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[Quasiparticles are ubiquitous:]

@ Fermi liquid theory of metals, insulators,
semiconductors

@ Theory of superconductivity (pairing of quasiparticles)

@ Theory of disordered metals and insulators (diffusion
and localization of quasiparticles)

@ Theory of metals in one dimension (collective modes
as quasiparticles)

@ Theory of the fractional quantum Hall effect
(quasiparticles which are fractions’ of an electron)



(What are quasiparticles ? ]

e (Quasiparticles are additive excitations:
The low-lying excitations of the many-body system
can be identified as a set {n,} of quasiparticles with
energy €,

E =), Naca+ Za,ﬁ Fopnong + ...

In a lattice system of IV sites, this parameterizes the energy
of ~ e*V states in terms of poly(/N) numbers.



(What are quasiparticles ? ]

e (Quasiparticles eventually collide with each other. Such
collisions eventually leads to thermal equilibration in a
chaotic quantum state, but the equilibration takes a long
time. In a Fermi liquid, this time diverges as

hEr

ipT)2 as 1" — 0,

Teq ™

where E'r 1s the Fermi energy.



(What are quasiparticles ? j

e (Quasiparticles eventually collide with each other. Such
collisions eventually leads to thermal equilibration in a
chaotic quantum state, but the equilibration takes a long

time. In a Fermi liquid, this time diverges as

hEp
(kT)?

Teq ™~ as 1" — 0,

where E'r 1s the Fermi energy.

e This time is much longer than the ‘Planckian time’ h/(kgT),
which we will find in systems without quasiparticle ex-

citations. 5
Teq > as 1" — 0.

kgl
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A simple model of a metal with quasiparticles
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A simple model of a metal with quasiparticles

Electrons move one-by-one randomly
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A simple model of a metal with quasiparticles

N
1
_ E( N U ET
H—( )1/2 tijC,Cj — [ C, C;

ij=1 i

T T,
] _I_Cjc’i — 5@'

%Zczci =X0,

cic; +cjci =0 , coc

t;; are independent random variables with ¢;; = 0 and |¢;,]? = t°

Fermions occupying the eigenstates of a
N x N random matrix



A simple model of a metal with quasiparticles

Feynman graph expansion in t;; , and graph-by-graph average,
yields exact equations in the large IV limit:

G(r) = —T. <cz-(7')c;r (0)>

1
W) = (1) = 2
Gliw) = g 50 = £G()
G(r=0")=0Q.
G(w) can be determined by solving a quadratic equation.
A
p(w) =
— 2Im G(w)

—Qt—_,u 0 Qt;,LL u;



A simple model of a metal with quasiparticles

Let ¢, be the eigenvalues of the matrix t;;/ V' N.
The fermions will occupy the lowest NQ eigen-
values, upto the Fermi energy Er. The single-
particle density of states is

p(w) — (/N) Za 5(&] — 504)7 and pg = p(w — O)

A . ~

plw) = Ea level
ing ~1/N
spacing / )




A simple model of a metal with quasiparticles

There are 2"V many
body levels with energy

( Many-body |

N
level spacing E = Z M€
A/L ~ 2_N J a—=1

where n, = 0,1. Shown

are all values of F for a
single cluster of size

N = 12. The ¢, have a

R level spacing ~ 1/N.

g (Quasiparticle
excitations with

& Nng ~
_ spacing 1/N y




A simple model of a metal with quasiparticles

The grand potential Q(7T") at low T is (from the Sommerfeld expansion)
2
Q(T)— FEy=N (—Fp(ﬂﬁ - O(T4)> + ...

where pg = p(0) is the single particle density of states at the Fermi level.
We can also define the many body density of states, D(FE), via

7 = UD/T = /OO D(E)e E/T

The inversion from Q(7T') to D(FE) has to performed with care (it need not commute
with the 1/N expansion), and we obtain

and D(F) = 0 for £ < Fy. This is related to the asymptotic growth of the partitions
of an integer, p(n) ~ exp(m\/2n/3). Near the lower bound, there are large sample-
to-sample fluctuations due to variations in the lowest quasiparticle energies.



