Vortex filaments in the 3D Navier-Stokes equations

Jacob Bedrossian
joint work with Pierre Germain and Ben Harrop-Griffiths
Partially supported by the NSF

University of Maryland, College Park
Department of Mathematics
Center for Scientific Computation and Mathematical Modeling

July 12, 2018

Vortex filaments

- Vortex filaments are one the most common coherent structures in 3D incompressible fluids

- Models and analysis for their motion and and behavior have been studied, going back at least to Kelvin in his 1880 work.
- However, the mathematically rigorous derivation of dimension-reduced models, such as the local induction approximation, is not yet developed.

[^0]
3D Navier-Stokes

- In momentum form

$$
\begin{aligned}
\partial_{t} u+u \cdot \nabla u+\nabla p & =\Delta u \\
\nabla \cdot u & =0
\end{aligned}
$$

- and in vorticity form for $\omega=\nabla \times u$

$$
\begin{aligned}
& \partial_{t} \omega+u \cdot \nabla \omega-\omega \cdot \nabla u=\Delta \omega \\
& u=\nabla \times(-\Delta)^{-1} \omega
\end{aligned}
$$

- The scaling symmetry is (hence, L^{d} is critical for $u, L^{d / 2}$ for ω):

$$
\begin{equation*}
u(t, y) \mapsto \frac{1}{\lambda} u\left(\frac{t}{\lambda^{2}}, \frac{y}{\lambda}\right), \quad \omega(t, y) \mapsto \frac{1}{\lambda^{2}} \omega\left(\frac{t}{\lambda^{2}}, \frac{y}{\lambda}\right) . \tag{1}
\end{equation*}
$$

- Vortex filaments are regions of vorticity highly concentrated along thin tubular neighborhoods:

Mild solutions

- We will be interested only in mild solutions satisfying $\omega \in C^{\infty}\left((0, T) \times \mathbb{R}^{d}\right):$

$$
\begin{equation*}
\omega(t)=e^{t \Delta} \mu-\int_{0}^{t} e^{(t-s) \Delta} \nabla \cdot(u \otimes \omega-\omega \otimes u) d s \tag{2}
\end{equation*}
$$

- Generally, well-posedness of mild solutions is closely tied to the scaling symmetry.
- In momentum form, one of largest critical spaces for which one has local well-posedness for all data is $u_{0} \in L^{3}$; in vorticity it is $\omega_{0} \in L^{3 / 2}$.

Vortex Filaments as (extra-)critical initial data

- We model vortex filament initial data via measure-valued vorticity directed along a smooth curve γ with constant circulation $\alpha \in \mathbb{R}$.

[^1]
Vortex Filaments as (extra-)critical initial data

- We model vortex filament initial data via measure-valued vorticity directed along a smooth curve γ with constant circulation $\alpha \in \mathbb{R}$.

- As observed by Giga-Miyakawa '89, measures of this type are in the scaling-critical Morrey space $\|\mu\|_{M^{3 / 2}}=\sup _{x, R} R^{-1}|\mu(B(x, R))|<\infty$. They proved global well-posedness for small data in this space ${ }^{3}$.
- The associated velocity field is in the Koch-Tataru space $B M O^{-1}$, but not in $L_{\text {loc }}^{2}$, so one cannot associate Leray-Hopf weak solutions to this data.
- These two larger critical spaces contain self-similar solutions: local well-posedness of mild solutions is known only for small data.

[^2]
2D NSE and 3D axisymmetric flows

- The Oseen vortex column:

$$
\omega(t, \mathbf{x}, z)=\left(\begin{array}{c}
0 \tag{3}\\
0 \\
\frac{\alpha}{4 \pi t} e^{-\frac{|x|^{2}}{4 t}}
\end{array}\right)
$$

is a self-similar solution to both 2D and 3D Navier-Stokes. In 3D, it is the canonical infinite, straight vortex filament.

- It is known to be unique in the class of 2D measure valued initial data [Gallagher-Gallay-Lions '05, Gallagher/Gallay '05] (in fact the 2D NSE in vorticity form is globally well-posed with measure valued vorticity).
- Gallay-Šverák ' 15 later considered vortex ring initial data and obtained existence and uniqueness of mild solutions in the axisymmetric class for such initial data (see also Feng/Šverák '15).

