# Random quantum correlations are generically non-classical 

Joint work with Carlos González-Guillén, Carlos Palazuelos, Ignacio Villanueva

Cécilia Lancien

Universidad Complutense de Madrid

ICMP Montréal, QI session - July $24^{\text {th }} 2018$

## Two-player two-outcome non-local games

Two cooperating but separated players Alice \& Bob. Each of them receives an input and has to produce an output, which makes them win or loose a given amount. To try and maximize their gain, they can agree on a strategy before the game starts but then cannot communicate anymore.


$$
\text { A \& B gain } V(i j x y)=\left\{\begin{array}{l}
+V(i j) \text { if } x=y \\
-V(i j) \text { if } x \neq y
\end{array}\right.
$$

## Two-player two-outcome non-local games

Two cooperating but separated players Alice \& Bob. Each of them receives an input and has to produce an output, which makes them win or loose a given amount. To try and maximize their gain, they can agree on a strategy before the game starts but then cannot communicate anymore.


$$
A \& B \text { gain } V(i j x y)=\left\{\begin{array}{l}
+V(i j) \text { if } x=y \\
-V(i j) \text { if } x \neq y
\end{array}\right.
$$

Given a strategy (i.e. a conditional p.d.) $P$ for $\mathrm{A} \& \mathrm{~B}$, the associated correlation $\tau$ is the $n \times n$ matrix defined by :

$$
\forall i, j \in\{1, \ldots, n\}, \tau_{i j}=P(++\mid i j)+P(--\mid i j)-P(+-\mid i j)-P(-+\mid i j)
$$

Goal of A \& B : Maximize their expected gain, i.e. $\max \left\{\sum_{i, j=1}^{n} \Pi(i j) V(i j) \tau_{i j}, P\right.$ allowed strategy $\}$.

## Allowed strategies and associated correlation matrices

## Strategies :

- Classical strategy : A \& B share common randomness $\rightarrow P(x y \mid i j)=\sum_{\lambda} q_{\lambda} A(x \mid i \lambda) B(y \mid j \lambda)$, with $\left\{q_{\lambda}\right\}_{\lambda},\{A(+\mid i \lambda), A(-\mid i \lambda)\},\{B(+\mid j \lambda), B(-\mid j \lambda)\}$ p.d.'s.
- Quantum strategy : A \& B share a bipartite quantum state $\rightarrow P(x y \mid i j)=\operatorname{Tr}\left(A_{i}^{x} \otimes B_{j}^{y} \rho\right)$, with $\rho$ state on $\mathcal{H}_{A} \otimes \mathcal{H}_{B},\left(A_{i}^{+}, A_{i}^{-}\right),\left(B_{j}^{+}, B_{j}^{-}\right)$measurements on $\mathcal{H}_{A}, \mathcal{H}_{B}$.
[ $\rho$ state on $\mathcal{H}: \rho \geqslant 0, \operatorname{Tr} \rho=1$. $\left(C^{+}, C^{-}\right)$measurement on $\mathcal{H}: C^{+}, C^{-} \geqslant 0, C^{+}+C^{-}=$Id. $\rightarrow$ When performing $\left(C^{+}, C^{-}\right)$on $\rho$, outcome $\pm$ is obtained with probability $\operatorname{Tr}\left(C^{ \pm} \rho\right)$.]


## Allowed strategies and associated correlation matrices

## Strategies :

- Classical strategy : A \& B share common randomness $\rightarrow P(x y \mid i j)=\sum_{\lambda} q_{\lambda} A(x \mid i \lambda) B(y \mid j \lambda)$, with $\left\{q_{\lambda}\right\}_{\lambda},\{A(+\mid i \lambda), A(-\mid i \lambda)\},\{B(+\mid j \lambda), B(-\mid j \lambda)\}$ p.d.s.
- Quantum strategy : A \& B share a bipartite quantum state $\rightarrow P(x y \mid i j)=\operatorname{Tr}\left(A_{i}^{x} \otimes B_{j}^{y} \rho\right)$, with $\rho$ state on $\mathcal{H}_{A} \otimes \mathcal{H}_{B},\left(A_{i}^{+}, A_{i}^{-}\right),\left(B_{j}^{+}, B_{j}^{-}\right)$measurements on $\mathcal{H}_{A}, \mathcal{H}_{B}$.
[ $\rho$ state on $\mathcal{H}: \rho \geqslant 0, \operatorname{Tr} \rho=1 .\left(C^{+}, C^{-}\right)$measurement on $\mathcal{H}: C^{+}, C^{-} \geqslant 0, C^{+}+C^{-}=\mathrm{Id}$. $\rightarrow$ When performing $\left(C^{+}, C^{-}\right)$on $\rho$, outcome $\pm$ is obtained with probability $\left.\operatorname{Tr}\left(C^{ \pm} \rho\right).\right]$


