Random quantum correlations are generically non-classical

Joint work with Carlos González-Guillén, Carlos Palazuelos, Ignacio Villanueva

Cécilia Lancien

Universidad Complutense de Madrid

ICMP Montréal, QI session - July 24th 2018

Cécilia Lancien

Random quantum correlations are generically non-classical

ICMP Montréal, QI session - July 24th 2018 1 / 9

Two-player two-outcome non-local games

Two cooperating but separated players Alice & Bob. Each of them receives an input and has to produce an output, which makes them win or loose a given amount. To try and maximize their gain, they can agree on a strategy before the game starts but then cannot communicate anymore.

Questions :
$$i \in \{1, \dots, n\}$$
 $j \in \{1, \dots, n\}$ w.p. $\Pi(ij)$ AB \downarrow \downarrow \downarrow \downarrow Answers : $x \in \{+, -\}$ $y \in \{+, -\}$ w.p. $P(xy|ij)$ A & B gain $V(ijxy) = \begin{cases} +V(ij) \text{ if } x = y \\ -V(ij) \text{ if } x \neq y \end{cases}$

Two-player two-outcome non-local games

Two cooperating but separated players Alice & Bob. Each of them receives an input and has to produce an output, which makes them win or loose a given amount. To try and maximize their gain, they can agree on a strategy before the game starts but then cannot communicate anymore.

Questions :
$$i \in \{1, \dots, n\}$$
 $j \in \{1, \dots, n\}$ w.p. $\Pi(ij)$ ABBAnswers : $x \in \{+, -\}$ $y \in \{+, -\}$ w.p. $P(xy|ij)$ A & B gain $V(ijxy) = \begin{cases} +V(ij) \text{ if } x = y \\ -V(ij) \text{ if } x \neq y \end{cases}$

Given a strategy (i.e. a conditional p.d.) *P* for A & B, the associated correlation τ is the *n* × *n* matrix defined by :

$$\forall i, j \in \{1, \dots, n\}, \ \tau_{ij} = P(++|ij) + P(--|ij) - P(+-|ij) - P(-+|ij).$$

Goal of A & B : Maximize their expected gain, i.e. max $\left\{\sum_{i,j=1}^{n} \Pi(ij) V(ij) \tau_{ij}, P \text{ allowed strategy}\right\}$.

Strategies :

- **Classical strategy** : A & B share common randomness $\rightarrow P(xy|ij) = \sum_{\lambda} q_{\lambda}A(x|i\lambda)B(y|j\lambda)$, with $\{q_{\lambda}\}_{\lambda}, \{A(+|i\lambda), A(-|i\lambda)\}, \{B(+|j\lambda), B(-|j\lambda)\}$ p.d.'s.
- Quantum strategy : A & B share a bipartite quantum state $\rightarrow P(xy|ij) = \text{Tr}(A_i^x \otimes B_j^y \rho)$, with ρ state on $\mathcal{H}_A \otimes \mathcal{H}_B$, $(A_i^+, A_i^-), (B_i^+, B_i^-)$ measurements on $\mathcal{H}_A, \mathcal{H}_B$.

 $[\rho \text{ state on } \mathcal{H} : \rho \ge 0, \text{ Tr} \rho = 1. (C^+, C^-) \text{ measurement on } \mathcal{H} : C^+, C^- \ge 0, C^+ + C^- = \text{Id.}$ \rightarrow When performing (C^+, C^-) on ρ , outcome \pm is obtained with probability $\text{Tr}(C^{\pm}\rho)$.

Strategies :

- **Classical strategy** : A & B share common randomness $\rightarrow P(xy|ij) = \sum_{\lambda} q_{\lambda}A(x|i\lambda)B(y|j\lambda)$, with $\{q_{\lambda}\}_{\lambda}, \{A(+|i\lambda), A(-|i\lambda)\}, \{B(+|j\lambda), B(-|j\lambda)\}$ p.d.'s.
- Quantum strategy : A & B share a bipartite quantum state $\rightarrow P(xy|ij) = \text{Tr}(A_i^x \otimes B_j^y \rho)$, with ρ state on $\mathcal{H}_A \otimes \mathcal{H}_B$, $(A_i^+, A_i^-), (B_i^+, B_i^-)$ measurements on $\mathcal{H}_A, \mathcal{H}_B$.

