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Two-player two-outcome non-local games

Two cooperating but separated players Alice & Bob. Each of them receives an input and has to
produce an output, which makes them win or loose a given amount. To try and maximize their
gain, they can agree on a strategy before the game starts but then cannot communicate anymore.

A

i ∈ {1, . . . ,n}

x ∈ {+,−}

B

j ∈ {1, . . . ,n}

y ∈ {+,−}

Questions :

Answers :

w.p. Π(ij)

w.p. P(xy |ij)

A & B gain V(ijxy) =

{
+V(ij) if x = y

−V(ij) if x 6= y

Given a strategy (i.e. a conditional p.d.) P for A & B, the associated correlation τ is the n×n
matrix defined by :

∀ i, j ∈ {1, . . . ,n}, τij = P(+ + |ij) + P(−−|ij)−P(+−|ij)−P(−+ |ij).

Goal of A & B : Maximize their expected gain, i.e. max

{
n
∑

i,j=1
Π(ij)V(ij)τij , P allowed strategy

}
.
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Allowed strategies and associated correlation matrices

Strategies :

Classical strategy : A & B share common randomness→ P(xy |ij) = ∑λ qλA(x |iλ)B(y |jλ),
with {qλ}λ,{A(+|iλ),A(−|iλ)},{B(+|jλ),B(−|jλ)} p.d.’s.

Quantum strategy : A & B share a bipartite quantum state→ P(xy |ij) = Tr(Ax
i ⊗By

j ρ),

with ρ state on HA⊗HB , (A+
i ,A−i ),(B+

j ,B−j ) measurements on HA,HB .[
ρ state on H : ρ > 0, Trρ = 1. (C+,C−) measurement on H : C+,C− > 0, C+ + C− = Id.
→When performing (C+,C−) on ρ, outcome ± is obtained with probability Tr(C±ρ).

]

Correlations :

Classical correlation : τ ∈ C :=
{(

E[Xi Yj ]
)

16i,j6n, |Xi |, |Yj |6 1 a.s.
}

.

Quantum correlation : τ ∈ Q :=

{(
Tr[Xi ⊗Yj ρ]

)
16i,j6n,

{
X∗i = Xi ,Y ∗j = Yj

‖Xi‖∞,‖Yj‖∞ 6 1
ρ state

}
.

Proposition [ Characterization of C and Q (Tsirelson) ]

C = conv
{

(αi βj )16i,j6n, αi ,βj =±1
}

and Q = conv
{

(〈ui ,vj〉)16i,j6n, ui ,vj ∈ SRm , m ∈ N
}

Bell inequality violation : Quantum players may perform strictly better than classical ones, i.e.
there exist Π and V s.t. max

{
∑i,j Π(ij)V(ij)τij , τ ∈ Q

}
> max

{
∑i,j Π(ij)V(ij)τij , τ ∈ C

}
.
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Correlation matrices and tensor norms

C and Q are symmetric convex bodies in Rn⊗Rn, hence the unit balls of some norms...

Definition/Proposition [ The dual norms `n
1⊗ε `

n
1 and `n

∞⊗π `
n
∞ on Rn⊗Rn ]

Define the norm ‖ · ‖`n
1⊗ε`

n
1

by : ‖M‖`n
1⊗ε`

n
1

:= sup

{
n

∑
i,j=1

Mij αi βj , αi ,βj =±1

}
.

Denote by ‖ · ‖`n
∞⊗π`n

∞
its dual norm.

[
‖τ‖`n

∞⊗π`n
∞

:= inf
{ N

∑
k=1
‖xk‖∞‖yk‖∞, τ =

N
∑

k=1
xk ⊗ yk

} ]
Then : τ ∈ C ⇔ ∀ M s.t. ‖M‖`n

1⊗ε`
n
1
6 1, Tr(τM t ) 6 1 ⇔ ‖τ‖`n

∞⊗π`n
∞
6 1.

Definition/Proposition [ The dual norms γ∗2 and γ2 on Rn⊗Rn ]

Define the norm γ∗2(·) by γ
∗
2(M) := sup

{
n

∑
i,j=1

Mij〈ui ,vj〉, ui ,vj ∈ SRm , m ∈ N

}
.

Denote by γ2(·) its dual norm.
[

γ2(τ) := inf
{

max
16i6n

‖Ri (X)‖2 max
16j6n

‖Cj (Y )‖2, τ = XY
} ]

Then : τ ∈ Q ⇔ ∀ M s.t. γ
∗
2(M) 6 1, Tr(τM t ) 6 1 ⇔ γ2(τ) 6 1.
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Tighter inequalities between “classical” and “quantum” norms on random inputs

Known : By Grothendieck’s inequality (Grothendieck/Krivine), for any n×n matrix T ,

γ2(T ) 6 ‖T‖`n
∞⊗π`n

∞
6 KG γ2(T ), where 1.67 < KG < 1.79.

