Measure of Maximal Entropy for the Finite Horizon Periodic Lorentz Gas

Mark Demers

Fairfield University

Research supported in part by NSF Grant DMS-1362420

Dynamical Systems Session International Congress of Mathematical Physics Montreal, July 26, 2018

joint work with Viviane Baladi

伺下 イヨト イヨト

Finite Horizon Sinai Billiard

- Billiard table Q = T²\∪_iB_i; scatterers B_i.
- Boundaries of scatterers are C³ and have strictly positive curvature.
- Billiard flow is given by a point particle moving at unit speed with elastic collisions at the boundary

Assume a **finite horizon** condition: there is an upper bound on the free flight time between consecutive tangential collisions on the table.

向下 イヨト イヨト

The Associated Billiard Map

 $M = \left(\cup_i \partial B_i \right) \times \left[-\frac{\pi}{2}, \frac{\pi}{2} \right], \text{ the natural "collision" cross-section for the billiard flow.}$

 $T:(r,\varphi)\to (r',\varphi')$ is the first return map: the billiard map.

• a hyperbolic map with singularities

- r = position coordinate oriented clockwise on boundary of scatterer ∂B_i
- φ = angle outgoing trajectory makes with normal to scatterer

T preserves a smooth invariant measure on M, $\mu_{\text{SRB}} = \cos \varphi \, dr \, d\varphi$ With respect to this measure, many statistical properties have been proved using a variety of techniques.

With respect to μ_{SRB} , T:

- is ergodic [Sinai '70] and Bernoulli [Gallavotti, Ornstein '74]
- enjoys exponential decay of correlations [L.S. Young '98]
- satisfies many limit theorems:
 - Central Limit Theorem [Bunimovich, Sinai '81]
 - Almost-sure invariance principle [Melbourne, Nicol '05],
 - Local moderate and large deviations [Melbourne, Nicol '08], [Young, Rey-Bellet '08]

Very few results on existence of other invariant measures for T: [Chen, Wang, Zhang '17] treats 'perturbations' of μ_{SRB} .

Topological Entropy of Billiard Map

- The billiard map has discontinuities, so general results on a full variational principle and existence of a measure achieving the maximum are not known.
- Indeed, even a definition for topological entropy is not straightforward, and can depend on the choice of metric.

- - E + - E +

Topological Entropy of Billiard Map

- The billiard map has discontinuities, so general results on a full variational principle and existence of a measure achieving the maximum are not known.
- Indeed, even a definition for topological entropy is not straightforward, and can depend on the choice of metric.

Known Results:

- Tangential collisions: $S_0 = \{(r, \varphi) \in M : \varphi = \pm \frac{\pi}{2}\}$
- For $n \in \mathbb{Z}$, $S_n = \bigcup_{i=0}^n T^{-i} S_0$ is the singularity set for T^n .
- Define $M' = M \setminus (\cup_{n=-\infty}^{\infty} S_n)$. $T : M' \circlearrowleft$ is a continuous map.

・吊り ・ヨト ・ヨト ・ヨ

Topological Entropy of Billiard Map

- The billiard map has discontinuities, so general results on a full variational principle and existence of a measure achieving the maximum are not known.
- Indeed, even a definition for topological entropy is not straightforward, and can depend on the choice of metric.

Known Results:

- Tangential collisions: $S_0 = \{(r, \varphi) \in M : \varphi = \pm \frac{\pi}{2}\}$
- For $n \in \mathbb{Z}$, $S_n = \bigcup_{i=0}^n T^{-i} S_0$ is the singularity set for T^n .
- Define $M' = M \setminus (\cup_{n=-\infty}^{\infty} S_n)$. $T : M' \circlearrowleft$ is a continuous map.

[Chernov '91] studied the topological entropy of T on an invariant subset $M_1\subset M'$ using a countable Markov partition. He showed

$$h_{top}(T, M') \ge h_{top}(T, M_1) = h_{top}(\sigma, \Sigma_1),$$

where (σ, Σ_1) is the TMC derived from the Markov partition

御 と く ヨ と く ヨ と …

• Step 1: Formulate a quantity h_* via a naive notion of topological complexity for T that is easy to work with.

• Show that $h_* \ge \sup_{\mu \in \mathcal{M}(T)} h_{\mu}(T).$

伺い イヨト イヨト

• Step 1: Formulate a quantity h_* via a naive notion of topological complexity for T that is easy to work with.

• Show that
$$h_* \ge \sup_{\mu \in \mathcal{M}(T)} h_{\mu}(T).$$

- Step 2: Construct an invariant measure μ_* such that $h_{\mu_*}(T) = h_*$.
 - We construct μ_* using the left and right eigenvectors of a weighted transfer operator that has spectral radius equal to e^{h_*} .

