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Vortex filaments

Vortex filaments

Vortex filaments are one the most common coherent structures in 3D
incompressible fluids

1 2

Models and analysis for their motion and and behavior have been studied,
going back at least to Kelvin in his 1880 work.

However, the mathematically rigorous derivation of dimension-reduced
models, such as the local induction approximation, is not yet developed.
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Vortex filaments as (extra-)critical initial data

3D Navier-Stokes

In momentum form

∂tu + u · ∇u +∇p = ∆u

∇ · u = 0;

and in vorticity form for ω = ∇× u

∂tω + u · ∇ω − ω · ∇u = ∆ω

u = ∇× (−∆)−1ω.

The scaling symmetry is (hence, Ld is critical for u, Ld/2 for ω):

u(t, y) 7→ 1

λ
u
( t

λ2
,

y

λ

)
, ω(t, y) 7→ 1

λ2
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)
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Vortex filaments are regions of vorticity highly concentrated along thin
tubular neighborhoods:
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Mild solutions

We will be interested only in mild solutions satisfying
ω ∈ C∞((0,T )× Rd):

ω(t) = et∆µ−
∫ t

0

e(t−s)∆∇ · (u ⊗ ω − ω ⊗ u)ds. (2)

Generally, well-posedness of mild solutions is closely tied to the scaling
symmetry.

In momentum form, one of largest critical spaces for which one has local
well-posedness for all data is u0 ∈ L3; in vorticity it is ω0 ∈ L3/2.
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Vortex Filaments as (extra-)critical initial data

We model vortex filament initial data via measure-valued vorticity directed
along a smooth curve γ with constant circulation α ∈ R.

As observed by Giga-Miyakawa ‘89, measures of this type are in the
scaling-critical Morrey space ‖µ‖M3/2 = supx,R R−1 |µ(B(x ,R))| <∞.

They proved global well-posedness for small data in this space3.

The associated velocity field is in the Koch-Tataru space BMO−1, but not
in L2

loc , so one cannot associate Leray-Hopf weak solutions to this data.

These two larger critical spaces contain self-similar solutions: local
well-posedness of mild solutions is known only for small data.

3They also prove something stronger: if the “scaling-critical” piece of the initial data is small,
one gets local existence. E.g. if one has a vortex filament with |α| � 1 and a smooth (but large)
background vorticity.
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Vortex filaments as (extra-)critical initial data

2D NSE and 3D axisymmetric flows

The Oseen vortex column:

ω(t, x, z) =

 0
0

α
4πt

e−
|x|2

4t

 (3)

is a self-similar solution to both 2D and 3D Navier-Stokes. In 3D, it is the
canonical infinite, straight vortex filament.

It is known to be unique in the class of 2D measure valued initial data
[Gallagher-Gallay-Lions ‘05, Gallagher/Gallay ‘05] (in fact the 2D NSE in
vorticity form is globally well-posed with measure valued vorticity).

Gallay-Šverák ‘15 later considered vortex ring initial data and obtained
existence and uniqueness of mild solutions in the axisymmetric class for
such initial data (see also Feng/Šverák ‘15).
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Perturbation of the Oseen vortex column

Perturbation of the infinite straight filament

Define the space (here f̂ (x , ζ) = 1√
2π

∫
f (x , z)e−izζdz),

‖f ‖BzLp =

∫
‖f̂ (·, ζ)‖Lp dζ. (4)

Theorem (JB/Germain/Harrop-Griffiths ‘18)

For all α and ω0 such that for some r ∈ (1, 2),

‖ω0‖BzL1
x

+ ‖x · ωx
0‖

BzLr∩BzL
r

r−1
<∞, (5)

there exists a time T = T (‖ω0‖, α) and a mild solution
ω ∈ Cw ([0,T ); BzL1) ∩ C∞((0,T )× R3) such that

ω(t, x , z) =

 0
0

α
4πt

e−
|x|2

4t

+
1

t
Ωc

(
log t,

x√
t
, z

)
+ ωb(t, x , z), (6)

satisfying (where limT↘0 ε0 = 0),

sup
0<t<T

t1/4‖ωb(t)‖
BzL

4/3
x

+ sup
−∞<τ<log T

‖〈ξ〉mΩc(τ)‖BzL
2
ξ
≤ ε0(T ). (7)
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Perturbation of the Oseen vortex column

Comments

Small ω0 implies global existence (‘small’ depends on α).

The proof is a fixed point, so the solutions are automatically unique and
stable in the class of solutions whose decomposition admits similar
estimates (e.g. filaments with a Gaussian core).

Rules out the kind of non-uniqueness4 discussed in Jia/Šverák ‘13-‘14 for
self-similar solutions in L3,∞: indeed, the linearization around the filament
is stable at all α.

The key structure: in self-similar coordinates ξ = x√
t

(note, only in x) the
z dependence is almost entirely subcritical at the linearized level. This
turns the intractable looking 3D stability problem into a perturbation of
tractable 2D linearized problems.