A simple model of a metal with quasiparticles

Now add weak interactions

_ T T
o 1/2 thﬂczcﬂ “ZCC’L 2N)3/2 Z UZJWC 3 CLCe

7] 1 ,jk'£ 1

U;j.xe are independent random variables with U;;.xe = 0 and |Uy;.x¢|? = U?. We
compute the lifetime of a quasiparticle, 7., in an exact eigenstate 1,(7) of the
free particle Hamitonian with energy ¢,. By Fermi’s Golden rule, for ¢, at the
Fermi energy

Ti — 7TU2P3/d55d57d55f(55)(1 — f(ey))(1 = f(es5))0(ea + €5 — €4 — €5)
_ 7T3U2,0% T2
A

where pg is the density of states at the Fermi energy, and f(e) = 1/(e¥/™T +1) is
the Fermi function.

Fermi liquid state: Two-body interactions lead to a scattering time
of quasiparticle excitations from in (random) single-particle eigen-
states which diverges as ~ T2 at the Fermi level.
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The Sachdev-Ye-Kitaev (SYK) model
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The SYK model

This describes both a strange metal and a black hole!



The SYK model

(See also: the “2-Body Random Ensemble” in nuclear physics; did not obtain the large N limit;
T.A. Brody, ). Flores, |.B. French, PA. Mello, A. Pandey, and S.S.M.Wong, Rev. Mod. Phys. 53, 385 (1981))

N
1
. (2N)3/2 > Usgimeeicjopey =1 cic;

i jk 0=1 i

cic; +cjci =0 cic; — ch-ci = 0;;

J
O = %chcz

U;;.xe are independent random variables with Uy;.xe = 0 and |U;;.5¢|? = U?
N — oo yields critical strange metal.

S.Sachdev and |.Ye, PRL 70, 3339 (1993)
A. Kitaey, unpublished; S. Sachdev, PRX 5,041025 (2015)



The SYK model

Feynman graph expansion in U;; ke, and graph-by-graph average, yields ex-
act equations in the large N limit:

G

S.Sachdev and |.Ye, Phys. Rev. Lett. 70, 3339 (1993)



The SYK model

Feynman graph expansion in U;; ke, and graph-by-graph average, yields ex-
act equations in the large N limit:

Low frequency analysis shows that the solutions must be gapless and obey

Li(m/4+0) A o —i(m/4+0)

Y(2)=p y Vz+... , G()= NG

where A = (7/U? cos(26))'/4. The value of 6 is universally related to Q by
a Luttinger-Ward functional analysis similar to that used to establish the
Luttinger theorem of Fermi liquid theory:

1 6 sin(20)
2 0w 4
S.Sachdev and |.Ye, Phys. Rev. Lett. 70, 3339 (1993)
A. Georges, O. Parcollet, and S. Sachdev, PRB 63, 134406 (2001)

QO =



The SYK model

Feynman graph expansion in U;; ke, and graph-by-graph average, yields ex-
act equations in the large N limit:

At T > 0, we obtain a solution with a conformal structure

—27ET'T
G(t)=—-A c ( L

\/1 + 6—47r5

where the ‘particle-hole asymmetry’ is determined by &£

1/2
0<7<1/T
SiIl(T(‘TT)) ’ T<1/T,

omE _ sin(7 /4 + 0)
sin(w/4 —6)

€

A. Georges and O. Parcollet PRB 59, 5341 (1999)
S.Sachdeyv, PRX 5,041025 (2015)
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The SYK model

level spacing ~

g/@_]\f _ G_NIHZJ

" Many-body

N

excitations with

on-quasiparticle

~

—NS()

_

There are 2"V many body levels
with energy E. Shown are all
values of E for a single cluster of
size N = 12. The 1" — 0 state has
an entropy Sqgps = INsg, where
So < In2 is determined by
integrating

@:27('5.

dQ
At Q=1/2,

In(2
s = 2 ni):0.464848...

T

where G 1s Catalan’s constant.

GPS: A. Georges, O. Parcollet, and S. Sachdey,
PRB 63, 134406 (2001)

W. Fu and S. Sachdev, PRB 94, 035135 (2016)



The SYK model
U

QT) — Eg=N |—s0T — %(7 + 4T EK)T? + O(T3)] + 2T In <f> .
is the grand potential, where K = dQ/du ~ 1/U is the compressibility /N, v ~ 1/U will
appear later in the co-efficient of the Schwarzian, and the N° term arises from fluctuations
about the large N theory described by the Schwarzian.
The inversion from (7") to the many-body density of states, D(F), requires terms in
Q(T) which are exponentially small in N (not shown above) from the Schwarzian action,
yielding terms which are not small in D(FE). We obtain

0 2
_ 2wp& o p
DE)= ) ™ d (E QNK)

p=—00

where N Q + p is the integer fermion number, d(E) = 0 for F < Ej, and

d(FE) ~ exp (Nsg) sinh (\/QNv(E - EQ)) ., E>Ey, e <y[E—-E) <N

There are exponentially more low energy states than for the quasiparticle case, and D(F)
self-averages down to energies exponentially small in V.

