Jacob Bedrossian joint work with Pierre Germain and Ben Harrop-Griffiths Partially supported by the NSF

> University of Maryland, College Park Department of Mathematics Center for Scientific Computation and Mathematical Modeling

> > July 12, 2018

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Vortex filaments

Vortex filaments are one the most common coherent structures in 3D incompressible fluids

- Models and analysis for their motion and and behavior have been studied, going back at least to Kelvin in his 1880 work.
- However, the mathematically rigorous derivation of dimension-reduced models, such as the local induction approximation, is not yet developed.

¹AirTeamImages/Daily Mail UK

²Robert Kozloff/University of Chicago

Vortex filaments as (extra-)critical initial data

3D Navier-Stokes

In momentum form

$$\partial_t u + u \cdot \nabla u + \nabla p = \Delta u$$

 $\nabla \cdot u = 0;$

• and in vorticity form for $\omega = \nabla \times u$

$$\partial_t \omega + u \cdot \nabla \omega - \omega \cdot \nabla u = \Delta \omega$$

 $u = \nabla \times (-\Delta)^{-1} \omega.$

• The scaling symmetry is (hence, L^d is critical for u, $L^{d/2}$ for ω):

$$u(t,y) \mapsto \frac{1}{\lambda} u\left(\frac{t}{\lambda^2}, \frac{y}{\lambda}\right), \qquad \omega(t,y) \mapsto \frac{1}{\lambda^2} \omega\left(\frac{t}{\lambda^2}, \frac{y}{\lambda}\right).$$
 (1)

Vortex filaments are regions of vorticity highly concentrated along thin tubular neighborhoods:

Vortex filaments as (extra-)critical initial data

Mild solutions

• We will be interested only in *mild solutions* satisfying $\omega \in C^{\infty}((0, T) \times \mathbb{R}^d)$:

$$\omega(t) = e^{t\Delta} \mu - \int_0^t e^{(t-s)\Delta} \nabla \cdot (u \otimes \omega - \omega \otimes u) ds.$$
 (2)

- Generally, well-posedness of mild solutions is closely tied to the scaling symmetry.
- In momentum form, one of largest critical spaces for which one has local well-posedness for all data is $u_0 \in L^3$; in vorticity it is $\omega_0 \in L^{3/2}$.

Vortex filaments as (extra-)critical initial data

Vortex Filaments as (extra-)critical initial data

• We model vortex filament initial data via measure-valued vorticity directed along a smooth curve γ with constant circulation $\alpha \in \mathbb{R}$.

³They also prove something stronger: if the "scaling-critical" piece of the initial data is small, one gets local existence. E.g. if one has a vortex filament with $|\alpha| \ll 1$ and a smooth (but large) background vorticity.

Vortex filaments as (extra-)critical initial data

Vortex Filaments as (extra-)critical initial data

• We model vortex filament initial data via measure-valued vorticity directed along a smooth curve γ with constant circulation $\alpha \in \mathbb{R}$.

- As observed by Giga-Miyakawa '89, measures of this type are in the scaling-critical Morrey space $\|\mu\|_{M^{3/2}} = \sup_{x,R} R^{-1} |\mu(B(x,R))| < \infty$. They proved global well-posedness for small data in this space³.
- The associated velocity field is in the Koch-Tataru space BMO⁻¹, but not in L²_{loc}, so one cannot associate Leray-Hopf weak solutions to this data.
- These two larger critical spaces contain self-similar solutions: local well-posedness of mild solutions is known only for small data.

³They also prove something stronger: if the "scaling-critical" piece of the initial data is small, one gets local existence. E.g. if one has a vortex filament with $|\alpha| \ll 1$ and a smooth (but large) background vorticity.

Vortex filaments as (extra-)critical initial data

2D NSE and 3D axisymmetric flows

The Oseen vortex column:

$$\omega(t, \mathbf{x}, z) = \begin{pmatrix} 0 \\ 0 \\ \frac{\alpha}{4\pi t} e^{-\frac{|\mathbf{x}|^2}{4t}} \end{pmatrix}$$
(3)

is a self-similar solution to both 2D and 3D Navier-Stokes. In 3D, it is the canonical infinite, straight vortex filament.

- It is known to be unique in the class of 2D measure valued initial data [Gallagher-Gallay-Lions '05, Gallagher/Gallay '05] (in fact the 2D NSE in vorticity form is globally well-posed with measure valued vorticity).
- Gallay-Šverák '15 later considered vortex ring initial data and obtained existence and uniqueness of mild solutions in the axisymmetric class for such initial data (see also Feng/Šverák '15).