 $\begin{bmatrix} \rho \text{ state on } \mathcal{H} : \rho \ge 0, \text{ Tr} \rho = 1. (C^+, C^-) \text{ measurement on } \mathcal{H} : C^+, C^- \ge 0, C^+ + C^- = \text{Id.} \\ \rightarrow \text{ When performing } (C^+, C^-) \text{ on } \rho, \text{ outcome } \pm \text{ is obtained with probability } \text{Tr}(C^{\pm}\rho). \end{bmatrix}$

Correlations :

• Classical correlation : $\tau \in C := \left\{ \left(\mathbf{E}[X_i Y_j] \right)_{1 \leq i,j \leq n}, |X_i|, |Y_j| \leq 1 \text{ a.s.} \right\}.$

• Quantum correlation : $\tau \in Q := \left\{ \left(\operatorname{Tr}[X_i \otimes Y_j \rho] \right)_{1 \leqslant i, j \leqslant n}, \begin{cases} X_i^* = X_i, Y_j^* = Y_j \\ \|X_i\|_{\infty}, \|Y_i\|_{\infty} \leqslant 1 \end{cases} \right. \text{ρ state} \right\}.$

E DOG

Strategies :

- **Classical strategy** : A & B share common randomness $\rightarrow P(xy|ij) = \sum_{\lambda} q_{\lambda}A(x|i\lambda)B(y|j\lambda)$, with $\{q_{\lambda}\}_{\lambda}, \{A(+|i\lambda), A(-|i\lambda)\}, \{B(+|j\lambda), B(-|j\lambda)\}$ p.d.'s.
- Quantum strategy : A & B share a bipartite quantum state $\rightarrow P(xy|ij) = \text{Tr}(A_i^x \otimes B_j^y \rho)$, with ρ state on $\mathcal{H}_A \otimes \mathcal{H}_B$, $(A_i^+, A_i^-), (B_i^+, B_i^-)$ measurements on $\mathcal{H}_A, \mathcal{H}_B$.

 $\begin{bmatrix} \rho \text{ state on } \mathcal{H} : \rho \ge 0, \text{ Tr} \rho = 1. (C^+, C^-) \text{ measurement on } \mathcal{H} : C^+, C^- \ge 0, C^+ + C^- = \text{Id.} \\ \rightarrow \text{ When performing } (C^+, C^-) \text{ on } \rho, \text{ outcome } \pm \text{ is obtained with probability } \text{Tr}(C^{\pm}\rho). \end{bmatrix}$

Correlations :

- Classical correlation : $\tau \in C := \left\{ \left(\mathbf{E}[X_i Y_j] \right)_{1 \leq i, j \leq n}, |X_i|, |Y_j| \leq 1 \text{ a.s.} \right\}.$
- Quantum correlation : $\tau \in Q := \left\{ \left(\operatorname{Tr}[X_i \otimes Y_j \rho] \right)_{1 \leqslant i, j \leqslant n}, \begin{cases} X_i^* = X_i, Y_j^* = Y_j \\ \|X_j\|_{\infty}, \|Y_j\|_{\infty} \leqslant 1 \end{cases} \right. \text{ρ state} \right\}.$

Proposition [Characterization of C and Q (Tsirelson)]

 $\mathcal{C} = \operatorname{conv}\left\{(\alpha_i\beta_j)_{1\leqslant i,j\leqslant n}, \, \alpha_i, \beta_j = \pm 1\right\} \text{ and } \mathcal{Q} = \operatorname{conv}\left\{(\langle u_i, v_j\rangle)_{1\leqslant i,j\leqslant n}, \, u_i, v_j \in S_{\mathbf{R}^m}, \, m \in \mathbf{N}\right\}$

ア・・ニューモー モ ののの

Strategies :

- **Classical strategy** : A & B share common randomness $\rightarrow P(xy|ij) = \sum_{\lambda} q_{\lambda}A(x|i\lambda)B(y|j\lambda)$, with $\{q_{\lambda}\}_{\lambda}, \{A(+|i\lambda), A(-|i\lambda)\}, \{B(+|j\lambda), B(-|j\lambda)\}$ p.d.'s.
- Quantum strategy : A & B share a bipartite quantum state $\rightarrow P(xy|ij) = \text{Tr}(A_i^x \otimes B_j^y \rho)$, with ρ state on $\mathcal{H}_A \otimes \mathcal{H}_B$, $(A_i^+, A_i^-), (B_i^+, B_i^-)$ measurements on $\mathcal{H}_A, \mathcal{H}_B$.

