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Finite Horizon Sinai Billiard

Billiard table Q = T
2\∪iBi;

scatterers Bi.

Boundaries of scatterers are
C3 and have strictly positive
curvature.

Billiard flow is given by a
point particle moving at
unit speed with elastic
collisions at the boundary

Assume a finite horizon condition: there is an upper bound on the
free flight time between consecutive tangential collisions on the
table.
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The Associated Billiard Map

r

ϕ

M =
(

∪i ∂Bi

)

× [−π
2
, π
2
], the

natural “collision” cross-section
for the billiard flow.

T : (r, ϕ) → (r′, ϕ′) is the first
return map: the billiard map.

r = position coordinate
oriented clockwise on
boundary of scatterer ∂Bi

ϕ = angle outgoing
trajectory makes with
normal to scatterer

ϕ

M

r

a hyperbolic map with singularities
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Statistical Properties

T preserves a smooth invariant measure on M , µSRB = cosϕdr dϕ

With respect to this measure, many statistical properties have
been proved using a variety of techniques.

With respect to µSRB, T :

is ergodic [Sinai ’70] and Bernoulli [Gallavotti, Ornstein ’74]

enjoys exponential decay of correlations [L.S. Young ’98]

satisfies many limit theorems:

Central Limit Theorem [Bunimovich, Sinai ’81]
Almost-sure invariance principle [Melbourne, Nicol ’05],
Local moderate and large deviations [Melbourne, Nicol ’08],
[Young, Rey-Bellet ’08]

Very few results on existence of other invariant measures for T :
[Chen, Wang, Zhang ’17] treats ‘perturbations’ of µSRB.
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Topological Entropy of Billiard Map

The billiard map has discontinuities, so general results on a
full variational principle and existence of a measure achieving
the maximum are not known.

Indeed, even a definition for topological entropy is not
straightforward, and can depend on the choice of metric.
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Topological Entropy of Billiard Map

The billiard map has discontinuities, so general results on a
full variational principle and existence of a measure achieving
the maximum are not known.

Indeed, even a definition for topological entropy is not
straightforward, and can depend on the choice of metric.

Known Results:

Tangential collisions: S0 = {(r, ϕ) ∈M : ϕ = ±π
2
}

For n ∈ Z, Sn = ∪n
i=0
T−iS0 is the singularity set for T n.

Define M ′ =M \ (∪∞
n=−∞Sn). T :M ′ 	 is a continuous map.
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Topological Entropy of Billiard Map

The billiard map has discontinuities, so general results on a
full variational principle and existence of a measure achieving
the maximum are not known.

Indeed, even a definition for topological entropy is not
straightforward, and can depend on the choice of metric.

Known Results:

Tangential collisions: S0 = {(r, ϕ) ∈M : ϕ = ±π
2
}

For n ∈ Z, Sn = ∪n
i=0
T−iS0 is the singularity set for T n.

Define M ′ =M \ (∪∞
n=−∞Sn). T :M ′ 	 is a continuous map.

[Chernov ’91] studied the topological entropy of T on an invariant
subset M1 ⊂M ′ using a countable Markov partition. He showed

htop(T,M
′) ≥ htop(T,M1) = htop(σ,Σ1),

where (σ,Σ1) is the TMC derived from the Markov partition.
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Strategy of Present Work

We construct a measure of maximal entropy for T in two steps:
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Strategy of Present Work

We construct a measure of maximal entropy for T in two steps:

Step 1: Formulate a quantity h∗ via a naive notion of
topological complexity for T that is easy to work with.

Show that h∗ ≥ sup
µ∈M(T )

hµ(T ).
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Strategy of Present Work

We construct a measure of maximal entropy for T in two steps:

Step 1: Formulate a quantity h∗ via a naive notion of
topological complexity for T that is easy to work with.

Show that h∗ ≥ sup
µ∈M(T )

hµ(T ).

Step 2: Construct an invariant measure µ∗ such that
hµ∗

(T ) = h∗.

We construct µ∗ using the left and right eigenvectors of a
weighted transfer operator that has spectral radius equal to
eh∗ .
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Strategy of Present Work

We construct a measure of maximal entropy for T in two steps:

Step 1: Formulate a quantity h∗ via a naive notion of
topological complexity for T that is easy to work with.

Show that h∗ ≥ sup
µ∈M(T )

hµ(T ).

Step 2: Construct an invariant measure µ∗ such that
hµ∗

(T ) = h∗.

We construct µ∗ using the left and right eigenvectors of a
weighted transfer operator that has spectral radius equal to
eh∗ .