## Correlations :

- Classical correlation : $\tau \in \mathcal{C}:=\left\{\left(\mathbf{E}\left[X_{i} Y_{j}\right]\right)_{1 \leqslant i, j \leqslant n},\left|X_{i}\right|,\left|Y_{j}\right| \leqslant 1\right.$ a.s. $\}$.
- Quantum correlation : $\tau \in Q:=\left\{\left(\operatorname{Tr}\left[X_{i} \otimes Y_{j} \rho\right]\right)_{1 \leqslant i, j \leqslant n},\left\{\begin{array}{l}X_{i}^{*}=X_{i}, Y_{j}^{*}=Y_{j} \\ \left\|X_{i}\right\|_{\infty},\left\|Y_{j}\right\|_{\infty} \leqslant 1\end{array} \quad \rho\right.\right.$ state $\}$.


## Allowed strategies and associated correlation matrices

## Strategies :

- Classical strategy : A \& B share common randomness $\rightarrow P(x y \mid i j)=\sum_{\lambda} q_{\lambda} A(x \mid i \lambda) B(y \mid j \lambda)$, with $\left\{q_{\lambda}\right\}_{\lambda},\{A(+\mid i \lambda), A(-\mid i \lambda)\},\{B(+\mid j \lambda), B(-\mid j \lambda)\}$ p.d.s.
- Quantum strategy : A \& B share a bipartite quantum state $\rightarrow P(x y \mid i j)=\operatorname{Tr}\left(A_{i}^{x} \otimes B_{j}^{y} \rho\right)$, with $\rho$ state on $\mathcal{H}_{A} \otimes \mathcal{H}_{B},\left(A_{i}^{+}, A_{i}^{-}\right),\left(B_{j}^{+}, B_{j}^{-}\right)$measurements on $\mathcal{H}_{A}, \mathcal{H}_{B}$.
[ $\rho$ state on $\mathcal{H}: \rho \geqslant 0, \operatorname{Tr} \rho=1 .\left(C^{+}, C^{-}\right)$measurement on $\mathcal{H}: C^{+}, C^{-} \geqslant 0, C^{+}+C^{-}=\mathrm{Id}$. $\rightarrow$ When performing $\left(C^{+}, C^{-}\right)$on $\rho$, outcome $\pm$ is obtained with probability $\operatorname{Tr}\left(C^{ \pm} \rho\right)$.]


## Correlations :

- Classical correlation : $\tau \in \mathcal{C}:=\left\{\left(\mathbf{E}\left[X_{i} Y_{j}\right]\right)_{1 \leqslant i, j \leqslant n},\left|X_{i}\right|,\left|Y_{j}\right| \leqslant 1\right.$ a.s. $\}$.
- Quantum correlation : $\tau \in Q:=\left\{\left(\operatorname{Tr}\left[X_{i} \otimes Y_{j} \rho\right]\right)_{1 \leqslant i, j \leqslant n},\left\{\begin{array}{l}X_{i}^{*}=X_{i}, Y_{j}^{*}=Y_{j} \\ \left\|X_{i}\right\|_{\infty},\left\|Y_{j}\right\|_{\infty} \leqslant 1\end{array} \quad \rho\right.\right.$ state $\}$.


