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L Vortex filaments

Vortex filaments

m Vortex filaments are one the most common coherent structures in 3D
incompressible fluids

= Models and analysis for their motion and and behavior have been studied,
going back at least to Kelvin in his 1880 work.

= However, the mathematically rigorous derivation of dimension-reduced
models, such as the local induction approximation, is not yet developed.
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L Vortex filaments as (extra-)critical initial data

3D Navier-Stokes

= In momentum form
Otu+u-Vu+Vp=Au
V.-u=0;
m and in vorticity form for w =V x u
Ow~+u-Vw—w-Vu=Aw
u=Vx(-A)"w.

m The scaling symmetry is (hence, L9 is critical for u, L9/? for w):

U(t,y)Hﬁu(%%), w(t,y)»—)%w (%%) )

m Vortex filaments are regions of vorticity highly concentrated along thin
tubular neighborhoods:



Vortex filaments in the 3D Navier-Stokes equations

L Vortex filaments as (extra-)critical initial data

Mild solutions

= We will be interested only in mild solutions satisfying
w € C>=((0, T) x RY):

t
w(t) = e — / AV (U@ w —w® u)ds. (2)
0

u Generally, well-posedness of mild solutions is closely tied to the scaling
symmetry.

= In momentum form, one of largest critical spaces for which one has local
well-posedness for all data is up € L% in vorticity it is wo € L1372,
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Vortex Filaments as (extra-)critical initial data

= We model vortex filament initial data via measure-valued vorticity directed
along a smooth curve v with constant circulation o € R.

3They also prove something stronger: if the “scaling-critical” piece of the initial data is small,
one gets local existence. E.g. if one has a vortex filament with || < 1 and a smooth (but large)
background vorticity.
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Vortex Filaments as (extra-)critical initial data

= We model vortex filament initial data via measure-valued vorticity directed
along a smooth curve v with constant circulation o € R.

m As observed by Giga-Miyakawa ‘89, measures of this type are in the
scaling-critical Morrey space |||,/ = sup, g R™" [u(B(x, R))| < oo.
They proved global well-posedness for small data in this space.

m The associated velocity field is in the Koch-Tataru space BMO™?, but not
in L2 _, so one cannot associate Leray-Hopf weak solutions to this data.

m These two larger critical spaces contain self-similar solutions: local
well-posedness of mild solutions is known only for small data.

3They also prove something stronger: if the “scaling-critical” piece of the initial data is small,
one gets local existence. E.g. if one has a vortex filament with || < 1 and a smooth (but large)
background vorticity.
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L Vortex filaments as (extra-)critical initial data

2D NSE and 3D axisymmetric flows

m The Oseen vortex column:

(3)

w(t,x,z) =

is a self-similar solution to both 2D and 3D Navier-Stokes. In 3D, it is the
canonical infinite, straight vortex filament.

= It is known to be unique in the class of 2D measure valued initial data
[Gallagher-Gallay-Lions ‘05, Gallagher/Gallay ‘05] (in fact the 2D NSE in
vorticity form is globally well-posed with measure valued vorticity).

= Gallay-Sverak ‘15 later considered vortex ring initial data and obtained
existence and uniqueness of mild solutions in the axisymmetric class for
such initial data (see also Feng/Sverdk '15).
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Perturbation of the Oseen vortex column

Perturbation of the infinite straight filament

Define the space (here f(x,¢) = [ f(x,z)e *<dz),

\/27
|Fllsuie = / (. O)llrdc. (4)

Theorem (JB/Germain/Harrop-Griffiths ‘18)

For all o and wg such that for some r € (1,2),

llwollg, iz + lIx - woll < o0, (5)

B, L'NBL"— 1

there exists a time T = T(||wol|, @) and a mild solution
w € Cu([0, T); B,LY) N C>((0, T) x R®) such that

0
w(t,x,z) = 0 " + %QC (Iog t, %,z) + ws(t, x, ), (6)
e at

47rt

satisfying (where limr~,0 €0 = 0),

sup t/*flws(t)ll, s+ sup )" Q()lg,2 S e(T).  (7)
0<t<T z5x —oo<r<log T S
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Perturbation of the Oseen vortex column

Comments

m Small wo implies global existence (‘small’ depends on «).

m The proof is a fixed point, so the solutions are automatically unique and
stable in the class of solutions whose decomposition admits similar
estimates (e.g. filaments with a Gaussian core).

= Rules out the kind of non-uniqueness* discussed in Jia/Sverdk ‘13-'14 for
self-similar solutions in L3>°°: indeed, the linearization around the filament
is stable at all .

“Unfortunately, this does not imply uniqueness in the general class of mild solutions satisfying
suitable a priori estimates. For example, imagine there is a second, fully 3D self-similar solution
that looks like e.g. a helical telephone cord twisting at a scale like O(+/%).
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Perturbation of the Oseen vortex column

Comments

m Small wo implies global existence (‘small’ depends on «).

m The proof is a fixed point, so the solutions are automatically unique and
stable in the class of solutions whose decomposition admits similar
estimates (e.g. filaments with a Gaussian core).

= Rules out the kind of non-uniqueness* discussed in Jia/Sverdk ‘13-'14 for
self-similar solutions in L3>°°: indeed, the linearization around the filament
is stable at all .

m The key structure: in self-similar coordinates { = 2~ (note, only in x) the
z dependence is almost entirely subcritical at the linearized level. This
turns the intractable looking 3D stability problem into a perturbation of
tractable 2D linearized problems.