Once Step 2 is carried out, one can ask about properties of the
measure µ∗: Is it ergodic, mixing, Bernoulli?
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Step 1: A Definition of Topological Entropy

Let Mn
−k = connected

components of M \ (S−k ∪Sn).

Define

h∗ = lim
n→∞

1

n
log #Mn

0

M \ Sn
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Step 1: A Definition of Topological Entropy

Let Mn
−k = connected

components of M \ (S−k ∪Sn).

Define

h∗ = lim
n→∞

1

n
log #Mn

0

M \ Sn

The limit exists since the sequence log#Mn
0 is subadditive:

#Mn+m
0

≤ #Mn
0 ·#Mm

0 .
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Step 1: A Definition of Topological Entropy

Let Mn
−k = connected

components of M \ (S−k ∪Sn).

Define

h∗ = lim
n→∞

1

n
log #Mn

0

M \ Sn

The limit exists since the sequence log#Mn
0 is subadditive:

#Mn+m
0

≤ #Mn
0 ·#Mm

0 .

h∗ is the exponential rate of growth of the number of pieces
created by the discontinuities of T . It does not depend on a
choice of metric.
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Step 1: A Definition of Topological Entropy

Let Mn
−k = connected

components of M \ (S−k ∪Sn).

Define

h∗ = lim
n→∞

1

n
log #Mn

0

M \ Sn

The limit exists since the sequence log#Mn
0 is subadditive:

#Mn+m
0

≤ #Mn
0 ·#Mm

0 .

h∗ is the exponential rate of growth of the number of pieces
created by the discontinuities of T . It does not depend on a
choice of metric.

T nSn = S−n =⇒ #Mn
0 = #M0

−n. So h∗(T ) = h∗(T
−1).
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Dynamical Refinements of Partitions

In order to connect h∗ to measure theoretic entropy, it is
convenient to express it in terms of dynamical refinements of
partitions. Define

P := maximal connected sets on which T and T−1 are continuous

P̊ := collection of interiors of elements of P
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Dynamical Refinements of Partitions

In order to connect h∗ to measure theoretic entropy, it is
convenient to express it in terms of dynamical refinements of
partitions. Define

P := maximal connected sets on which T and T−1 are continuous

P̊ := collection of interiors of elements of P

For each k, n ∈ N,

Define Pn
−k =

∨n
i=−k T

−iP, P̊n
−k =

∨n
i=−k T

−iP̊
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Dynamical Refinements of Partitions

In order to connect h∗ to measure theoretic entropy, it is
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P := maximal connected sets on which T and T−1 are continuous
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∨n
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−k is a partition of M \ (S−k ∪ Sn)
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Dynamical Refinements of Partitions

In order to connect h∗ to measure theoretic entropy, it is
convenient to express it in terms of dynamical refinements of
partitions. Define

P := maximal connected sets on which T and T−1 are continuous

P̊ := collection of interiors of elements of P

For each k, n ∈ N,

Define Pn
−k =

∨n
i=−k T

−iP, P̊n
−k =

∨n
i=−k T

−iP̊

Pn
−k is a partition of M

P̊n
−k is a partition of M \ (S−k ∪ Sn)

P̊n
−k = Mn+1

−k−1

#Pn
−k ≤ #P̊n

−k +C(k + n+ 1), C depends only on the table
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Characterization of h∗ and Variational Inequality

h∗ = lim
n→∞

1

n
log #Mn

0

Theorem 1

For a finite horizon Lorentz gas,

h∗ = hsep = hspan

For any k ≥ 0,

h∗ = lim
n→∞

1

n
log#Pn

−k = lim
n→∞

1

n
log#P̊n

−k

h∗ satisfies a variational inequality,

h∗ ≥ sup{hµ(T ) : µ is a T -invariant Borel prob. measure}
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Step 2: Construction of a Measure of Maximal Entropy

We introduce an additional assumption on T .

Fix n0 ∈ N and an angle ϕ0 close to π/2.

Let s0 ∈ (0, 1) be the smallest number such that any orbit of
length n0 has at most s0n0 collisions with |ϕ| ≥ ϕ0.

The finite horizon condition guarantees that we can always choose
n0 and ϕ0 so that s0 < 1.
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Step 2: Construction of a Measure of Maximal Entropy

We introduce an additional assumption on T .

Fix n0 ∈ N and an angle ϕ0 close to π/2.

Let s0 ∈ (0, 1) be the smallest number such that any orbit of
length n0 has at most s0n0 collisions with |ϕ| ≥ ϕ0.

The finite horizon condition guarantees that we can always choose
n0 and ϕ0 so that s0 < 1.