く 同 ト く ヨ ト く ヨ ト

- Step 1: Formulate a quantity h_* via a naive notion of topological complexity for T that is easy to work with.
 - Show that $h_* \ge \sup_{\mu \in \mathcal{M}(T)} h_{\mu}(T).$
- Step 2: Construct an invariant measure μ_* such that $h_{\mu_*}(T) = h_*$.
 - We construct μ_* using the left and right eigenvectors of a weighted transfer operator that has spectral radius equal to $e^{h_*}.$

Once Step 2 is carried out, one can ask about properties of the measure μ_* : Is it ergodic, mixing, Bernoulli?

(4月) (3日) (3日) 日

• Let $\mathcal{M}_{-k}^n = \text{connected}$ components of $M \setminus (\mathcal{S}_{-k} \cup \mathcal{S}_n)$.

Define

$$h_* = \lim_{n \to \infty} \frac{1}{n} \log \# \mathcal{M}_0^n$$

 $M \setminus \mathcal{S}_n$

• Let $\mathcal{M}_{-k}^n = \text{connected}$ components of $M \setminus (\mathcal{S}_{-k} \cup \mathcal{S}_n)$.

Define

$$h_* = \lim_{n \to \infty} \frac{1}{n} \log \# \mathcal{M}_0^n$$

 $M \setminus \mathcal{S}_n$

• The limit exists since the sequence $\log \# \mathcal{M}_0^n$ is subadditive: $\# \mathcal{M}_0^{n+m} \le \# \mathcal{M}_0^n \cdot \# \mathcal{M}_0^m$.

• Let $\mathcal{M}_{-k}^n = \text{connected}$ components of $M \setminus (\mathcal{S}_{-k} \cup \mathcal{S}_n)$.

Define

$$h_* = \lim_{n \to \infty} \frac{1}{n} \log \# \mathcal{M}_0^n$$

$$M \setminus \mathcal{S}_n$$

個 と く ヨ と く ヨ と

- The limit exists since the sequence $\log \# \mathcal{M}_0^n$ is subadditive: $\# \mathcal{M}_0^{n+m} \leq \# \mathcal{M}_0^n \cdot \# \mathcal{M}_0^m$.
- h_* is the exponential rate of growth of the number of pieces created by the discontinuities of T. It does not depend on a choice of metric.

• Let $\mathcal{M}_{-k}^n = \text{connected}$ components of $M \setminus (\mathcal{S}_{-k} \cup \mathcal{S}_n)$.

Define

$$h_* = \lim_{n \to \infty} \frac{1}{n} \log \# \mathcal{M}_0^n$$

$$M \setminus \mathcal{S}_n$$

個 と く ヨ と く ヨ と

- The limit exists since the sequence $\log \# \mathcal{M}_0^n$ is subadditive: $\# \mathcal{M}_0^{n+m} \leq \# \mathcal{M}_0^n \cdot \# \mathcal{M}_0^m$.
- h_* is the exponential rate of growth of the number of pieces created by the discontinuities of T. It does not depend on a choice of metric.

•
$$T^n \mathcal{S}_n = \mathcal{S}_{-n} \implies \# \mathcal{M}_0^n = \# \mathcal{M}_{-n}^0$$
. So $h_*(T) = h_*(T^{-1})$.

$$\begin{split} \mathcal{P} &:= \text{maximal connected sets on which } T \text{ and } T^{-1} \text{ are continuous} \\ \mathring{\mathcal{P}} &:= \text{collection of interiors of elements of } \mathcal{P} \end{split}$$

同下 《日下 《日下 》日

$$\label{eq:product} \begin{split} \mathcal{P} := \text{maximal connected sets on which } T \text{ and } T^{-1} \text{ are continuous} \\ \dot{\mathcal{P}} := \text{collection of interiors of elements of } \mathcal{P} \end{split}$$

For each $k, n \in \mathbb{N}$,

• Define
$$\mathcal{P}_{-k}^n = \bigvee_{i=-k}^n T^{-i} \mathcal{P}$$
, $\mathring{\mathcal{P}}_{-k}^n = \bigvee_{i=-k}^n T^{-i} \mathring{\mathcal{P}}$

伺下 イヨト イヨト

$$\begin{split} \mathcal{P} &:= \text{maximal connected sets on which } T \text{ and } T^{-1} \text{ are continuous} \\ \mathring{\mathcal{P}} &:= \text{collection of interiors of elements of } \mathcal{P} \end{split}$$

For each $k, n \in \mathbb{N}$,

- Define $\mathcal{P}_{-k}^n = \bigvee_{i=-k}^n T^{-i}\mathcal{P}$, $\mathring{\mathcal{P}}_{-k}^n = \bigvee_{i=-k}^n T^{-i}\mathring{\mathcal{P}}$
- \mathcal{P}^n_{-k} is a partition of M