- Large filaments with large (smoother) backgrounds
 - Perturbation of the Oseen vortex column

Perturbation of the infinite straight filament

Define the space (here
$$\hat{f}(x,\zeta) = \frac{1}{\sqrt{2\pi}} \int f(x,z) e^{-iz\zeta} dz$$
),
 $\|f\|_{B_z L^p} = \int \|\hat{f}(\cdot,\zeta)\|_{L^p} d\zeta.$ (4)

Theorem (JB/Germain/Harrop-Griffiths '18)

For all α and ω_0 such that for some $r \in (1, 2)$,

$$\|\omega_0\|_{B_z L^1_x} + \|x \cdot \omega_0^x\|_{B_z L^r \cap B_z L^{\frac{r}{r-1}}} < \infty,$$
(5)

there exists a time $T = T(||\omega_0||, \alpha)$ and a mild solution $\omega \in C_w([0, T); B_z L^1) \cap C^{\infty}((0, T) \times \mathbb{R}^3)$ such that

$$\omega(t, x, z) = \begin{pmatrix} 0\\ 0\\ \frac{\alpha}{4\pi t} e^{-\frac{|x|^2}{4t}} \end{pmatrix} + \frac{1}{t} \Omega_c \left(\log t, \frac{x}{\sqrt{t}}, z \right) + \omega_b(t, x, z), \qquad (6)$$

satisfying (where $\lim_{T\searrow 0} \epsilon_0 = 0$),

$$\sup_{0 < t < T} t^{1/4} \|\omega_b(t)\|_{B_z L_x^{4/3}} + \sup_{-\infty < \tau < \log T} \|\langle \xi \rangle^m \Omega_c(\tau)\|_{B_z L_{\xi}^2} \le \epsilon_0(T).$$
(7)

Large filaments with large (smoother) backgrounds

Perturbation of the Oseen vortex column

Comments

- Small ω_0 implies global existence ('small' depends on α).
- The proof is a fixed point, so the solutions are automatically unique and stable in the class of solutions whose decomposition admits similar estimates (e.g. filaments with a Gaussian core).
- Rules out the kind of non-uniqueness⁴ discussed in Jia/Šverák '13-'14 for self-similar solutions in $L^{3,\infty}$: indeed, the linearization around the filament is stable at *all* α .

⁴Unfortunately, this does *not* imply uniqueness in the general class of mild solutions satisfying suitable a priori estimates. For example, imagine there is a second, fully 3D self-similar solution that looks like e.g. a helical telephone cord twisting at a scale like $O(\sqrt{t})$.

Large filaments with large (smoother) backgrounds

Perturbation of the Oseen vortex column

Comments

- Small ω_0 implies global existence ('small' depends on α).
- The proof is a fixed point, so the solutions are automatically unique and stable in the class of solutions whose decomposition admits similar estimates (e.g. filaments with a Gaussian core).
- Rules out the kind of non-uniqueness⁴ discussed in Jia/Šverák '13-'14 for self-similar solutions in $L^{3,\infty}$: indeed, the linearization around the filament is stable at *all* α .
- The key structure: in self-similar coordinates $\xi = \frac{x}{\sqrt{t}}$ (note, only in x) the *z* dependence is almost entirely *subcritical* at the linearized level. This turns the intractable looking 3D stability problem into a perturbation of tractable 2D linearized problems.

⁴Unfortunately, this does *not* imply uniqueness in the general class of mild solutions satisfying suitable a priori estimates. For example, imagine there is a second, fully 3D self-similar solution that looks like e.g. a helical telephone cord twisting at a scale like $O(\sqrt{t})$.

Large filaments with large (smoother) backgrounds

Perturbation of the Oseen vortex column

One of the two key linear problems

The linearization in self-similar variables becomes:

$$\partial_{\tau}\Omega^{\xi} + \alpha g \cdot \nabla_{\xi}\Omega^{\xi} - \alpha\Omega^{\xi} \cdot \nabla_{\xi}g - \alpha e^{\frac{1}{2}\tau}G\partial_{z}U^{\xi} = \left(\mathcal{L} + e^{\tau}\partial_{z}^{2}\right)\Omega^{\xi}$$
$$\partial_{\tau}\Omega^{z} + \alpha g \cdot \nabla_{\xi}\Omega^{z} + \alpha U^{\xi} \cdot \nabla_{\xi}G - \alpha e^{\frac{1}{2}\tau}G\partial_{z}U^{z} = \left(\mathcal{L} + e^{\tau}\partial_{z}^{2}\right)\Omega^{z},$$