## Proposition [ Characterization of $C$ and $Q$ (Tsirelson) ]

$$
\mathcal{C}=\operatorname{conv}\left\{\left(\alpha_{i} \beta_{j}\right)_{1 \leqslant i, j \leqslant n}, \alpha_{i}, \beta_{j}= \pm 1\right\} \text { and } Q=\operatorname{conv}\left\{\left(\left\langle u_{i}, v_{j}\right\rangle\right)_{1 \leqslant i, j \leqslant n}, u_{i}, v_{j} \in S_{\mathbf{R}^{m}}, m \in \mathbf{N}\right\}
$$

## Allowed strategies and associated correlation matrices

## Strategies :

- Classical strategy : A \& B share common randomness $\rightarrow P(x y \mid i j)=\sum_{\lambda} q_{\lambda} A(x \mid i \lambda) B(y \mid j \lambda)$, with $\left\{q_{\lambda}\right\}_{\lambda},\{A(+\mid i \lambda), A(-\mid i \lambda)\},\{B(+\mid j \lambda), B(-\mid j \lambda)\}$ p.d.'s.
- Quantum strategy : A \& B share a bipartite quantum state $\rightarrow P(x y \mid i j)=\operatorname{Tr}\left(A_{i}^{x} \otimes B_{j}^{y} \rho\right)$, with $\rho$ state on $\mathcal{H}_{A} \otimes \mathcal{H}_{B},\left(A_{i}^{+}, A_{i}^{-}\right),\left(B_{j}^{+}, B_{j}^{-}\right)$measurements on $\mathcal{H}_{A}, \mathcal{H}_{B}$.
[ $\rho$ state on $\mathcal{H}: \rho \geqslant 0, \operatorname{Tr} \rho=1 .\left(C^{+}, C^{-}\right)$measurement on $\mathcal{H}: C^{+}, C^{-} \geqslant 0, C^{+}+C^{-}=\mathrm{Id}$.
$\rightarrow$ When performing $\left(C^{+}, C^{-}\right)$on $\rho$, outcome $\pm$ is obtained with probability $\left.\operatorname{Tr}\left(C^{ \pm} \rho\right).\right]$


## Correlations :

- Classical correlation : $\tau \in \mathcal{C}:=\left\{\left(\mathbf{E}\left[X_{i} Y_{j}\right]\right)_{1 \leqslant i, j \leqslant n},\left|X_{i}\right|,\left|Y_{j}\right| \leqslant 1\right.$ a.s. $\}$.
- Quantum correlation $: \tau \in Q:=\left\{\left(\operatorname{Tr}\left[X_{i} \otimes Y_{j} \rho\right]\right)_{1 \leqslant i, j \leqslant n}\left\{\begin{array}{l}X_{i}^{*}=X_{i}, Y_{j}^{*}=Y_{j} \\ \left\|X_{i}\right\|_{\infty},\left\|Y_{j}\right\|_{\infty} \leqslant 1\end{array} \quad \rho\right.\right.$ state $\}$.


## Proposition [ Characterization of $C$ and $Q$ (Tsirelson) ]

$$
\mathcal{C}=\operatorname{conv}\left\{\left(\alpha_{i} \beta_{j}\right)_{1 \leqslant i, j \leqslant n}, \alpha_{i}, \beta_{j}= \pm 1\right\} \text { and } Q=\operatorname{conv}\left\{\left(\left\langle u_{i}, v_{j}\right\rangle\right)_{1 \leqslant i, j \leqslant n}, u_{i}, v_{j} \in S_{\mathbf{R}^{m}}, m \in \mathbf{N}\right\}
$$

Bell inequality violation : Quantum players may perform strictly better than classical ones, i.e. there exist $\Pi$ and $V$ s.t. $\max \left\{\sum_{i, j} \Pi(i j) V(i j) \tau_{i j}, \tau \in Q\right\}>\max \left\{\sum_{i, j} \Pi(i j) V(i j) \tau_{i j}, \tau \in \mathcal{C}\right\}$.

## Correlation matrices and tensor norms

$\mathcal{C}$ and $Q$ are symmetric convex bodies in $\mathbf{R}^{n} \otimes \mathbf{R}^{n}$, hence the unit balls of some norms...

## Correlation matrices and tensor norms

$C$ and $Q$ are symmetric convex bodies in $\mathbf{R}^{n} \otimes \mathbf{R}^{n}$, hence the unit balls of some norms...