伺い イヨト イヨト 三日

$$\begin{split} \mathcal{P} &:= \mathsf{maximal} \text{ connected sets on which } T \text{ and } T^{-1} \text{ are continuous} \\ \mathring{\mathcal{P}} &:= \mathsf{collection} \text{ of interiors of elements of } \mathcal{P} \end{split}$$

For each $k, n \in \mathbb{N}$,

- Define $\mathcal{P}_{-k}^n = \bigvee_{i=-k}^n T^{-i}\mathcal{P}$, $\mathring{\mathcal{P}}_{-k}^n = \bigvee_{i=-k}^n T^{-i}\mathring{\mathcal{P}}$
- \mathcal{P}^n_{-k} is a partition of M
- $\mathring{\mathcal{P}}^n_{-k}$ is a partition of $M \setminus (\mathcal{S}_{-k} \cup \mathcal{S}_n)$

伺い イヨト イヨト 三日

$$\begin{split} \mathcal{P} &:= \mathsf{maximal} \text{ connected sets on which } T \text{ and } T^{-1} \text{ are continuous} \\ \mathring{\mathcal{P}} &:= \mathsf{collection} \text{ of interiors of elements of } \mathcal{P} \end{split}$$

For each $k, n \in \mathbb{N}$,

• Define
$$\mathcal{P}_{-k}^n = \bigvee_{i=-k}^n T^{-i} \mathcal{P}$$
, $\mathring{\mathcal{P}}_{-k}^n = \bigvee_{i=-k}^n T^{-i} \mathring{\mathcal{P}}$

•
$$\mathcal{P}^n_{-k}$$
 is a partition of M

•
$$\mathring{\mathcal{P}}^n_{-k}$$
 is a partition of $M \setminus (\mathcal{S}_{-k} \cup \mathcal{S}_n)$

•
$$\mathring{\mathcal{P}}_{-k}^n = \mathcal{M}_{-k-1}^{n+1}$$

伺下 イヨト イヨト

$$\label{eq:prod} \begin{split} \mathcal{P} := \text{maximal connected sets on which } T \text{ and } T^{-1} \text{ are continuous} \\ \mathring{\mathcal{P}} := \text{collection of interiors of elements of } \mathcal{P} \end{split}$$

For each $k, n \in \mathbb{N}$,

• Define
$$\mathcal{P}_{-k}^n = \bigvee_{i=-k}^n T^{-i}\mathcal{P}$$
, $\mathring{\mathcal{P}}_{-k}^n = \bigvee_{i=-k}^n T^{-i}\mathring{\mathcal{P}}$

•
$$\mathcal{P}^n_{-k}$$
 is a partition of M

•
$$\mathring{\mathcal{P}}^n_{-k}$$
 is a partition of $M \setminus (\mathcal{S}_{-k} \cup \mathcal{S}_n)$

•
$$\mathring{\mathcal{P}}_{-k}^n = \mathcal{M}_{-k-1}^{n+1}$$

• $\#\mathcal{P}^n_{-k} \leq \#\mathring{\mathcal{P}}^n_{-k} + C(k+n+1)$, C depends only on the table

伺い イヨト イヨト

Characterization of h_* and Variational Inequality

$$h_* = \lim_{n \to \infty} \frac{1}{n} \log \# \mathcal{M}_0^n$$

Theorem 1

For a finite horizon Lorentz gas,

•
$$h_* = h_{sep} = h_{spar}$$

• For any $k \ge 0$,

$$h_* = \lim_{n \to \infty} \frac{1}{n} \log \# \mathcal{P}_{-k}^n = \lim_{n \to \infty} \frac{1}{n} \log \# \mathring{\mathcal{P}}_{-k}^n$$

h_{*} satisfies a variational inequality,

 $h_* \ge \sup\{h_\mu(T) : \mu \text{ is a } T \text{-invariant Borel prob. measure}\}$

・ 同 ト ・ ヨ ト ・ ヨ ト

We introduce an additional assumption on T.

- Fix $n_0 \in \mathbb{N}$ and an angle φ_0 close to $\pi/2$.
- Let $s_0 \in (0,1)$ be the smallest number such that any orbit of length n_0 has at most s_0n_0 collisions with $|\varphi| \ge \varphi_0$.

The finite horizon condition guarantees that we can always choose n_0 and φ_0 so that $s_0<1.$

< 回 > < 注 > < 注 > … 注

We introduce an additional assumption on T.

- Fix $n_0 \in \mathbb{N}$ and an angle φ_0 close to $\pi/2$.
- Let $s_0 \in (0,1)$ be the smallest number such that any orbit of length n_0 has at most s_0n_0 collisions with $|\varphi| \ge \varphi_0$.