Assumption: h∗ > s0 log 2

If W is a local stable manifold, then |T−1W | ≤ C|W |1/2.

Our assumption ensures that the growth due to tangential collisions
does not exceed the exponential rate of growth given by h∗.
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Weighted Transfer Operator

For a smooth test function ψ, define a weighted transfer operator
L acting on a distribution µ on M by

Lµ(ψ) = µ

(

ψ ◦ T

JsT

)

, ψ a test function,

where JsT ≈ cosϕ denotes the stable Jacobian of T .

Recall that T preserves a smooth invariant measure
dµSRB = c cosϕdrdϕ.
If dµ = fdµSRB is a measure abs. cont. w.r.t. µSRB, then

Lf(x) =
f(T−1x)

JsT (T−1x)
.

We want to construct a measure of maximal entropy out of left
and right eigenvectors of this operator.
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Norms for the Operator

Norms similar to those used in [D., Zhang ’11] for the transfer
operator with respect to the SRB measure, but several differences
in order to compensate for the potential 1/JsT , which blows up
near tangential collisions.

Norms integrate on real (local) stable manifolds, Ws, rather
than admissible cone-stable curves.

We do not subdivide curves according to homogeneity strips.

The test functions have a logarithmic, rather than Hölder,
weight on the size of the curve. This is a crucial change:

We need it to compensate for the fact that for W ∈ Ws,
|T−1W | can be of order |W |1/2, yet the weight in the transfer
operator cancels the Jacobian that would help us in this case.
It prevents us from proving true Lasota-Yorke inequalities: L is
not quasi-compact!
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Banach Spaces

Theorem 2

We have a sequence of inclusions,

C1(M) ⊂ B ⊂ Bw ⊂ (Cα(M))∗.

The embedding of the unit ball of B in Bw is compact.

The following inequalities hold: There exists C > 0 such that
for all f ∈ B, n ≥ 0,

|Lnf |w ≤ C|f |w#Mn
0 ,

‖Lnf‖s ≤ C‖f‖s#Mn
0 ,

‖Lnf‖u ≤ C(‖f‖u + ‖f‖s)#Mn
0 .

The inequalities above are not true Lasota-Yorke inequalities due
to lack of contraction in the strong norm.
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Exact Exponential Growth of Mn
0

To obtain a precise estimate on the spectral radius of L, we prove
the following inequalities: There exists c1 > 0 such that,

enh∗ ≤ #Mn
0 ≤ c1e

nh∗ for all n ≥ 1.

Mark Demers Measure of Maximal Entropy for Finite Horizon Sinai Billiard



Exact Exponential Growth of Mn
0

To obtain a precise estimate on the spectral radius of L, we prove
the following inequalities: There exists c1 > 0 such that,

enh∗ ≤ #Mn
0 ≤ c1e

nh∗ for all n ≥ 1.

This, in turn, relies on several growth/fragmentation lemmas.

Lemma (Growth Lemma)

For a local stable manifold W ∈ Ws, most pieces of T−nW
are longer than some length scale δ.

Most components of Mn
0 have stable diameter longer than δ.

Similarly, most components of M0
−n have unstable diameter

longer than δ.

These are distinct from the usual growth lemmas since there
are no homogeneity strips and no Jacobian appears as a
weight in the sum.

Mark Demers Measure of Maximal Entropy for Finite Horizon Sinai Billiard



Construction of µ∗

The sequence

νn =
1

n

n−1
∑

k=0

e−kh∗Lk1, is uniformly bounded in B.

By compactness, a subsequence converges in Bw.
Let ν ∈ Bw be a limit point of νn. ν is a measure.
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Construction of µ∗

The sequence

νn =
1

n

n−1
∑

k=0

e−kh∗Lk1, is uniformly bounded in B.

By compactness, a subsequence converges in Bw.
Let ν ∈ Bw be a limit point of νn. ν is a measure.

Similarly, let ν̃ ∈ (Bw)
∗ be a limit point of the sequence

1

n

n−1
∑

k=0

e−kh∗(L∗)k(dµSRB).
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Construction of µ∗

The sequence

νn =
1

n

n−1
∑

k=0

e−kh∗Lk1, is uniformly bounded in B.

By compactness, a subsequence converges in Bw.
Let ν ∈ Bw be a limit point of νn. ν is a measure.

Similarly, let ν̃ ∈ (Bw)
∗ be a limit point of the sequence

1

n

n−1
∑

k=0

e−kh∗(L∗)k(dµSRB).

Define µ∗(ψ) =
ν̃(ψν)

ν̃(ν)
, for ψ ∈ C1(M).