Definition/Proposition [ The dual norms $\ell_{1}^{n} \otimes_{\varepsilon} \ell_{1}^{n}$ and $\ell_{\infty}^{n} \otimes_{\pi} \ell_{\infty}^{n}$ on $\mathbf{R}^{n} \otimes \mathbf{R}^{n}$ ]
Define the norm $\|\cdot\|_{\ell_{1}^{n} \otimes_{\varepsilon} \ell_{1}}$ by $:\|M\|_{\ell_{1}} \otimes_{\varepsilon} \ell_{1}^{n}:=\sup \left\{\sum_{i, j=1}^{n} M_{i j} \alpha_{i} \beta_{j}, \alpha_{i}, \beta_{j}= \pm 1\right\}$.
Denote by $\|\cdot\|_{\ell_{\infty}^{n} \otimes_{\pi} \ell_{\infty}^{n}}$ its dual norm. $\left[\|\tau\|_{\ell_{\infty}^{n} \otimes_{\pi} \ell_{\infty}}:=\inf \left\{\sum_{k=1}^{N}\left\|x_{k}\right\|\left\|_{\infty}\right\| y_{k} \|_{\infty}, \tau=\sum_{k=1}^{N} x_{k} \otimes y_{k}\right\}\right]$
Then : $\tau \in \mathcal{C} \Leftrightarrow \forall M$ s.t. $\|M\|_{\ell_{1} \otimes_{\varepsilon} \ell_{1}^{n}} \leqslant 1, \operatorname{Tr}\left(\tau M^{t}\right) \leqslant 1 \Leftrightarrow\|\tau\|_{\ell_{\infty} \otimes_{\pi} \ell_{\infty}^{\left(\ell_{\infty}\right.}} \leqslant 1$.

## Correlation matrices and tensor norms

$\mathcal{C}$ and $Q$ are symmetric convex bodies in $\mathbf{R}^{n} \otimes \mathbf{R}^{n}$, hence the unit balls of some norms...
Definition/Proposition [ The dual norms $\ell_{1}^{n} \otimes_{\varepsilon} \ell_{1}^{n}$ and $\ell_{\infty}^{n} \otimes_{\pi} \ell_{\infty}^{n}$ on $\mathbf{R}^{n} \otimes \mathbf{R}^{n}$ ]
Define the norm $\|\cdot\|_{\ell_{1}^{n} \otimes_{\varepsilon} \ell_{1}^{\ell}}$ by $:\|M\|_{\ell_{1}^{n^{2}}} \otimes_{\varepsilon} \ell_{1}^{n}:=\sup \left\{\sum_{i, j=1}^{n} M_{i j} \alpha_{i} \beta_{j}, \alpha_{i}, \beta_{j}= \pm 1\right\}$.
Denote by $\|\cdot\|_{\ell_{\infty}^{n} \otimes_{\pi} \ell_{\infty}^{n}}$ its dual norm. $\left[\|\tau\|_{\ell_{\infty}^{n} \otimes_{\pi} \ell_{\infty}^{n}}:=\inf \left\{\sum_{k=1}^{N}\left\|x_{k}\right\|_{\infty}\left\|y_{k}\right\|_{\infty}, \tau=\sum_{k=1}^{N} x_{k} \otimes y_{k}\right\}\right]$
Then : $\tau \in \mathcal{C} \Leftrightarrow \forall M$ s.t. $\|M\|_{\ell_{1}^{n} \otimes_{\varepsilon} \ell_{1}^{n}} \leqslant 1, \operatorname{Tr}\left(\tau M^{t}\right) \leqslant 1 \Leftrightarrow\|\tau\|_{\ell_{\infty}^{n} \otimes_{\pi} \ell_{\infty}^{n}} \leqslant 1$.

## Definition/Proposition [ The dual norms $\gamma_{2}^{*}$ and $\gamma_{2}$ on $\mathbf{R}^{n} \otimes \mathbf{R}^{n}$ ]

Define the norm $\gamma_{2}^{*}(\cdot)$ by $\gamma_{2}^{*}(M):=\sup \left\{\sum_{i, j=1}^{n} M_{i j}\left\langle u_{i}, v_{j}\right\rangle, u_{i}, v_{j} \in S_{\mathbf{R}^{m}}, m \in \mathbf{N}\right\}$.
Denote by $\gamma_{2}(\cdot)$ its dual norm. $\left[\gamma_{2}(\tau):=\inf \left\{\max _{1 \leqslant i \leqslant n}\left\|R_{i}(X)\right\|_{2} \max _{1 \leqslant j \leqslant n}\left\|C_{j}(Y)\right\|_{2}, \tau=X Y\right\}\right]$
Then : $\tau \in Q \Leftrightarrow \forall M$ s.t. $\gamma_{2}^{*}(M) \leqslant 1, \operatorname{Tr}\left(\tau M^{t}\right) \leqslant 1 \Leftrightarrow \gamma_{2}(\tau) \leqslant 1$.