“Unfortunately, this does not imply uniqueness in the general class of mild solutions satisfying
suitable a priori estimates. For example, imagine there is a second, fully 3D self-similar solution
that looks like e.g. a helical telephone cord twisting at a scale like O(+/%).
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Perturbation of the Oseen vortex column

One of the two key linear problems

u The linearization in self-similar variables becomes:
8,0 +ag - VeQS — aQf - Veg — ae?” GO, US = (c + efaf) o
0, + ag - Ve +alf - VeG — ae?” GO,U” = (E + efaﬁ) o,
where G = e_‘5|2, g is the corresponding velocity, Lf = Af + %V - (&5).
m After Fourier transforming in z, we can treat this perturbatively as
(5’T +eT¢P — ﬁ—i—ozl_) wt = aF¢
(aT reT|CP L+ aA) w® = aF?,
where
=g Ve—Veg, A=g Ve VG Ve(-0¢)™

= The propagator e“~°N was studied by Gallay/Wayne ‘02 and e®* =27 by
Gallay/Maekawa ‘11 in their study on 3D stability of the Burgers vortex.
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Perturbation of the Oseen vortex column

One of the two key linear problems

u The linearization in self-similar variables becomes:
8,0 +ag - VeQS — aQf - Veg — ae?” GO, US = (c + efaf) o
0, + ag - Ve +alf - VeG — ae?” GO,U” = (E + eT('?f) o,
where G = e_‘5|2, g is the corresponding velocity, Lf = Af + %V - (&5).
m After Fourier transforming in z, we can treat this perturbatively as
(5’T +eT¢P — C—i—ozl_) wt = aF¢
(aT reT|CP L+ a/\) w® = aF?,
where
=g Ve—Veg, A=g Ve VG Ve(-0¢)™

= The propagator e“~°N was studied by Gallay/Wayne ‘02 and e®* =27 by
Gallay/Maekawa ‘11 in their study on 3D stability of the Burgers vortex.
u The other linear problem we need is the vector transport-diffusion:

Ow + ug - Vw —w - Vug = Aw, (8)
where u, = \%g(%)
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L Perturbation of the Oseen vortex column

Decomposition

1 —|x|2/4t
47'rte &s.

Denoting wg; =

= We use the decomposition wc(t,x,z) = 1Qc(logt, 72),

Orwe + V- (U ® (wg + we) — (wg +we) ® u) = Awc (9)
we(0) =0 (10)

Owp + V- (U@ wp —wp @ u) = Awp (11)

wp(0) = wo. (12)

m Then w. and wp are constructed via fixed point using the two
linearizations above to eliminate the linear terms with critical scaling.
This argument is reminiscent of Gallagher/Gallay '05 and a fixed point
variant thereof used in JB/Masmoudi ‘14.
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Arbitrary closed, non-self-intersecting curves

Perturbation of an arbitrary vortex filament

m Like the z dependence, we expect curvature effects to be subcritical
(though that turns out to be hard to make rigorous).

m Let 7 : T — R® be a unit-speed parameterization of an arbitrary C°,
non-self-intersecting closed curve I'. Define a tubular neighborhood of I,
Y r and the coordinate transform & : T x B(0, R) — Xg.

m Choose an orthonormal frame (t,n,b) : T — R® along I such that t =~/
and set

d(x,z) = v+ xin + xb. (13)
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Arbitrary closed, non-self-intersecting curves

Perturbation of an arbitrary vortex filament

Theorem (JB/Germain/Harrop-Griffiths ‘18)

let « € R, and wo € W N W arbitrary. Then, there isa T > 0 and a mild
solution w € C°°((0, T) x R®) satisfying properties like, for |x| < R/2:

0
_ 1
wod = 0 i + ;QC (Iog t, %,z) + wp(t, x, 2), (14)
o o~

4rt

where Q. and wy satisfy similar estimates as in the straight filament case.

= Due to technical difficulties with the anisotropic B,L” spaces aligned with
the filament, we take wp in a more subcritical space (but not small).

m The uniqueness class we automatically obtain is a little more obscure — we
will probably study this a little more before the work appears.
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Arbitrary closed, non-self-intersecting curves

Decomposition

m In the straightened coordinate system A — Ag has second order error
terms of the form O(|x|*)&°.

= The anisotropic spaces are natural near the filament in the straightened
coordinate system, but they don't make sense away from the filament.

m This latter point is an issue because we are taking more regularity in the z
direction and less in the x direction relative to isotropic spaces good for a
fixed point (for example t'/4||w(t)||;2).
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Arbitrary closed, non-self-intersecting curves

Decomposition

m In the straightened coordinate system A — Ag has second order error
terms of the form O(|x|*)&°.

= The anisotropic spaces are natural near the filament in the straightened
coordinate system, but they don't make sense away from the filament.

m This latter point is an issue because we are taking more regularity in the z
direction and less in the x direction relative to isotropic spaces good for a
fixed point (for example t*/*||w(t)]|2).

= Split Q. and wp into w1, we and wpi, wee. The w1 unknowns are
constructed in the g neighborhood in the straightened frame, e.g.

Wel = 50_1J7751 o ® for nc1 solving a problem similar to Q¢ (hence with A
instead of the expected A¢) and then we soaking up the error from A in
the unstraightened coordinates, using the heat semigroup as the linear
propagator.

m All 4 unknowns require a slightly different set of norms.
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Arbitrary closed, non-self-intersecting curves

Thank you for your attention!
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