Mark Demers Measure of Maximal Entropy for Finite Horizon Sinai Billiard



Construction of µ∗

The sequence

νn =
1

n

n−1
∑

k=0

e−kh∗Lk1, is uniformly bounded in B.

By compactness, a subsequence converges in Bw.
Let ν ∈ Bw be a limit point of νn. ν is a measure.

Similarly, let ν̃ ∈ (Bw)
∗ be a limit point of the sequence

1

n

n−1
∑

k=0

e−kh∗(L∗)k(dµSRB).

Define µ∗(ψ) =
ν̃(ψν)

ν̃(ν)
, for ψ ∈ C1(M).

Since Lν = eh∗ν and L∗ν̃ = eh∗ ν̃, we have µ∗(ψ ◦ T ) = µ∗(ψ),
i.e. µ∗ is an invariant measure for T .
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Hyperbolicity of µ∗

Key Fact: Although ν ∈ Bw, it follows from the convergence of
νn to ν in the weak norm that the strong norm of ν is bounded.
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Hyperbolicity of µ∗

Key Fact: Although ν ∈ Bw, it follows from the convergence of
νn to ν in the weak norm that the strong norm of ν is bounded.

This implies estimates of the form:

For any k ∈ Z, ∃Ck > 0 s.t.

ν(Nε(Sk)) ≤ Ck(− log ε)−γ , µ∗(Nε(Sk)) ≤ Ck(− log ε)−γ .

Nε(Sk) = ε-neighborhood of Sk in M .
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Hyperbolicity of µ∗

Key Fact: Although ν ∈ Bw, it follows from the convergence of
νn to ν in the weak norm that the strong norm of ν is bounded.

This implies estimates of the form:

For any k ∈ Z, ∃Ck > 0 s.t.

ν(Nε(Sk)) ≤ Ck(− log ε)−γ , µ∗(Nε(Sk)) ≤ Ck(− log ε)−γ .

Nε(Sk) = ε-neighborhood of Sk in M .

∫

M
− log d(x,S±1) dµ∗(x) <∞ (since γ > 1).
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Hyperbolicity of µ∗

Key Fact: Although ν ∈ Bw, it follows from the convergence of
νn to ν in the weak norm that the strong norm of ν is bounded.

This implies estimates of the form:

For any k ∈ Z, ∃Ck > 0 s.t.

ν(Nε(Sk)) ≤ Ck(− log ε)−γ , µ∗(Nε(Sk)) ≤ Ck(− log ε)−γ .

Nε(Sk) = ε-neighborhood of Sk in M .

∫

M
− log d(x,S±1) dµ∗(x) <∞ (since γ > 1).

µ∗-a.e. x ∈M has a stable and unstable manifold of positive
length. The same is true with respect to ν.
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Ergodicity of µ∗

Since µ∗ is hyperbolic, we cover a
full measure set of M with Cantor
rectangles, and study the properties
of µ∗ on each rectangle.

A Cantor Rectangle R
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Ergodicity of µ∗

Since µ∗ is hyperbolic, we cover a
full measure set of M with Cantor
rectangles, and study the properties
of µ∗ on each rectangle.

A Cantor Rectangle R

Lemma (Absolute continuity)

On each Cantor rectangle R, the holonomy map sliding along
unstable manifolds in R is absolutely continuous with respect to µ∗

The bound on the strong norm of ν is crucial for this lemma.
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rectangles, and study the properties
of µ∗ on each rectangle.

A Cantor Rectangle R

Lemma (Absolute continuity)

On each Cantor rectangle R, the holonomy map sliding along
unstable manifolds in R is absolutely continuous with respect to µ∗

The bound on the strong norm of ν is crucial for this lemma.

Consequences:

Each Cantor rectangle R belongs to one ergodic component
of µ∗.
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Ergodicity of µ∗

Since µ∗ is hyperbolic, we cover a
full measure set of M with Cantor
rectangles, and study the properties
of µ∗ on each rectangle.

A Cantor Rectangle R

Lemma (Absolute continuity)

On each Cantor rectangle R, the holonomy map sliding along
unstable manifolds in R is absolutely continuous with respect to µ∗

The bound on the strong norm of ν is crucial for this lemma.

Consequences:

Each Cantor rectangle R belongs to one ergodic component
of µ∗.