Perturbation of the infinite straight filament

Define the space (here $\left.\hat{f}(x, \zeta)=\frac{1}{\sqrt{2 \pi}} \int f(x, z) e^{-i z \zeta} d z\right)$,

$$
\begin{equation*}
\|f\|_{B_{z} L^{p}}=\int\|\hat{f}(\cdot, \zeta)\|_{L^{p}} d \zeta \tag{4}
\end{equation*}
$$

Theorem (JB/Germain/Harrop-Griffiths '18)

For all α and ω_{0} such that for some $r \in(1,2)$,

$$
\begin{equation*}
\left\|\omega_{0}\right\|_{B_{z} L_{x}^{1}}+\left\|x \cdot \omega_{0}^{x}\right\|_{B_{z} L^{r} \cap B_{z} L^{r-1}}<\infty \tag{5}
\end{equation*}
$$

there exists a time $T=T\left(\left\|\omega_{0}\right\|, \alpha\right)$ and a mild solution $\omega \in C_{w}\left([0, T) ; B_{z} L^{1}\right) \cap C^{\infty}\left((0, T) \times \mathbb{R}^{3}\right)$ such that

$$
\omega(t, x, z)=\left(\begin{array}{c}
0 \tag{6}\\
0 \\
\frac{\alpha}{4 \pi t} e^{-\frac{|x|^{2}}{4 t}}
\end{array}\right)+\frac{1}{t} \Omega_{c}\left(\log t, \frac{x}{\sqrt{t}}, z\right)+\omega_{b}(t, x, z)
$$

satisfying (where $\lim _{T \searrow 0} \epsilon_{0}=0$),

$$
\begin{equation*}
\sup _{0<t<T} t^{1 / 4}\left\|\omega_{b}(t)\right\|_{B_{z} L_{X}^{4 / 3}}+\sup _{-\infty<\tau<\log T}\left\|\langle\xi\rangle^{m} \Omega_{c}(\tau)\right\|_{B_{z} L_{\xi}^{2}} \leq \epsilon_{0}(T) \tag{7}
\end{equation*}
$$

Comments

- Small ω_{0} implies global existence ('small' depends on α).
- The proof is a fixed point, so the solutions are automatically unique and stable in the class of solutions whose decomposition admits similar estimates (e.g. filaments with a Gaussian core).
- Rules out the kind of non-uniqueness ${ }^{4}$ discussed in Jia/Šverák '13-' 14 for self-similar solutions in $L^{3, \infty}$: indeed, the linearization around the filament is stable at all α.

[^3]
Comments

- Small ω_{0} implies global existence ('small' depends on α).
- The proof is a fixed point, so the solutions are automatically unique and stable in the class of solutions whose decomposition admits similar estimates (e.g. filaments with a Gaussian core).
- Rules out the kind of non-uniqueness ${ }^{4}$ discussed in Jia/Šverák '13-'14 for self-similar solutions in $L^{3, \infty}$: indeed, the linearization around the filament is stable at all α.
- The key structure: in self-similar coordinates $\xi=\frac{x}{\sqrt{t}}$ (note, only in \mathbf{x}) the z dependence is almost entirely subcritical at the linearized level. This turns the intractable looking 3D stability problem into a perturbation of tractable 2D linearized problems.

[^4]
One of the two key linear problems

- The linearization in self-similar variables becomes:

$$
\begin{aligned}
& \partial_{\tau} \Omega^{\xi}+\alpha g \cdot \nabla_{\xi} \Omega^{\xi}-\alpha \Omega^{\xi} \cdot \nabla_{\xi} g-\alpha e^{\frac{1}{2} \tau} G \partial_{z} U^{\xi}=\left(\mathcal{L}+e^{\tau} \partial_{z}^{2}\right) \Omega^{\xi} \\
& \partial_{\tau} \Omega^{z}+\alpha g \cdot \nabla_{\xi} \Omega^{z}+\alpha U^{\xi} \cdot \nabla_{\xi} G-\alpha e^{\frac{1}{2} \tau} G \partial_{z} U^{z}=\left(\mathcal{L}+e^{\tau} \partial_{z}^{2}\right) \Omega^{z}
\end{aligned}
$$

where $G=e^{-|\xi|^{2}}, g$ is the corresponding velocity, $\mathcal{L} f=\Delta f+\frac{1}{2} \nabla \cdot(\xi f)$.

- After Fourier transforming in z, we can treat this perturbatively as

$$
\begin{aligned}
& \left(\partial_{\tau}+e^{\tau}|\zeta|^{2}-\mathcal{L}+\alpha \Gamma\right) w^{\xi}=\alpha F^{\xi} \\
& \left(\partial_{\tau}+e^{\tau}|\zeta|^{2}-\mathcal{L}+\alpha \Lambda\right) w^{z}=\alpha F^{z}
\end{aligned}
$$

where

$$
\Gamma=g \cdot \nabla_{\xi}-\nabla_{\xi} g, \quad \Lambda=g \cdot \nabla_{\xi}-\nabla_{\xi} G \cdot \nabla_{\xi}^{\perp}\left(-\Delta_{\xi}\right)^{-1}
$$

- The propagator $e^{t(\mathcal{L}-\alpha \Lambda)}$ was studied by Gallay/Wayne ' 02 and $e^{t(\mathcal{L}-\alpha \Gamma)}$ by Gallay/Maekawa ' 11 in their study on 3D stability of the Burgers vortex.