where $G = e^{-|\xi|^2}$, g is the corresponding velocity, $\mathcal{L}f = \Delta f + \frac{1}{2}\nabla \cdot (\xi f)$. • After Fourier transforming in z, we can treat this perturbatively as

$$\left(\partial_{\tau} + \mathbf{e}^{\tau} |\zeta|^2 - \mathcal{L} + \alpha \Gamma \right) \mathbf{w}^{\xi} = \alpha F^{\xi}$$
$$\left(\partial_{\tau} + \mathbf{e}^{\tau} |\zeta|^2 - \mathcal{L} + \alpha \Lambda \right) \mathbf{w}^{z} = \alpha F^{z} ,$$

where

$$\Gamma = g \cdot
abla_{\xi} -
abla_{\xi} g, \qquad \Lambda = g \cdot
abla_{\xi} -
abla_{\xi} G \cdot
abla_{\xi}^{\perp} (-\Delta_{\xi})^{-1}.$$

The propagator e^{t(L-αΛ)} was studied by Gallay/Wayne '02 and e^{t(L-αΓ)} by Gallay/Maekawa '11 in their study on 3D stability of the Burgers vortex.

Large filaments with large (smoother) backgrounds

Perturbation of the Oseen vortex column

One of the two key linear problems

The linearization in self-similar variables becomes:

$$\partial_{\tau}\Omega^{\xi} + \alpha g \cdot \nabla_{\xi}\Omega^{\xi} - \alpha\Omega^{\xi} \cdot \nabla_{\xi}g - \alpha e^{\frac{1}{2}\tau}G\partial_{z}U^{\xi} = \left(\mathcal{L} + e^{\tau}\partial_{z}^{2}\right)\Omega^{\xi}$$
$$\partial_{\tau}\Omega^{z} + \alpha g \cdot \nabla_{\xi}\Omega^{z} + \alpha U^{\xi} \cdot \nabla_{\xi}G - \alpha e^{\frac{1}{2}\tau}G\partial_{z}U^{z} = \left(\mathcal{L} + e^{\tau}\partial_{z}^{2}\right)\Omega^{z},$$

where $G = e^{-|\xi|^2}$, g is the corresponding velocity, $\mathcal{L}f = \Delta f + \frac{1}{2}\nabla \cdot (\xi f)$. After Fourier transforming in z, we can treat this perturbatively as

$$\left(\partial_{\tau} + \mathbf{e}^{\tau} |\zeta|^2 - \mathcal{L} + \alpha \Gamma \right) \mathbf{w}^{\xi} = \alpha F^{\xi}$$
$$\left(\partial_{\tau} + \mathbf{e}^{\tau} |\zeta|^2 - \mathcal{L} + \alpha \Lambda \right) \mathbf{w}^{z} = \alpha F^{z} ,$$

where

$$\Gamma = g \cdot
abla_{\xi} -
abla_{\xi} g, \qquad \Lambda = g \cdot
abla_{\xi} -
abla_{\xi} G \cdot
abla_{\xi}^{\perp} (-\Delta_{\xi})^{-1}.$$

The propagator e^{t(L-αΛ)} was studied by Gallay/Wayne '02 and e^{t(L-αΓ)} by Gallay/Maekawa '11 in their study on 3D stability of the Burgers vortex.
 The other linear problem we need is the vector transport-diffusion:

$$\partial_t \omega + u_g \cdot \nabla \omega - \omega \cdot \nabla u_g = \Delta \omega, \tag{8}$$

where $u_g = \frac{1}{\sqrt{t}}g(\frac{\mathbf{x}}{\sqrt{t}})$.

- Large filaments with large (smoother) backgrounds
 - Perturbation of the Oseen vortex column

Decomposition

• Denoting
$$\omega_g = \frac{1}{4\pi t} e^{-|\mathbf{x}|^2/4t} e_3$$
.