 $\begin{bmatrix} \rho \text{ state on } \mathcal{H} : \rho \ge 0, \text{ Tr} \rho = 1. (C^+, C^-) \text{ measurement on } \mathcal{H} : C^+, C^- \ge 0, C^+ + C^- = \text{Id.} \\ \rightarrow \text{ When performing } (C^+, C^-) \text{ on } \rho, \text{ outcome } \pm \text{ is obtained with probability } \text{Tr}(C^{\pm}\rho). \end{bmatrix}$

Correlations :

- Classical correlation : $\tau \in \mathcal{C} := \Big\{ \big(\mathsf{E}[X_i Y_j] \big)_{1 \leqslant i, j \leqslant n}, |X_i|, |Y_j| \leqslant 1 \text{ a.s.} \Big\}.$
- Quantum correlation : $\tau \in Q := \left\{ \left(\operatorname{Tr}[X_i \otimes Y_j \rho] \right)_{1 \leqslant i, j \leqslant n}, \begin{cases} X_i^* = X_i, Y_j^* = Y_j \\ \|X_i\|_{\infty}, \|Y_i\|_{\infty} \leqslant 1 \end{cases} \right. \rho \text{ state} \right\}.$

Proposition [Characterization of C and Q (Tsirelson)]

$$\mathcal{C} = \operatorname{conv}\left\{(\alpha_i \beta_j)_{1 \leqslant i, j \leqslant n}, \, \alpha_i, \beta_j = \pm 1\right\} \text{ and } Q = \operatorname{conv}\left\{(\langle u_i, v_j \rangle)_{1 \leqslant i, j \leqslant n}, \, u_i, v_j \in S_{\mathbf{R}^m}, \, m \in \mathbf{N}\right\}$$

Bell inequality violation : Quantum players may perform strictly better than classical ones, i.e. there exist Π and V s.t. max $\{\sum_{i,j} \Pi(ij) V(ij) \tau_{ij}, \tau \in Q\} > \max\{\sum_{i,j} \Pi(ij) V(ij) \tau_{ij}, \tau \in C\}$.

Correlation matrices and tensor norms

C and Q are symmetric convex bodies in $\mathbf{R}^n \otimes \mathbf{R}^n$, hence the unit balls of some norms...

Correlation matrices and tensor norms

C and Q are symmetric convex bodies in $\mathbf{R}^n \otimes \mathbf{R}^n$, hence the unit balls of some norms...

Definition/Proposition [The dual norms $\ell_1^n \otimes_{\epsilon} \ell_1^n$ and $\ell_{\infty}^n \otimes_{\pi} \ell_{\infty}^n$ on $\mathbf{R}^n \otimes \mathbf{R}^n$]

Define the norm
$$\|\cdot\|_{\ell_1^n\otimes_{\epsilon}\ell_1^n}$$
 by $\|M\|_{\ell_1^n\otimes_{\epsilon}\ell_1^n} := \sup\left\{\sum_{i,j=1}^n M_{ij}\alpha_i\beta_j, \alpha_i, \beta_j = \pm 1\right\}.$
Denote by $\|\cdot\|_{\ell_{\infty}^n\otimes_{\pi}\ell_{\infty}^n}$ its dual norm. $\left[\|\tau\|_{\ell_{\infty}^n\otimes_{\pi}\ell_{\infty}^n} := \inf\left\{\sum_{k=1}^N \|x_k\|_{\infty}\|y_k\|_{\infty}, \tau = \sum_{k=1}^N x_k\otimes y_k\right\}\right]$
Then $: \tau \in \mathcal{C} \Leftrightarrow \forall M \text{ s.t. } \|M\|_{\ell_{\infty}^n\otimes_{\epsilon}\ell_{\infty}^n} \leq 1, \operatorname{Tr}(\tau M^t) \leq 1 \Leftrightarrow \|\tau\|_{\ell_{\infty}^n\otimes_{\epsilon}\ell_{\infty}^n} \leq 1.$

Correlation matrices and tensor norms

C and Q are symmetric convex bodies in $\mathbf{R}^n \otimes \mathbf{R}^n$, hence the unit balls of some norms...