One of the two key linear problems

- The linearization in self-similar variables becomes:

$$
\begin{aligned}
& \partial_{\tau} \Omega^{\xi}+\alpha g \cdot \nabla_{\xi} \Omega^{\xi}-\alpha \Omega^{\xi} \cdot \nabla_{\xi} g-\alpha e^{\frac{1}{2} \tau} G \partial_{z} U^{\xi}=\left(\mathcal{L}+e^{\tau} \partial_{z}^{2}\right) \Omega^{\xi} \\
& \partial_{\tau} \Omega^{z}+\alpha g \cdot \nabla_{\xi} \Omega^{z}+\alpha U^{\xi} \cdot \nabla_{\xi} G-\alpha e^{\frac{1}{2} \tau} G \partial_{z} U^{z}=\left(\mathcal{L}+e^{\tau} \partial_{z}^{2}\right) \Omega^{z}
\end{aligned}
$$

where $G=e^{-|\xi|^{2}}, g$ is the corresponding velocity, $\mathcal{L} f=\Delta f+\frac{1}{2} \nabla \cdot(\xi f)$.

- After Fourier transforming in z, we can treat this perturbatively as

$$
\begin{aligned}
& \left(\partial_{\tau}+e^{\tau}|\zeta|^{2}-\mathcal{L}+\alpha \Gamma\right) w^{\xi}=\alpha F^{\xi} \\
& \left(\partial_{\tau}+e^{\tau}|\zeta|^{2}-\mathcal{L}+\alpha \Lambda\right) w^{z}=\alpha F^{z}
\end{aligned}
$$

where

$$
\Gamma=g \cdot \nabla_{\xi}-\nabla_{\xi} g, \quad \Lambda=g \cdot \nabla_{\xi}-\nabla_{\xi} G \cdot \nabla_{\xi}^{\perp}\left(-\Delta_{\xi}\right)^{-1}
$$

- The propagator $e^{t(\mathcal{L}-\alpha \Lambda)}$ was studied by Gallay/Wayne ' 02 and $e^{t(\mathcal{L}-\alpha \Gamma)}$ by Gallay/Maekawa ' 11 in their study on 3D stability of the Burgers vortex.
- The other linear problem we need is the vector transport-diffusion:

$$
\begin{equation*}
\partial_{t} \omega+u_{g} \cdot \nabla \omega-\omega \cdot \nabla u_{g}=\Delta \omega \tag{8}
\end{equation*}
$$

where $u_{g}=\frac{1}{\sqrt{t}} g\left(\frac{x}{\sqrt{t}}\right)$.

Decomposition

- Denoting $\omega_{g}=\frac{1}{4 \pi t} e^{-|x|^{2} / 4 t} e_{3}$.
- We use the decomposition $\omega_{c}(t, \mathbf{x}, z)=\frac{1}{t} \Omega_{c}\left(\log t, \frac{\mathbf{x}}{\sqrt{t}}, z\right)$,

$$
\begin{align*}
\partial_{t} \omega_{c}+\nabla \cdot\left(\boldsymbol{u} \otimes\left(\omega_{g}+\omega_{c}\right)-\left(\omega_{g}+\omega_{c}\right) \otimes \boldsymbol{u}\right) & =\Delta \omega_{c} \tag{9}\\
\omega_{c}(0) & =0 \tag{10}\\
\partial_{t} \omega_{b}+\nabla \cdot\left(\boldsymbol{u} \otimes \omega_{b}-\omega_{b} \otimes \boldsymbol{u}\right) & =\Delta \omega_{b} \tag{11}\\
\omega_{b}(0) & =\omega_{0} . \tag{12}
\end{align*}
$$

- Then ω_{c} and ω_{b} are constructed via fixed point using the two linearizations above to eliminate the linear terms with critical scaling.
- This argument is reminiscent of Gallagher/Gallay '05 and a fixed point variant thereof used in JB/Masmoudi '14.