## Tighter inequalities between "classical" and "quantum" norms on random inputs

Known : By Grothendieck's inequality (Grothendieck/Krivine), for any $n \times n$ matrix $T$,

$$
\gamma_{2}(T) \leqslant\|T\|_{\ell_{\infty}^{n} \otimes_{\pi} \ell_{\infty}^{n}} \leqslant K_{G} \gamma_{2}(T), \text { where } 1.67<K_{G}<1.79 .
$$

$\rightarrow$ No unbounded ratio (as $n$ grows) between the "classical" and "quantum" norms of $T$.

## Tighter inequalities between "classical" and "quantum" norms on random inputs

Known : By Grothendieck's inequality (Grothendieck/Krivine), for any $n \times n$ matrix $T$,

$$
\gamma_{2}(T) \leqslant\|T\|_{\ell_{\infty}^{n} \otimes_{\pi} \ell_{\infty}^{n}} \leqslant K_{G} \gamma_{2}(T), \text { where } 1.67<K_{G}<1.79 .
$$

$\rightarrow$ No unbounded ratio (as $n$ grows) between the "classical" and "quantum" norms of $T$.

Question : What typically happens for $T$ picked at random?
In particular, can the dominating constant in the first inequality be improved from 1 to a value strictly larger than 1 on average or generic instances?

## Tighter inequalities between "classical" and "quantum" norms on random inputs

Known : By Grothendieck's inequality (Grothendieck/Krivine), for any $n \times n$ matrix $T$,

$$
\gamma_{2}(T) \leqslant\|T\|_{\ell_{\infty}^{n} \otimes_{\pi} \ell_{\infty}^{n}} \leqslant K_{G} \gamma_{2}(T), \text { where } 1.67<K_{G}<1.79 .
$$

$\rightarrow$ No unbounded ratio (as $n$ grows) between the "classical" and "quantum" norms of $T$.
Question : What typically happens for $T$ picked at random?
In particular, can the dominating constant in the first inequality be improved from 1 to a value strictly larger than 1 on average or generic instances?

## Theorem (González-Guillén/L./Palazuelos/Villanueva)

Let $T$ be an $n \times n$ random matrix satisfying the two following assumptions : its distribution is bi-orthogonally invariant and w.h.p. $\|T\|_{\infty} \leqslant(r+o(1))\|T\|_{1} / n$. Then w.h.p.

$$
\|T\|_{\ell_{\infty}^{n} \otimes_{\pi} \ell_{\infty}^{\ell n}} \geqslant\left(\sqrt{\frac{16}{15}}-o(1)\right) \gamma_{2}(T)>\gamma_{2}(T)
$$

Consequence : The $n \times n$ random correlation matrix $\tau=T / \gamma_{2}(T)$ is quantum (by construction) but w.h.p. non-classical.

## Consequences of this result and main technical ingredients in its proof

## Examples of applications :

- Let $G$ be an $n \times n$ Gaussian matrix. $\tau=G / \gamma_{2}(G)$ is uniformly distributed on the border of $Q$ but w.h.p. not in $\mathcal{C}$.
$\rightarrow$ The borders of $C$ and $Q$ do not coincide in typical directions.
- Let $u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{n}$ be independent and uniformly distributed unit vectors in $\mathbf{R}^{m}$. $\tau=\left(\left\langle u_{i}, v_{j}\right\rangle\right)_{1 \leqslant i, j \leqslant n}$ is in $Q$ but w.h.p. not in $C$ if $m / n<0.13$.
$\rightarrow$ Bridging the gap between this result and the opposite one, stating that $\tau$ is w.h.p. in $\mathcal{C}$ if $m / n>2$ (González-Guillén/Jiménez/Palazuelos/Villanueva)?