Definition/Proposition [The dual norms $\ell_1^n \otimes_{\epsilon} \ell_1^n$ and $\ell_{\infty}^n \otimes_{\pi} \ell_{\infty}^n$ on $\mathbf{R}^n \otimes \mathbf{R}^n$]

Define the norm
$$\|\cdot\|_{\ell_1^n\otimes_{\epsilon}\ell_1^n}$$
 by $\|M\|_{\ell_1^n\otimes_{\epsilon}\ell_1^n} := \sup\left\{\sum_{i,j=1}^n M_{ij}\alpha_i\beta_j, \alpha_i, \beta_j = \pm 1\right\}.$
Denote by $\|\cdot\|_{\ell_{\infty}^n\otimes_{\pi}\ell_{\infty}^n}$ its dual norm. $\left[\|\tau\|_{\ell_{\infty}^n\otimes_{\pi}\ell_{\infty}^n} := \inf\left\{\sum_{k=1}^N \|x_k\|_{\infty}\|y_k\|_{\infty}, \tau = \sum_{k=1}^N x_k\otimes y_k\right\}\right]$
Then $: \tau \in \mathcal{C} \Leftrightarrow \forall M \text{ s.t. } \|M\|_{\ell_1^n\otimes_{\epsilon}\ell_1^n} \leq 1, \operatorname{Tr}(\tau M^t) \leq 1 \Leftrightarrow \|\tau\|_{\ell_{\infty}^n\otimes_{\pi}\ell_{\infty}^n} \leq 1.$

Definition/Proposition [The dual norms γ_2^* and γ_2 on $\mathbf{R}^n \otimes \mathbf{R}^n$]

Define the norm
$$\gamma_2^*(\cdot)$$
 by $\gamma_2^*(M) := \sup\left\{\sum_{i,j=1}^n M_{ij}\langle u_i, v_j \rangle, \ u_i, v_j \in S_{\mathbf{R}^m}, \ m \in \mathbf{N}\right\}$.
Denote by $\gamma_2(\cdot)$ its dual norm. $\left[\gamma_2(\tau) := \inf\left\{\max_{1 \le i \le n} \|R_i(X)\|_2 \max_{1 \le j \le n} \|C_j(Y)\|_2, \ \tau = XY\right\}\right]$
Then : $\tau \in Q$ $\Leftrightarrow \forall M$ s.t. $\gamma_2^*(M) \le 1$, $\operatorname{Tr}(\tau M^t) \le 1 \Leftrightarrow \gamma_2(\tau) \le 1$.

Tighter inequalities between "classical" and "quantum" norms on random inputs

Known : By Grothendieck's inequality (Grothendieck/Krivine), for any $n \times n$ matrix T,

 $\gamma_2(T) \leq ||T||_{\ell_{\infty}^n \otimes_{\pi} \ell_{\infty}^n} \leq K_G \gamma_2(T)$, where $1.67 < K_G < 1.79$.

 \rightarrow No unbounded ratio (as *n* grows) between the "classical" and "quantum" norms of *T*.

Tighter inequalities between "classical" and "quantum" norms on random inputs

Known : By Grothendieck's inequality (Grothendieck/Krivine), for any $n \times n$ matrix T,

 $\gamma_2(T) \leq ||T||_{\ell_{\infty}^n \otimes_{\pi} \ell_{\infty}^n} \leq K_G \gamma_2(T)$, where $1.67 < K_G < 1.79$.

 \rightarrow No unbounded ratio (as *n* grows) between the "classical" and "quantum" norms of *T*.

<u>Question</u>: What typically happens for T picked at random? In particular, can the dominating constant in the first inequality be improved from 1 to a value strictly larger than 1 on average or generic instances?

SPOR E

Tighter inequalities between "classical" and "quantum" norms on random inputs

Known : By Grothendieck's inequality (Grothendieck/Krivine), for any $n \times n$ matrix T,

 $\gamma_2(T) \leq ||T||_{\ell_{\infty}^n \otimes_{\pi} \ell_{\infty}^n} \leq K_G \gamma_2(T)$, where $1.67 < K_G < 1.79$.

 \rightarrow No unbounded ratio (as *n* grows) between the "classical" and "quantum" norms of *T*.

Question: What typically happens for *T* picked at random?

In particular, can the dominating constant in the first inequality be improved from 1 to a value strictly larger than 1 on average or generic instances?

Theorem (González-Guillén/L./Palazuelos/Villanueva)

Let *T* be an $n \times n$ random matrix satisfying the two following assumptions : its distribution is bi-orthogonally invariant and w.h.p. $||T||_{\infty} \leq (r + o(1))||T||_1/n$. Then w.h.p.

$$\|T\|_{\ell_{\infty}^{n}\otimes_{\pi}\ell_{\infty}^{n}} \geq \left(\sqrt{\frac{16}{15}}-o(1)\right)\gamma_{2}(T) > \gamma_{2}(T).$$

Consequence : The $n \times n$ random correlation matrix $\tau = T/\gamma_2(T)$ is quantum (by construction) but w.h.p. non-classical.