Perturbation of an arbitrary vortex filament

- Like the z dependence, we expect curvature effects to be subcritical (though that turns out to be hard to make rigorous).
- Let $\gamma: \mathbb{T} \mapsto \mathbb{R}^{3}$ be a unit-speed parameterization of an arbitrary C^{∞}, non-self-intersecting closed curve Γ. Define a tubular neighborhood of Γ, Σ_{R} and the coordinate transform $\Phi: \mathbb{T} \times B(0, R) \rightarrow \Sigma_{R}$.
- Choose an orthonormal frame $(\mathfrak{t}, \mathfrak{n}, \mathfrak{b}): \mathbb{T} \rightarrow \mathbb{R}^{3}$ along Γ such that $\mathfrak{t}=\gamma^{\prime}$ and set

$$
\begin{equation*}
\Phi(\mathbf{x}, z)=\gamma+x_{1} \mathfrak{n}+x_{2} \mathfrak{b} . \tag{13}
\end{equation*}
$$

Perturbation of an arbitrary vortex filament

Theorem (JB/Germain/Harrop-Griffiths '18)

let $\alpha \in \mathbb{R}$, and $\omega_{0} \in W^{1,1} \cap W^{1, \infty}$ arbitrary. Then, there is a $T>0$ and a mild solution $\omega \in C^{\infty}\left((0, T) \times \mathbb{R}^{3}\right)$ satisfying properties like, for $|x| \leq R / 2$:

$$
\omega \circ \Phi^{-1}=\left(\begin{array}{c}
0 \tag{14}\\
0 \\
\frac{\alpha}{4 \pi t} e^{-\frac{|x|^{2}}{4 t}}
\end{array}\right)+\frac{1}{t} \Omega_{c}\left(\log t, \frac{x}{\sqrt{t}}, z\right)+\omega_{b}(t, x, z)
$$

where Ω_{c} and ω_{b} satisfy similar estimates as in the straight filament case.

- Due to technical difficulties with the anisotropic $B_{z} L^{p}$ spaces aligned with the filament, we take ω_{0} in a more subcritical space (but not small).
- The uniqueness class we automatically obtain is a little more obscure - we will probably study this a little more before the work appears.

Decomposition

- In the straightened coordinate system $\Delta \mapsto \Delta_{\Phi}$ has second order error terms of the form $O\left(|\mathbf{x}|^{2}\right) \partial^{2}$.
- The anisotropic spaces are natural near the filament in the straightened coordinate system, but they don't make sense away from the filament.
- This latter point is an issue because we are taking more regularity in the z direction and less in the \mathbf{x} direction relative to isotropic spaces good for a fixed point (for example $t^{1 / 4}\|\omega(t)\|_{L^{2}}$).

Decomposition

■ In the straightened coordinate system $\Delta \mapsto \Delta_{\phi}$ has second order error terms of the form $O\left(|\mathbf{x}|^{2}\right) \partial^{2}$.

- The anisotropic spaces are natural near the filament in the straightened coordinate system, but they don't make sense away from the filament.
- This latter point is an issue because we are taking more regularity in the z direction and less in the \mathbf{x} direction relative to isotropic spaces good for a fixed point (for example $t^{1 / 4}\|\omega(t)\|_{L^{2}}$).
■ Split Ω_{c} and ω_{b} into $\omega_{c 1}, \omega_{c 2}$ and $\omega_{b 1}, \omega_{b 2}$. The $\omega_{* 1}$ unknowns are constructed in the Σ_{R} neighborhood in the straightened frame, e.g. $\omega_{c 1}=\mathfrak{D}^{-1} J \eta_{c 1} \circ \Phi$ for $\eta_{c 1}$ solving a problem similar to Ω_{c} (hence with Δ instead of the expected Δ_{Φ}) and then $\omega_{c 2}$ soaking up the error from Δ in the unstraightened coordinates, using the heat semigroup as the linear propagator.
- All 4 unknowns require a slightly different set of norms.

Thank you for your attention!

[^0]: ${ }^{1}$ AirTeamImages/Daily Mail UK
 ${ }^{2}$ Robert Kozloff/University of Chicago

[^1]: ${ }^{3}$ They also prove something stronger: if the "scaling-critical" piece of the initial data is small, one gets local existence. E.g. if one has a vortex filament with $|\alpha| \ll 1$ and a smooth (but large) background vorticity.

[^2]: ${ }^{3}$ They also prove something stronger: if the "scaling-critical" piece of the initial data is small, one gets local existence. E.g. if one has a vortex filament with $|\alpha| \ll 1$ and a smooth (but large) background vorticity.

[^3]: ${ }^{4}$ Unfortunately, this does not imply uniqueness in the general class of mild solutions satisfying suitable a priori estimates. For example, imagine there is a second, fully 3D self-similar solution that looks like e.g. a helical telephone cord twisting at a scale like $O(\sqrt{t})$.

[^4]: ${ }^{4}$ Unfortunately, this does not imply uniqueness in the general class of mild solutions satisfying suitable a priori estimates. For example, imagine there is a second, fully 3D self-similar solution that looks like e.g. a helical telephone cord twisting at a scale like $O(\sqrt{t})$.