## Consequences of this result and main technical ingredients in its proof

## Examples of applications :

- Let $G$ be an $n \times n$ Gaussian matrix.
$\tau=G / \gamma_{2}(G)$ is uniformly distributed on the border of $Q$ but w.h.p. not in $\mathcal{C}$.
$\rightarrow$ The borders of $\mathcal{C}$ and $Q$ do not coincide in typical directions.
- Let $u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{n}$ be independent and uniformly distributed unit vectors in $\mathbf{R}^{m}$. $\tau=\left(\left\langle u_{i}, v_{j}\right\rangle\right)_{1 \leqslant i, j \leqslant n}$ is in $Q$ but w.h.p. not in $C$ if $m / n<0.13$.
$\rightarrow$ Bridging the gap between this result and the opposite one, stating that $\tau$ is w.h.p. in $\mathcal{C}$ if $m / n>2$ (González-Guillén/Jiménez/Palazuelos/Villanueva)?


## Two main technical lemmas needed in order to prove this result :

- SVD of a bi-orthogonally invariant random matrix $T$ :
$T \sim U \Sigma V^{t}$ with $U, V, \Sigma$ independent, $U, V$ uniformly distributed orthogonal matrices, $\Sigma$ diagonal positive semidefinite matrix.
- Levy's lemma for an L-Lipschitz function $f: S_{\mathbf{R}^{n}} \rightarrow \mathbf{R}$ with median $M_{f}$ (w.r.t. the uniform measure) :
$\forall 0<\theta<\pi / 2, \mathbf{P}\left(f \gtrless M_{f} \pm(\cos \theta) L\right) \leqslant \frac{1}{2}(\sin \theta)^{n-1} \leqslant \frac{1}{2} e^{-(n-1)(\cos \theta)^{2} / 2}$.


## Two intermediate results

## Proposition [ Upper bounding the quantum norm of a random matrix ]

Let $T$ be an $n \times n$ random matrix s.t. its distribution is bi-orthogonally invariant and w.h.p. $\|T\|_{\infty} \leqslant(r+o(1))\|T\|_{1} / n$. Then w.h.p.

$$
\gamma_{2}(T) \leqslant(1+o(1)) \frac{\|T\|_{1}}{n} .
$$

Remark : This result is optimal, i.e. we also have w.h.p. $\gamma_{2}(T) \geqslant(1-o(1)) \frac{\|T\|_{1}}{n}$.

## Proposition [ Lower bounding the classical norm of a random matrix ]

Let $T$ be an $n \times n$ random matrix s.t. its distribution is bi-orthogonally invariant. Then w.h.p.

$$
\|T\|_{\ell_{\infty} \otimes_{\pi} \ell_{\infty}^{n}} \geqslant\left(\sqrt{\frac{16}{15}}-o(1)\right) \frac{\|T\|_{1}}{n} .
$$

Remark : This result is potentially non-optimal.
Indeed, it is proved by duality, i.e. by finding $M$ s.t. w.h.p. $\frac{\operatorname{Tr}\left(T M^{t}\right)}{\|M\|_{\ell_{1}^{n} \otimes \varepsilon_{1}^{n}}^{n}} \geqslant\left(\sqrt{\frac{16}{15}}-o(1)\right) \frac{\|T\|_{1}}{n}$. But the choice of $M$ may not be the best and the upper bound on $\|M\|_{\ell_{1}^{n} \otimes_{\varepsilon} \ell_{1}^{n}}$ may not be tight...

## Concluding remarks

## Concluding remarks

- Dual problem : Given a random so-called "Bell functional" $M$, is its quantum value (i.e. $\left.\gamma_{2}^{*}(M)\right)$ w.h.p. strictly bigger than its classical value (i.e. $\|M\|_{\ell_{1}^{n} \otimes_{\varepsilon} \ell_{1}^{n}}$ )? Answer (Ambainis/Bačkurs/Balodis/Kravčenko/Ozols/Smotrovs/Virza) : If $M$ is an $n \times n$ Gaussian or Bernoulli matrix, then w.h.p.

$$
\gamma_{2}^{*}(M) \geqslant\left(\frac{1}{\sqrt{\ln 2}}-o(1)\right)\|M\|_{\ell_{1}^{n} \otimes_{\varepsilon} \ell_{1}^{n}}>\|M\|_{\ell_{1}^{n} \otimes_{\varepsilon} \ell_{1}^{n}}
$$

## Concluding remarks

- Dual problem : Given a random so-called "Bell functional" $M$, is its quantum value (i.e. $\gamma_{2}^{*}(M)$ ) w.h.p. strictly bigger than its classical value (i.e. $\|M\|_{\left.\ell_{1}^{n} \otimes_{\varepsilon} \ell_{1}^{n}\right)}$ ?