Cécilia Lancien

= = DQC

Consequences of this result and main technical ingredients in its proof

Examples of applications :

- Let G be an $n \times n$ Gaussian matrix.
 - $\tau = G/\gamma_2(G)$ is uniformly distributed on the border of Q but w.h.p. not in C.
 - \rightarrow The borders of $\mathcal C$ and $\mathcal Q$ do not coincide in typical directions.
- Let $u_1, \ldots, u_n, v_1, \ldots, v_n$ be independent and uniformly distributed unit vectors in \mathbb{R}^m . $\tau = (\langle u_i, v_j \rangle)_{1 \le i,j \le n}$ is in Q but w.h.p. not in C if m/n < 0.13.

 \rightarrow Bridging the gap between this result and the opposite one, stating that τ is w.h.p. in C if m/n > 2 (González-Guillén/Jiménez/Palazuelos/Villanueva) ?

Consequences of this result and main technical ingredients in its proof

Examples of applications :

- Let G be an $n \times n$ Gaussian matrix.
 - $\tau = G/\gamma_2(G)$ is uniformly distributed on the border of Q but w.h.p. not in C.
 - \rightarrow The borders of $\mathcal C$ and $\mathcal Q$ do not coincide in typical directions.
- Let $u_1, \ldots, u_n, v_1, \ldots, v_n$ be independent and uniformly distributed unit vectors in \mathbb{R}^m . $\tau = (\langle u_i, v_j \rangle)_{1 \le i,j \le n}$ is in Q but w.h.p. not in C if m/n < 0.13.

 \rightarrow Bridging the gap between this result and the opposite one, stating that τ is w.h.p. in C if m/n > 2 (González-Guillén/Jiménez/Palazuelos/Villanueva) ?

Two main technical lemmas needed in order to prove this result :

- SVD of a bi-orthogonally invariant random matrix *T*: *T* ~ *U*Σ*V^t* with *U*, *V*, Σ independent, *U*, *V* uniformly distributed orthogonal matrices, Σ diagonal positive semidefinite matrix.
- Levy's lemma for an *L*-Lipschitz function $f : S_{\mathbf{R}^n} \to \mathbf{R}$ with median M_f (w.r.t. the uniform measure) :

$$\forall \ 0 < \theta < \pi/2, \ \mathbf{P}(f \gtrless M_f \pm (\cos \theta)L) \leqslant \frac{1}{2} (\sin \theta)^{n-1} \leqslant \frac{1}{2} e^{-(n-1)(\cos \theta)^2/2}$$

E DOG

Two intermediate results

Proposition [Upper bounding the quantum norm of a random matrix]

Let *T* be an $n \times n$ random matrix s.t. its distribution is bi-orthogonally invariant and w.h.p. $||T||_{\infty} \leq (r + o(1))||T||_1/n$. Then w.h.p.

$$\gamma_2(T) \leqslant (1+o(1))\frac{\|T\|_1}{n}$$

<u>Remark</u> : This result is optimal, i.e. we also have w.h.p. $\gamma_2(T) \ge (1 - o(1)) \frac{||T||_1}{n}$.

Proposition [Lower bounding the classical norm of a random matrix]

Let T be an $n \times n$ random matrix s.t. its distribution is bi-orthogonally invariant. Then w.h.p.

$$\|T\|_{\ell_{\infty}^{n}\otimes_{\pi}\ell_{\infty}^{n}} \geq \left(\sqrt{\frac{16}{15}} - o(1)\right) \frac{\|T\|_{1}}{n}.$$

Remark : This result is potentially non-optimal.

Indeed, it is proved by duality, i.e. by finding *M* s.t. w.h.p. $\frac{\text{Tr}(TM^l)}{\|M\|_{\ell_1^q \otimes \epsilon_1^q}} \ge \left(\sqrt{\frac{16}{15}} - o(1)\right) \frac{\|T\|_1}{n}$. But the choice of *M* may not be the best and the upper bound on $\|M\|_{\ell_1^q \otimes \epsilon_1^q}$ may not be tight...