J. S. Cotler, G. Gur-Ari, M. Hanada, J. Polchinski, P. Saad, S. H. Shenker, D. Stanford, A. Streicher, and M. Tezuka, arXiv:1611.04650;
R. Davison,Wenbo Fu,A. Georges,Yingfei Gu, K. Jensen, S. Sachdey, arXiv.1612.00849 ;
A.M. Garcia-Garcia and J.J.M.Verbaarschot, arXiv:1701.06593; D. Bagrets, A. Altland, and A. Kameney, arXiv:1702.08902;
D. Stanford and E.Witten, arXiv:1703.04612;A. Kitaev and S.J. Suh, arXiv:1711.08467;Yingfei Gu and S. Sachdey, unpublished.



A simple model of a metal with quasiparticles

The grand potential Q(7T") at low T is (from the Sommerfeld expansion)
2
Q(T)— FEy=N (—Fp(ﬂﬁ - O(T4)> + ...

where pg = p(0) is the single particle density of states at the Fermi level.
We can also define the many body density of states, D(FE), via

7 = UD/T = /OO D(E)e E/T

The inversion from Q(7T') to D(FE) has to performed with care (it need not commute
with the 1/N expansion), and we obtain

and D(F) = 0 for £ < Fy. This is related to the asymptotic growth of the partitions
of an integer, p(n) ~ exp(m\/2n/3). Near the lower bound, there are large sample-
to-sample fluctuations due to variations in the lowest quasiparticle energies.



The SYK model
U

QT) — Eg=N |—s0T — %(7 + 4T EK)T? + O(T3)] + 2T In <f> .
is the grand potential, where K = dQ/du ~ 1/U is the compressibility /N, v ~ 1/U will
appear later in the co-efficient of the Schwarzian, and the N° term arises from fluctuations
about the large N theory described by the Schwarzian.
The inversion from (7") to the many-body density of states, D(F), requires terms in
Q(T) which are exponentially small in N (not shown above) from the Schwarzian action,
yielding terms which are not small in D(FE). We obtain

0 2
_ 2wp& o p
DE)= ) ™ d (E QNK)

p=—00

where N Q + p is the integer fermion number, d(E) = 0 for F < Ej, and

d(F) NExp (Nsoﬂsinh (\/QNv(E - EQ)) , E>Ey, e YN <y(E—-E) <N

There are exponentially more low energy states than for the quasiparticle case, and D(F)
self-averages down to energies exponentially small in V.

J. S. Cotler, G. Gur-Ari, M. Hanada, J. Polchinski, P. Saad, S. H. Shenker, D. Stanford, A. Streicher, and M. Tezuka, arXiv:1611.04650;
R. Davison,Wenbo Fu,A. Georges,Yingfei Gu, K. Jensen, S. Sachdey, arXiv.1612.00849 ;
A.M. Garcia-Garcia and J.J.M.Verbaarschot, arXiv:1701.06593; D. Bagrets, A. Altland, and A. Kameney, arXiv:1702.08902;
D. Stanford and E.Witten, arXiv:1703.04612;A. Kitaev and S.J. Suh, arXiv:1711.08467;Yingfei Gu and S. Sachdey, unpublished.



The SYK model
(No quasiparticles]

e Rapid local thermal equilibration (of fermion correla-
tors) in a ‘Planckian’ time

h A. Georges and O. Parcollet
Teq ~ 7 , a8 T — (. PRB 59, 5341 (1999)
kB T A. Eberlein,V. Kasper, S. Sachdev, and

J. Steinberg, PRB 96, 205123 (2017)

Established by solution of Schwinger-Keldysh equations
for a quench.



The SYK model
(No quasiparticles]

e Rapid local thermal equilibration (of fermion correla-
tors) in a ‘Planckian’ time

h A. Georges and O. Parcollet
Teq ~ 7 , a8 T — (. PRB 59, 5341 (1999)
kB T A. Eberlein,V. Kasper, S. Sachdev, and

J. Steinberg, PRB 96, 205123 (2017)

Established by solution of Schwinger-Keldysh equations
for a quench.

e Presence of quasiparticles should slow down

thermahzatlon, SO CL” quantum SyStemS ObeYs. Sachdeyv, Quantum Phase Transitions,
Cambridge (1999)

h
Teq>Ck’B—T : as 1" — 0.