Answer (Ambainis/Bačkurs/Balodis/Kravčenko/Ozols/Smotrovs/Virza) : If $M$ is an $n \times n$ Gaussian or Bernoulli matrix, then w.h.p.

$$
\gamma_{2}^{*}(M) \geqslant\left(\frac{1}{\sqrt{\ln 2}}-o(1)\right)\|M\|_{\ell_{1}^{n} \otimes_{\varepsilon} \ell_{1}^{n}}>\|M\|_{\ell_{1}^{n} \otimes_{\varepsilon} \ell_{1}^{n}}
$$

- Weaker corollaries : Separations of $Q^{*}$ vs $C^{*}$ and $Q$ vs $C$ in terms of mean width $w$, i.e.

$$
w\left(Q^{*}\right)<w\left(C^{*}\right) \text { and } w(Q)>w(C)
$$

Definition : Given $\mathcal{K}$ a set of $n \times n$ matrices, $w(\mathcal{K}):=\operatorname{Esup}_{X \in \mathcal{K}} \operatorname{Tr}\left(G X^{t}\right)$, for $G$ a Gaussian $n \times n$ matrix.

## Concluding remarks

- Dual problem : Given a random so-called "Bell functional" $M$, is its quantum value (i.e. $\gamma_{2}^{*}(M)$ ) w.h.p. strictly bigger than its classical value (i.e. $\|M\|_{\ell_{1}^{n} \otimes_{\varepsilon} \ell_{1}^{n}}$ ?

Answer (Ambainis/Bačkurs/Balodis/Kravčenko/Ozols/Smotrovs/Virza) : If $M$ is an $n \times n$ Gaussian or Bernoulli matrix, then w.h.p.

$$
\gamma_{2}^{*}(M) \geqslant\left(\frac{1}{\sqrt{\ln 2}}-o(1)\right)\|M\|_{\ell_{1}^{n} \otimes_{\varepsilon} \ell_{1}^{n}}>\|M\|_{\ell_{1}^{n} \otimes_{\varepsilon} \ell_{1}^{n}}
$$

- Weaker corollaries : Separations of $Q^{*}$ vs $C^{*}$ and $Q$ vs $C$ in terms of mean width $w$, i.e.

$$
w\left(Q^{*}\right)<w\left(C^{*}\right) \text { and } w(Q)>w(C)
$$

Definition : Given $\mathcal{K}$ a set of $n \times n$ matrices, $w(\mathcal{K}):=\operatorname{Esup}_{X \in \mathcal{K}} \operatorname{Tr}\left(G X^{t}\right)$, for $G$ a Gaussian $n \times n$ matrix.

- What about the generic case in more general settings (more players, more outcomes)? Basically nothing is known...


## References

- A. Ambainis, A. Bačkurs, K. Balodis, D. Kravčenko, R. Ozols, J. Smotrovs, M. Virza, "Quantum strategies are better than classical in almost any XOR games".
- G. Aubrun, S.J. Szarek, Alice and Bob meet Banach.
- J.S. Bell, "On the Einstein-Podolsky-Rosen paradox".
- C.E. González-Guillén, C.H. Jiménez, C. Palazuelos, I. Villanueva, "Sampling quantum nonlocal correlations with high probability".
- C.E. González-Guillén, C. Lancien, C. Palazuelos, I. Villanueva, "Random quantum correlations are generically non-classical".
- A. Grothendieck, "Résumé de la théorie métrique des produits tensoriels topologiques".
- J.L. Krivine, "Sur la constante de Grothendieck".
- C. Palazuelos, T. Vidick, "Survey on non-local games and operator space theory".
- G. Pisier, "Grothendieck's theorem, past and present".
- B.S. Tsirelson, "Some results and problems on quantum Bell-type inequalities".