4Unfortunately, this does not imply uniqueness in the general class of mild solutions satisfying
suitable a priori estimates. For example, imagine there is a second, fully 3D self-similar solution
that looks like e.g. a helical telephone cord twisting at a scale like O(

√
t).
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Perturbation of the Oseen vortex column

One of the two key linear problems

The linearization in self-similar variables becomes:

∂τΩξ + αg · ∇ξΩξ − αΩξ · ∇ξg − αe
1
2
τG∂zUξ =

(
L+ eτ∂2

z

)
Ωξ

∂τΩz + αg · ∇ξΩz + αUξ · ∇ξG − αe
1
2
τG∂zUz =

(
L+ eτ∂2

z

)
Ωz ,

where G = e−|ξ|
2

, g is the corresponding velocity, Lf = ∆f + 1
2
∇ · (ξf ).

After Fourier transforming in z , we can treat this perturbatively as(
∂τ + eτ |ζ|2 − L+ αΓ

)
wξ = αF ξ(

∂τ + eτ |ζ|2 − L+ αΛ
)

w z = αF z ,

where

Γ = g · ∇ξ −∇ξg , Λ = g · ∇ξ −∇ξG · ∇⊥ξ (−∆ξ)−1.

The propagator et(L−αΛ) was studied by Gallay/Wayne ‘02 and et(L−αΓ) by
Gallay/Maekawa ‘11 in their study on 3D stability of the Burgers vortex.

The other linear problem we need is the vector transport-diffusion:

∂tω + ug · ∇ω − ω · ∇ug = ∆ω, (8)

where ug = 1√
t
g( x√

t
).
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Decomposition

Denoting ωg = 1
4πt

e−|x|
2/4te3.

We use the decomposition ωc(t, x, z) = 1
t
Ωc(log t, x√

t
, z),

∂tωc +∇ · (u ⊗ (ωg + ωc)− (ωg + ωc)⊗ u) = ∆ωc (9)

ωc(0) = 0 (10)

∂tωb +∇ · (u ⊗ ωb − ωb ⊗ u) = ∆ωb (11)

ωb(0) = ω0. (12)

Then ωc and ωb are constructed via fixed point using the two
linearizations above to eliminate the linear terms with critical scaling.

This argument is reminiscent of Gallagher/Gallay ‘05 and a fixed point
variant thereof used in JB/Masmoudi ‘14.
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Arbitrary closed, non-self-intersecting curves

Perturbation of an arbitrary vortex filament

Like the z dependence, we expect curvature effects to be subcritical
(though that turns out to be hard to make rigorous).

Let γ : T 7→ R3 be a unit-speed parameterization of an arbitrary C∞,
non-self-intersecting closed curve Γ. Define a tubular neighborhood of Γ,
ΣR and the coordinate transform Φ : T× B(0,R)→ ΣR .

Choose an orthonormal frame (t, n, b) : T→ R3 along Γ such that t = γ′

and set

Φ(x, z) = γ + x1n + x2b. (13)
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Arbitrary closed, non-self-intersecting curves

Perturbation of an arbitrary vortex filament

Theorem (JB/Germain/Harrop-Griffiths ‘18)

let α ∈ R, and ω0 ∈W 1,1 ∩W 1,∞ arbitrary. Then, there is a T > 0 and a mild
solution ω ∈ C∞((0,T )× R3) satisfying properties like, for |x | ≤ R/2:

ω ◦ Φ−1 =

 0
0

α
4πt

e−
|x|2

4t

+
1

t
Ωc

(
log t,

x√
t
, z

)
+ ωb(t, x , z), (14)

where Ωc and ωb satisfy similar estimates as in the straight filament case.

Due to technical difficulties with the anisotropic BzLp spaces aligned with
the filament, we take ω0 in a more subcritical space (but not small).

The uniqueness class we automatically obtain is a little more obscure – we
will probably study this a little more before the work appears.
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Arbitrary closed, non-self-intersecting curves

Decomposition

In the straightened coordinate system ∆ 7→ ∆Φ has second order error
terms of the form O(|x|2)∂2.

The anisotropic spaces are natural near the filament in the straightened
coordinate system, but they don’t make sense away from the filament.

This latter point is an issue because we are taking more regularity in the z
direction and less in the x direction relative to isotropic spaces good for a
fixed point (for example t1/4‖ω(t)‖L2 ).

Split Ωc and ωb into ωc1, ωc2 and ωb1, ωb2. The ω∗1 unknowns are
constructed in the ΣR neighborhood in the straightened frame, e.g.
ωc1 = D−1Jηc1 ◦ Φ for ηc1 solving a problem similar to Ωc (hence with ∆
instead of the expected ∆Φ) and then ωc2 soaking up the error from ∆ in
the unstraightened coordinates, using the heat semigroup as the linear
propagator.

All 4 unknowns require a slightly different set of norms.
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Thank you for your attention!
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