Since T is topologically mixing T , we can force images of
rectangles to overlap =⇒ (T n, µ∗) is ergodic for all n.
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Mixing and Bernoulli Property of µ∗

The local product structure of the Cantor rectangles, together
with a global argument showing that a full measure set of
points on each component of M can be connected by a
network of stable/unstable manifolds, enables us to prove that
(T, µ∗) is K-mixing, following techniques of [Pesin ’77, ’92].
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Mixing and Bernoulli Property of µ∗

The local product structure of the Cantor rectangles, together
with a global argument showing that a full measure set of
points on each component of M can be connected by a
network of stable/unstable manifolds, enables us to prove that
(T, µ∗) is K-mixing, following techniques of [Pesin ’77, ’92].

K-mixing + hyperbolicity + absolute continuity of µ∗ +
bounds on µ∗(Nε(S±1))
=⇒ the partition M1

−1 is very weakly Bernoulli, following
the technique of [Chernov, Haskell ’96].

Since
∨

∞

n=−∞
T−n(M1

−1) generates the full σ-algebra for T ,
this implies by [Ornstein, Weiss ’73] that (T, µ∗) is Bernoulli.
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Entropy of µ∗

Define B(x, n, ε) = {y ∈M : d(T−ix, T−iy) ≤ ε,∀i ∈ [0, n]}.
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Entropy of µ∗

Define B(x, n, ε) = {y ∈M : d(T−ix, T−iy) ≤ ε,∀i ∈ [0, n]}.

Proposition (Measure of Bowen Balls)

There exists C > 0 s.t. for all x ∈M and n ≥ 1,

µ∗(B(x, n, ε)) ≤ Ce−nh∗.
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Entropy of µ∗

Define B(x, n, ε) = {y ∈M : d(T−ix, T−iy) ≤ ε,∀i ∈ [0, n]}.

Proposition (Measure of Bowen Balls)

There exists C > 0 s.t. for all x ∈M and n ≥ 1,

µ∗(B(x, n, ε)) ≤ Ce−nh∗.

[Brin, Katok ’81] =⇒ for µ∗-a.e. x ∈M ,

lim
ε→0

lim sup
n→∞

−
1

n
log µ∗(Bn(x, ε)) = hµ∗

(T ).
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Entropy of µ∗

Define B(x, n, ε) = {y ∈M : d(T−ix, T−iy) ≤ ε,∀i ∈ [0, n]}.

Proposition (Measure of Bowen Balls)

There exists C > 0 s.t. for all x ∈M and n ≥ 1,

µ∗(B(x, n, ε)) ≤ Ce−nh∗.

[Brin, Katok ’81] =⇒ for µ∗-a.e. x ∈M ,

lim
ε→0

lim sup
n→∞

−
1

n
log µ∗(Bn(x, ε)) = hµ∗

(T ).

This plus the Proposition implies hµ∗
(T ) ≥ h∗
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Entropy of µ∗

Define B(x, n, ε) = {y ∈M : d(T−ix, T−iy) ≤ ε,∀i ∈ [0, n]}.
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There exists C > 0 s.t. for all x ∈M and n ≥ 1,

µ∗(B(x, n, ε)) ≤ Ce−nh∗.

[Brin, Katok ’81] =⇒ for µ∗-a.e. x ∈M ,

lim
ε→0

lim sup
n→∞

−
1

n
log µ∗(Bn(x, ε)) = hµ∗

(T ).

This plus the Proposition implies hµ∗
(T ) ≥ h∗

But h∗ ≥ hµ∗
(T ) by Theorem 1.
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Entropy of µ∗

Define B(x, n, ε) = {y ∈M : d(T−ix, T−iy) ≤ ε,∀i ∈ [0, n]}.

Proposition (Measure of Bowen Balls)

There exists C > 0 s.t. for all x ∈M and n ≥ 1,

µ∗(B(x, n, ε)) ≤ Ce−nh∗.

[Brin, Katok ’81] =⇒ for µ∗-a.e. x ∈M ,

lim
ε→0

lim sup
n→∞

−
1

n
log µ∗(Bn(x, ε)) = hµ∗

(T ).

This plus the Proposition implies hµ∗
(T ) ≥ h∗

But h∗ ≥ hµ∗
(T ) by Theorem 1.

Conclude: h∗ = hµ∗
(T ).
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Variational Principle and Measure of Maximal Entropy

Theorem 3

Let T be the billiard map corresponding to a finite horizon periodic
Lorentz gas. Assume h∗ > s0 log 2. Then,

h∗ = lim
n→∞

1

n
log#Mn

0 = sup
µ
hµ(T ).

Moreover, there exists a T -invariant measure µ∗ such that

hµ∗
(T ) = h∗

h∗ = htop(T,M
′)

(T, µ∗) is Bernoulli and positive on open sets
∫

− log d(x,S±1) dµ∗(x) <∞
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