• We use the decomposition $\omega_c(t, \mathbf{x}, z) = \frac{1}{t}\Omega_c(\log t, \frac{\mathbf{x}}{\sqrt{t}}, z)$,

$$\partial_t \omega_c + \nabla \cdot (u \otimes (\omega_g + \omega_c) - (\omega_g + \omega_c) \otimes u) = \Delta \omega_c \tag{9}$$

 $\omega_c(0) = 0 \tag{10}$

$$\partial_t \omega_b + \nabla \cdot (u \otimes \omega_b - \omega_b \otimes u) = \Delta \omega_b$$
 (11)

$$\omega_b(0) = \omega_0. \tag{12}$$

- Then ω_c and ω_b are constructed via fixed point using the two linearizations above to eliminate the linear terms with critical scaling.
- This argument is reminiscent of Gallagher/Gallay '05 and a fixed point variant thereof used in JB/Masmoudi '14.

- Large filaments with large (smoother) backgrounds
 - Arbitrary closed, non-self-intersecting curves

Perturbation of an arbitrary vortex filament

- Like the z dependence, we expect curvature effects to be subcritical (though that turns out to be hard to make rigorous).
- Let $\gamma : \mathbb{T} \mapsto \mathbb{R}^3$ be a unit-speed parameterization of an arbitrary C^{∞} , non-self-intersecting closed curve Γ . Define a tubular neighborhood of Γ , Σ_R and the coordinate transform $\Phi : \mathbb{T} \times B(0, R) \to \Sigma_R$.
- Choose an orthonormal frame $(\mathfrak{t},\mathfrak{n},\mathfrak{b}):\mathbb{T}\to\mathbb{R}^3$ along Γ such that $\mathfrak{t}=\gamma'$ and set

$$\Phi(\mathbf{x}, z) = \gamma + x_1 \mathfrak{n} + x_2 \mathfrak{b}. \tag{13}$$

- Large filaments with large (smoother) backgrounds
 - Arbitrary closed, non-self-intersecting curves

Perturbation of an arbitrary vortex filament

Theorem (JB/Germain/Harrop-Griffiths '18)

let $\alpha \in \mathbb{R}$, and $\omega_0 \in W^{1,1} \cap W^{1,\infty}$ arbitrary. Then, there is a T > 0 and a mild solution $\omega \in C^{\infty}((0,T) \times \mathbb{R}^3)$ satisfying properties like, for $|x| \le R/2$:

$$\omega \circ \Phi^{-1} = \begin{pmatrix} 0\\ 0\\ \frac{\alpha}{4\pi t} e^{-\frac{|\mathbf{x}|^2}{4t}} \end{pmatrix} + \frac{1}{t} \Omega_c \left(\log t, \frac{x}{\sqrt{t}}, z \right) + \omega_b(t, x, z), \qquad (14)$$

where Ω_c and ω_b satisfy similar estimates as in the straight filament case.

- Due to technical difficulties with the anisotropic $B_z L^\rho$ spaces aligned with the filament, we take ω_0 in a more subcritical space (but not small).
- The uniqueness class we automatically obtain is a little more obscure we will probably study this a little more before the work appears.

Large filaments with large (smoother) backgrounds

Arbitrary closed, non-self-intersecting curves

Decomposition

- In the straightened coordinate system Δ → Δ_Φ has second order error terms of the form O(|x|²)∂².
- The anisotropic spaces are natural near the filament in the straightened coordinate system, but they don't make sense away from the filament.
- This latter point is an issue because we are taking more regularity in the z direction and less in the x direction relative to isotropic spaces good for a fixed point (for example $t^{1/4} \|\omega(t)\|_{L^2}$).

Large filaments with large (smoother) backgrounds

Arbitrary closed, non-self-intersecting curves

Decomposition

- In the straightened coordinate system Δ → Δ_Φ has second order error terms of the form O(|x|²)∂².
- The anisotropic spaces are natural near the filament in the straightened coordinate system, but they don't make sense away from the filament.
- This latter point is an issue because we are taking more regularity in the z direction and less in the x direction relative to isotropic spaces good for a fixed point (for example $t^{1/4} \|\omega(t)\|_{L^2}$).
- Split Ω_c and ω_b into ω_{c1}, ω_{c2} and ω_{b1}, ω_{b2}. The ω_{*1} unknowns are constructed in the Σ_R neighborhood in the straightened frame, e.g. ω_{c1} = D⁻¹Jη_{c1} Φ for η_{c1} solving a problem similar to Ω_c (hence with Δ instead of the expected Δ_Φ) and then ω_{c2} soaking up the error from Δ in the unstraightened coordinates, using the heat semigroup as the linear propagator.
- All 4 unknowns require a slightly different set of norms.

Large filaments with large (smoother) backgrounds

Arbitrary closed, non-self-intersecting curves

Thank you for your attention!