uj → µ in the following sense∫
M
a(x)|uj(x)|2 d volg (x)→

∫
M
a dµ for all a ∈ C∞(M)

Theorem 1 ⇒ for hyperbolic surfaces, every µ has suppµ = M: ‘no whitespace’

A (much) stronger property is equidistribution: µ = d volg

Quantum ergodicity: geodesic flow is chaotic ⇒ most eigenfunctions equidistribute
Shnirelman ’74, Zelditch ’87, Colin de Verdière ’85 . . . Zelditch–Zworski ’96
QUE conjecture [Rudnick–Sarnak ’94]: all eigenfunctions equidistribute for strongly
chaotic systems. Only proved in arithmetic situations: Lindenstrauss ’06
Entropy bounds on possible weak limits: Anantharaman ’07, A–Nonnenmacher ’08. . .
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Weak limits of eigenfunctions

Pictures of eigenfunctions (courtesy of Alex Barnett)

One can also study Dirichlet eigenfunctions on a domain with boundary
The geodesic flow is replaced by the billiard ball flow

Completely integrable Mildly chaotic Strongly chaotic
Whitespace in the
center (easy)

Whitespace on the sides (conj.)
Lack of equidistribution

No whitespace (conj., similar
to Theorem 1)

[Hassell ’10] Equidistribution (conj., QUE)
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Spectral gaps

Second result: spectral gaps for noncompact hyperbolic surfaces
(M, g) convex co-compact hyperbolic surface

M
`1 `2

`3

Resonances: zeroes of the Selberg zeta function

ZM(s) =
∏
`∈LM

∞∏
k=0

(
1− e−(s+k)`

)
where LM = {lengths of primitive closed geodesics}

Pictures of resonances
(by David Borthwick and Tobias Weich)
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Spectral gaps

Second result: spectral gaps for noncompact hyperbolic surfaces

Theorem 3 [D–Zahl ’15, Bourgain–D ’16, D–Zworski ’17]

Let M be a convex co-compact hyperbolic surface. Then there exists an essential spectral gap
of size β = β(M) > 0, namely M has only finitely many resonances s with Re s > 1

2 − β

Previously known only for ‘thinner half’ of surfaces: Patterson ’76, Sullivan ’79, Naud ’05
Gap for ‘thin’ open systems: Ikawa ’88, Gaspard–Rice ’89, Nonnenmacher–Zworski ’09
Applications to exponential decay for waves and Strichartz estimates: Wang ’17
Conjecture: every strongly chaotic scattering system has a spectral gap
Stronger gap conjecture for hyperbolic surfaces: Jakobson–Naud ’12
Density results supporting stronger conjecture: Naud ’14, D ’15
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Ideas of the proofs

Main ingredient: fractal uncertainty principle (FUP)

Definition
Fix ν > 0. A set X ⊂ R is ν-porous up to scale ~ if for each interval I ⊂ R of length
~ ≤ |I | ≤ 1, there is an interval J ⊂ I , |J| = ν|I |, J ∩ X = ∅

Theorem 4 [Bourgain–D ’16]

Let ~� 1 and X ,Y be ν-porous up to scale ~. Then there exists β = β(ν) > 0:

f ∈ L2(R), supp f̂ ⊂ ~−1 · Y =⇒ ‖1X f ‖L2(R) ≤ C~β‖f ‖L2(R)

“Cannot concentrate in both position and frequency on a fractal set”

Tools: Beurling–Malliavin theorem, iteration on scales. . .

Recent progress: Jin–Zhang ’17 (quantitative version),
Han–Schlag ’18 (some higher dimensional cases)
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Ideas of the proofs

How do fractal sets appear?

ϕt : S∗M → S∗M the geodesic flow on (M, g)

U ⊂ S∗M open nonempty set, called the hole
The fractal sets to which FUP is applied arise from geodesics missing the hole:

Γ±(T ) := {ρ ∈ S∗M | ϕ∓t(ρ) /∈ U for all t ∈ [0,T ]}

Γ−(T ), T = 0 Γ+(T ), T = 0
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Thank you for your attention!
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