→ No unbounded ratio (as n grows) between the “classical” and “quantum” norms of T .

Question : What typically happens for T picked at random?
In particular, can the dominating constant in the first inequality be improved from 1 to a value
strictly larger than 1 on average or generic instances ?

Theorem (González-Guillén/L./Palazuelos/Villanueva)

Let T be an n×n random matrix satisfying the two following assumptions : its distribution is
bi-orthogonally invariant and w.h.p. ‖T‖∞ 6 (r + o(1))‖T‖1/n. Then w.h.p.

‖T‖`n
∞⊗π`n

∞
>

(√
16
15
−o(1)

)
γ2(T ) > γ2(T ).

Consequence : The n×n random correlation matrix τ = T/γ2(T ) is quantum (by construction)
but w.h.p. non-classical.
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Consequences of this result and main technical ingredients in its proof

Examples of applications :

Let G be an n×n Gaussian matrix.
τ = G/γ2(G) is uniformly distributed on the border of Q but w.h.p. not in C .

→ The borders of C and Q do not coincide in typical directions.

Let u1, . . . ,un,v1, . . . ,vn be independent and uniformly distributed unit vectors in Rm.
τ = (〈ui ,vj〉)16i,j6n is in Q but w.h.p. not in C if m/n < 0.13.

→ Bridging the gap between this result and the opposite one, stating that τ is w.h.p. in C if
m/n > 2 (González-Guillén/Jiménez/Palazuelos/Villanueva) ?

Two main technical lemmas needed in order to prove this result :

SVD of a bi-orthogonally invariant random matrix T :
T ∼ UΣV t with U,V ,Σ independent, U,V uniformly distributed orthogonal matrices, Σ
diagonal positive semidefinite matrix.

Levy’s lemma for an L-Lipschitz function f : SRn → R with median Mf (w.r.t. the uniform
measure) :
∀ 0 < θ < π/2, P(f ≷ Mf ± (cosθ)L) 6 1

2 (sinθ)n−1 6 1
2 e−(n−1)(cosθ)2/2.
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Two intermediate results

Proposition [ Upper bounding the quantum norm of a random matrix ]

Let T be an n×n random matrix s.t. its distribution is bi-orthogonally invariant and w.h.p.
‖T‖∞ 6 (r + o(1))‖T‖1/n. Then w.h.p.

γ2(T ) 6
(
1 + o(1)

)‖T‖1

n
.

Remark : This result is optimal, i.e. we also have w.h.p. γ2(T ) >
(
1−o(1)

) ‖T‖1
n .

Proposition [ Lower bounding the classical norm of a random matrix ]

Let T be an n×n random matrix s.t. its distribution is bi-orthogonally invariant. Then w.h.p.

‖T‖`n
∞⊗π`n

∞
>

(√
16
15
−o(1)

)
‖T‖1

n
.

Remark : This result is potentially non-optimal.

Indeed, it is proved by duality, i.e. by finding M s.t. w.h.p. Tr(TM t )
‖M‖`n1⊗ε`

n
1

>
(√

16
15 −o(1)

)
‖T‖1

n .

But the choice of M may not be the best and the upper bound on ‖M‖`n
1⊗ε`

n
1

may not be tight...
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Concluding remarks

Dual problem : Given a random so-called “Bell functional” M, is its quantum value
(i.e. γ∗2(M)) w.h.p. strictly bigger than its classical value (i.e. ‖M‖`n

1⊗ε`
n
1
) ?

Answer (Ambainis/Bačkurs/Balodis/Kravčenko/Ozols/Smotrovs/Virza) : If M is an n×n Gaussian or
Bernoulli matrix, then w.h.p.

γ
∗
2(M) >

(
1√
ln2
−o(1)

)
‖M‖`n

1⊗ε`
n
1
> ‖M‖`n

1⊗ε`
n
1
.

Weaker corollaries : Separations of Q ∗ vs C ∗ and Q vs C in terms of mean width w , i.e.

w(Q ∗) < w(C ∗) and w(Q ) > w(C ).

Definition : Given K a set of n×n matrices, w(K ) := EsupX∈K Tr(GX t ), for G a Gaussian
n×n matrix.

What about the generic case in more general settings (more players, more outcomes)?
Basically nothing is known...
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Basically nothing is known...
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