Absence of quasiparticles < Fastest possible thermalization



[Other quantum models without quasiparticles)

e Rapid local thermal equilibration in a ‘Planckian’ time

h

oq ~ T T — 0.
Teq T as 0

e Ising model in a transverse field in 2 dimensions at its quan-
tum critical point, g = ¢g.. Described by the Wilson-Fisher
fixed point of ¢* quantum field theory in 2+1 dimensions

H = —Zafaj—gZaf
(7) 2

o;'" are the Pauli operators on site i.

e Other strongly-coupled conformal field theories.

Absence of quasiparticles < Fastest possible thermalization
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At frequencies < U, the w

1 can be dropped,

and without it equations are invariant under the
reparametrization and gauge transtormations.
The singular part of the self-energy and the Green’s

function obey

B
/ 07> Saine (71, 72) G (72, 73) = —3(71 — 73)
0

Zsing(TlaTQ) — —U2G2(71,T2)G(72,T1)

A. Kitaey, 2015
S.Sachdev, PRX 5, 041025 (2015)



B
/ dro X(11,72)G(T2,73) = —0(T1 — T3)
0
N(71,72) = —U*G*(11,72)G (72, 1)

These equations are invariant under

r = (o)

~

—1/4 g\01

T1. T — /U /U ( ) O1.0
G(ri,m2) = [f (01)f (02)] o(0s) G(o1,02)
.7 = [f (o) f (o _3/49(01)N0 %
X(11,72) = |f'(01) [ (02)] o(0n) Y(o1,02)

where f(o) and g(o) are arbitrary functions.
By using f(o) = tan(nTo)/(7T) we can
now obtain the T > 0 solution from the 7" = 0 solution.

A. Kitaey, 2015
S.Sachdev, PRX 5, 041025 (2015)



Let us write the large N saddle point solutions of S as

Gs(r1— 1) ~ (m—m) /2
25(7'1—7'2) ~ (7’1—7'2)_3/2.

The saddle point will be invariant under a reperamateri-
zation f(7) when choosing G(11,72) = Gs(m1 — 72) leads
to a transformed G(o1,02) = Gs(01 — 02) (and similarly
for ). It turns out this is true only for the SL(2, R)
transformations under which

at + b

f(r) T d ad — bc

So the (approximate) reparametrization symmetry is spon-
taneously broken down to SL(2, R) by the saddle point.

A. Kitaev



The Schwarzian theory of the SYK model

After introducing replicas a = 1...n, and integrating out the dis-
order, the partition function can be written as

I p
7 = /Dcm(T) exp —Z/ dr ¢! (% — > Ciq
ia V0

4

 AN3

U2 B
Z/ drdr’ c,:-fa (T)eip (7))
ab 0

1

For simplicity, we neglect the replica indices, and introduce the

identity

i B
1:/1)2(7-1,7-2)exp —N/ dﬁdTgZ(ﬁ,Tg)(G(Tg,ﬁ)
0

-+ % Z ci(72)03(71)>




The Schwarzian theory of the SYK model

Then the partition function can be written as a path integral with
an action S analogous to a Luttinger-Ward functional

Z = /DG(Tl,Tg)DZ(Tl,Tg)exp(—NS)
S =1Indet [6(T — 72)(0r, + 1) — 2(11,7T2)]
4 /dTldTQE(Tl,TQ) [G(Tz,ﬁ) + (U2/2)G2(7'277'1)G2(7'1>7'2)]

At frequencies < U, the time derivative in the determinant is less
important, and without it the path integral is invariant under the

reparametrization and gauge transformations A. Georges and O, Parcollet
PRB 59, 5341 (1999)

T = f(o) A. Kitaev, 2015

S.Sachdev, PRX 5, 041025 (2015)

G(r1,72) = [f'(o0) ' (02)]) " 9(71) G(o1,02)

—3/4 ¢

YX(11,72) = [f'(01)f (02)]

where f(o) and g(o) are arbitrary functions.



The Schwarzian theory of the SYK model

Reparametrization and phase zero modes
We can write the path integral for the SYK model as

Z = /DG(T:[,Tl)DZ(Tl,TQ)e_NS[G’E]

for a known action S|G, X]. We find the saddle point, G, ¥, and only focus on the
“Nambu-Goldstone” modes associated with breaking reparameterization and U(1)
gauge symmetries by writing

G(Tl,TQ) — [f/(Tl)f/(Tz)]1/4Gs(f(Tl) o f(7_2))€iq5(7'1)—iq§(7-2)

(and similarly for ). Then the path integral is approximated by

z /Df(T)D¢(T)€_NSeff[fa¢].