• **Dual problem** : Given a random so-called "Bell functional" M, is its quantum value (i.e. $\gamma_2^*(M)$) w.h.p. strictly bigger than its classical value (i.e. $||M||_{\ell_1^n \otimes_{\epsilon} \ell_1^n}$)? Answer (Ambainis/Bačkurs/Balodis/Kravčenko/Ozols/Smotrovs/Virza) : If M is an $n \times n$ Gaussian or Bernoulli matrix, then w.h.p.

$$\gamma_2^*(M) \ge \left(\frac{1}{\sqrt{\ln 2}} - o(1)\right) \|M\|_{\ell_1^n \otimes_{\mathbb{R}} \ell_1^n} > \|M\|_{\ell_1^n \otimes_{\mathbb{R}} \ell_1^n}$$

• **Dual problem** : Given a random so-called "Bell functional" M, is its quantum value $\overline{(i.e. \gamma_2^*(M))}$ w.h.p. strictly bigger than its classical value $(i.e. ||M||_{\ell_1^n \otimes_{\epsilon} \ell_1^n})$? Answer (Ambainis/Bačkurs/Balodis/Kravčenko/Ozols/Smotrovs/Virza) : If M is an $n \times n$ Gaussian or Bernoulli matrix, then w.h.p.

$$\gamma_2^*(M) \ge \left(\frac{1}{\sqrt{\ln 2}} - o(1)\right) \|M\|_{\ell_1^n \otimes_{\varepsilon} \ell_1^n} > \|M\|_{\ell_1^n \otimes_{\varepsilon} \ell_1^n}$$

• <u>Weaker corollaries</u>: Separations of Q^* vs C^* and Q vs C in terms of mean width w, i.e.

$$w(Q^*) < w(C^*)$$
 and $w(Q) > w(C)$.

Definition : Given \mathcal{K} a set of $n \times n$ matrices, $w(\mathcal{K}) := \mathbf{E} \sup_{X \in \mathcal{K}} \text{Tr}(GX^t)$, for G a Gaussian $n \times n$ matrix.

E Sac

• **Dual problem** : Given a random so-called "Bell functional" M, is its quantum value $\overline{(i.e. \gamma_2^*(M))}$ w.h.p. strictly bigger than its classical value $(i.e. ||M||_{\ell_1^n \otimes_{\epsilon} \ell_1^n})$? Answer (Ambainis/Bačkurs/Balodis/Kravčenko/Ozols/Smotrovs/Virza) : If M is an $n \times n$ Gaussian or Bernoulli matrix, then w.h.p.

$$\gamma_2^*(M) \geqslant \left(\frac{1}{\sqrt{\ln 2}} - o(1)\right) \|M\|_{\ell_1^n \otimes_{\varepsilon} \ell_1^n} > \|M\|_{\ell_1^n \otimes_{\varepsilon} \ell_1^n}$$

• <u>Weaker corollaries</u>: Separations of Q^* vs C^* and Q vs C in terms of mean width w, i.e.

$$w(Q^*) < w(C^*)$$
 and $w(Q) > w(C)$.

Definition : Given \mathcal{K} a set of $n \times n$ matrices, $w(\mathcal{K}) := \mathbf{E} \sup_{X \in \mathcal{K}} \text{Tr}(GX^t)$, for G a Gaussian $n \times n$ matrix.

• What about the generic case in more general settings (more players, more outcomes)? Basically nothing is known...

E Dar

References

- A. Ambainis, A. Bačkurs, K. Balodis, D. Kravčenko, R. Ozols, J. Smotrovs, M. Virza, "Quantum strategies are better than classical in almost any XOR games".
- G. Aubrun, S.J. Szarek, Alice and Bob meet Banach.
- J.S. Bell, "On the Einstein-Podolsky-Rosen paradox".
- C.E. González-Guillén, C.H. Jiménez, C. Palazuelos, I. Villanueva, "Sampling quantum nonlocal correlations with high probability".
- C.E. González-Guillén, C. Lancien, C. Palazuelos, I. Villanueva, "Random quantum correlations are generically non-classical".
- A. Grothendieck, "Résumé de la théorie métrique des produits tensoriels topologiques".
- J.L. Krivine, "Sur la constante de Grothendieck".
- C. Palazuelos, T. Vidick, "Survey on non-local games and operator space theory".
- G. Pisier, "Grothendieck's theorem, past and present".
- B.S. Tsirelson, "Some results and problems on quantum Bell-type inequalities".