J. Maldacena and D. Stanford, arXiv:1604.07818;

R. Davison,Wenbo Fu,A. Georges,Yingfei Gu, K. Jensen, S. Sachdey, arXiv.1612.00849;
A. Gaikwad, L.K. Joshi, G. Mandal, and S.R.Wadia, arXiv:1802.07746;

Yingfei Gu and S. Sachdey, unpublished



The Schwarzian theory of the SYK model

Symmetry arguments, and explicit computations, show that the effective action is

1/T

dr {tan(7T f(7)), T},

1/T
Srlfod) =5 [ dr(@o+iCreno N - I

where f(7) is a monotonic map from [0,1/7] to [0,1/T], the couplings K, v, and &
can be related to thermodynamic derivatives and we have used the Schwarzian:

/// 3 g// 2
{977}———5 <?> :

Specifically, an argument constraining the effective at T' = 0 is

at + b

St | 1(7) = 20, 0(r) = 0| =0,

and this is origin of the Schwarzian.

J. Maldacena and D. Stanford, arXiv:1604.07818;

R. Davison,Wenbo Fu,A. Georges,Yingfei Gu, K. Jensen, S. Sachdey, arXiv.1612.00849;
A. Gaikwad, L.K. Joshi, G. Mandal, and S.R.Wadia, arXiv:1802.07746;

Yingfei Gu and S. Sachdey, unpublished
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SYK models and black holes

e Black holes have an entropy proportional to their sur-
face area, and a temperature, Ty = he /(8n1GMkp).

e Black holes relax to thermal equilibrium in a
‘Planckian’ time ~ h/(kgTy) = 8nGM/c°.

e Black holes in d 4 1 spatial dimensions are similar to
a quantum system without quasiparticles in d spatial
dimensions.

Black
holes




SYK models and black holes

PHYSICAL REVIEW LETTERS 105, 151602 (2010)

5%

Holographic Metals and the Fractionalized Fermi Liquid

Subir Sachdev

Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
(Received 23 June 2010; published 4 October 2010)

We show that there is a close correspondence between the physical properties of holographic metals
near charged black holes in anti—de Sitter (AdS) space, and the fractionalized Fermi liquid phase of the
lattice Anderson model. The latter phase has a ““small”” Fermi surface of conduction electrons, along with
a spin liquid of local moments. This correspondence implies that certain mean-field gapless spin liquids
are states of matter at nonzero density realizing the near-horizon, AdS, X R? physics of Reissner-
Nordstrom black holes.

Bekenstein-Hawking entropy of AdSs horizon
at T'= 0 & Nsg entropy of SYK model

charge

AdSQ % G2 density O
ds? = (al(2 — dt2)/C2 + d?
Gauge field: A = (£/()dt

Black hole
horizon




SYK models and black holes
monnections of SYK to gravity and AdSs \

horizons

e Reparameterization and gauge
invariance are the ‘symmetries’ of
the Einstein-Maxwell theory of
oravity and electromagnetism

e SL(2,R) is the isometry group of AdSs.
ds* = (dt? + d(?)/¢? is invariant under

a(t +1iC) +b
c(t+iC) +d

\_ with ad — be = 1. /

7'+ i’ =




Einstein-Maxwell-theory

charge
density O

AdSQ X 52
ds? = (d¢? — dt?)/¢? + dx?
Gauge field: A = (£/()dt

8| m—

e Has Reissner-Nordstrom-AdS charged black hole solution, with charge den-
sity Q, a near-horizon AdSy x S? geometry, and surface electric field £.

e The Bekenstein-Hawking black hole entropy S4p obeys the same relation
as the SYK model
dS4p

0Q

where £ is identified from the spectral asymmetry of probe particle Green’s
functions in both cases.

= 27&,

S. Sachdev, PRX 5, 041025 (2015)



Einstein-Maxwell-theory

charge
density O

AdSQ X 52
ds? = (d¢? — dt?)/(? + da?
Gauge field: A = (£/()dt

P. Nayak, A. Shukla, R.M. Soni, S.P. Trivedi, and V.Vishal,
arXiv:1802.09547;

A. Gaikwad, L.K. Joshi, G. Mandal, and S.R.Wadia,
arXiv:1802.07746

S4D:/d4.fl’)\/ (R"—6/L2——F F'UJV>

In the small black hole size limit, T" < 1/ R, where R is the
radius of the black hole, the theory dimensionally reduces
to an Einstein-Maxwell-dilaton theory in two dimensions
(the Jackiw-Teitelbaum model), along with Maxwell term

7(d)

SQD — NSO -+ /dZZB\/ —( ((I)(R — A) FabFab> .

The dilaton ® represents the radial oscillations of the small
black hole.
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Einstein-Maxwell-theory

charge
density O

AdSQ X 52
ds? = (d¢? — dt?)/(? + da?
Gauge field: A = (£/()dt

P. Nayak, A. Shukla, R.M. Soni, S.P. Trivedi, and V.Vishal,
arXiv:1802.09547;

A. Gaikwad, L.K. Joshi, G. Mandal, and S.R.Wadia,
arXiv:1802.07746
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There are no bulk quantum fluctuations of the metric in
two-dimensional gravity, and there a further dimensional
reduction to a 0+1 dimensional theory representing fluctu-
ations of the AdSs boundary: this 0 + 1 dimensional turns
out to be precisely the Schwarzian theory obtained for the
SYK model.

J- Maldacena, D. Stanford, and Zhenbin Yang, arXiv:1606.01857;
K. Jensen, arXiv:1605.06098;
J. Engelsoy, T.G. Mertens, and H.Verlinde, arXiv:1606.03438



|. Random matrix quasiparticle model
g=2, complex SYK

2. Matter without quasiparticles
g=4, complex SYK

3.The Schwarzian theory

4 .Connections to black holes
with AdS> horizons

[5. Connections to strange metals]




High temperature
superconductors
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Figure: K. Fujita and J. C. Seamus Davis
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S. Kasahara, T. Shibauchi, K. Hashimoto, K. Ikada, S. Tonegawa, R. Okazaki, H. Shishido,
H. Ikeda, H.Takeya, K. Hirata, T. Terashima, and Y. Matsuda,

Physical Review B 81, 184519 (2010)



Coupled SYK Islands

SYK quantum islands of electrons with
random hopping between them.

L
_ Tt
U H_Z Z U’ijkla$ciazcjazck:ccla}
T Z t’ijaxmlcz,xcj,a:’
(xx') 1,)
2 2U2 2 2
Uijkil = N3 Ntijxx = =15/N

Xue-Yang Song, Chao-Ming Jian, and L. Balents, PRL 119,216601 (2017)
See also A. Georges and O. Parcollet PRB 59, 5341 (1999)



Coupled SYK Islands

Can also use non-random t, and
the same U on all “islands’’.

H:Z Z U’ijkl Czazc;r'xckxcl:v

o o T i<j k<l
DD i
i ) 4,7

(xx’

3 & &

& &
REACY

Pengfei Zhang, PRB 96, 205138 (2017)
Debanjan Chowdhury, Yochai Werman, Erez Berg, T. Senthil, arXiv:1801.06178

See also A. Georges and O. Parcollet PRB 59, 5341 (1999)



Coupled SYK Islands

Low ‘coherence’ scale
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Xue-Yang Song, Chao-Ming Jian, and L. Balents, PRL 119,216601 (2017)
See also A. Georges and O. Parcollet PRB 59, 5341 (1999)



Coupled SYK Islands

Low ‘coherence’ scale
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Xue-Yang Song, Chao-Ming Jian, and L. Balents, PRL 119,216601 (2017)
See also A. Georges and O. Parcollet PRB 59, 5341 (1999)



Coupled SYK Islands

Low ‘coherence’ scale
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Xue-Yang Song, Chao-Ming Jian, and L. Balents, PRL 119,216601 (2017)
See also A. Georges and O. Parcollet PRB 59, 5341 (1999)



(Quantum matter without quasiparticles)

e Rapid local thermal equilibration (of fermion correla-
tors) in a ‘Planckian’ time

h

TequB—T ] as 1" — 0.

e Presence of quasiparticles should slow down
thermalization, so all quantum systems obey

S. Sachdev, Quantum Phase Transitions,
h Cambridge (1999)

Teq>CkB—T : as 1" — 0.




(Quantum matter without quasiparticles)

e Planckian dynamics is realized in the ‘solvable’ SYK
models

e Black holes thermalize in a time ~ h/(kgTy), where Ty
is the Hawking temperature.

e A Schwarzian theory of a time reparameterization mode,
with SL(2,R) symmetry, describes the quantum dynam-
ics of

— the SYK models

— black holes with near-extremal AdSs horizons