The finite horizon condition guarantees that we can always choose n_0 and φ_0 so that $s_0 < 1$.

Assumption: $h_* > s_0 \log 2$

If W is a local stable manifold, then $|T^{-1}W| \leq C|W|^{1/2}$.

Our assumption ensures that the growth due to tangential collisions does not exceed the exponential rate of growth given by h_* .

(4月) (3日) (3日) 日

Weighted Transfer Operator

For a smooth test function $\psi,$ define a weighted transfer operator ${\mathcal L}$ acting on a distribution μ on M by

$$\mathcal{L}\mu(\psi) = \mu\left(rac{\psi\circ T}{J^sT}
ight), \quad \psi$$
 a test function,

where $J^sT \approx \cos \varphi$ denotes the stable Jacobian of T.

Recall that T preserves a smooth invariant measure $d\mu_{\rm SRB}=c\cos\varphi\,drd\varphi.$ If $d\mu=fd\mu_{\rm SRB}$ is a measure abs. cont. w.r.t. $\mu_{\rm SRB}$, then

$$\mathcal{L}f(x) = \frac{f(T^{-1}x)}{J^s T(T^{-1}x)}.$$

We want to construct a measure of maximal entropy out of left and right eigenvectors of this operator.

向下 イヨト イヨト

Norms similar to those used in [D., Zhang '11] for the transfer operator with respect to the SRB measure, but several differences in order to compensate for the potential $1/J^sT$, which blows up near tangential collisions.

- Norms integrate on real (local) stable manifolds, W^s , rather than admissible cone-stable curves.
- We do not subdivide curves according to homogeneity strips.
- The test functions have a logarithmic, rather than Hölder, weight on the size of the curve. This is a crucial change:
 - We need it to compensate for the fact that for $W \in \mathcal{W}^s$, $|T^{-1}W|$ can be of order $|W|^{1/2}$, yet the weight in the transfer operator cancels the Jacobian that would help us in this case.
 - It prevents us from proving true Lasota-Yorke inequalities: \mathcal{L} is not quasi-compact!

(ロ) (同) (E) (E) (E)

Banach Spaces

Theorem 2

• We have a sequence of inclusions,

$$\mathcal{C}^1(M) \subset \mathcal{B} \subset \mathcal{B}_w \subset (\mathcal{C}^\alpha(M))^*.$$

- The embedding of the unit ball of \mathcal{B} in \mathcal{B}_w is compact.
- The following inequalities hold: There exists C > 0 such that for all $f \in \mathcal{B}$, $n \ge 0$,

$$\begin{aligned} |\mathcal{L}^n f|_w &\leq C |f|_w \# \mathcal{M}_0^n ,\\ \|\mathcal{L}^n f\|_s &\leq C \|f\|_s \# \mathcal{M}_0^n ,\\ \|\mathcal{L}^n f\|_u &\leq C (\|f\|_u + \|f\|_s) \# \mathcal{M}_0^n \end{aligned}$$

The inequalities above are not true Lasota-Yorke inequalities due to lack of contraction in the strong norm.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Exact Exponential Growth of \mathcal{M}_0^n

To obtain a precise estimate on the spectral radius of \mathcal{L} , we prove the following inequalities: There exists $c_1 > 0$ such that,

$$e^{nh_*} \le \#\mathcal{M}_0^n \le c_1 e^{nh_*}$$
 for all $n \ge 1$.

• 3 >

- - E - F

Exact Exponential Growth of \mathcal{M}_0^n

To obtain a precise estimate on the spectral radius of \mathcal{L} , we prove the following inequalities: There exists $c_1 > 0$ such that,

$$e^{nh_*} \le \#\mathcal{M}_0^n \le c_1 e^{nh_*}$$
 for all $n \ge 1$.

This, in turn, relies on several growth/fragmentation lemmas.

Lemma (Growth Lemma)

- For a local stable manifold W ∈ W^s, most pieces of T⁻ⁿW are longer than some length scale δ.
- Most components of \mathcal{M}_0^n have stable diameter longer than δ . Similarly, most components of \mathcal{M}_{-n}^0 have unstable diameter longer than δ .
- These are distinct from the usual growth lemmas since there are no homogeneity strips and no Jacobian appears as a weight in the sum.

• The sequence

 $\nu_n = \frac{1}{n} \sum_{k=0}^{n-1} e^{-kh_*} \mathcal{L}^k 1, \text{ is uniformly bounded in } \mathcal{B}.$

By compactness, a subsequence converges in \mathcal{B}_w . Let $\nu \in \mathcal{B}_w$ be a limit point of ν_n . ν is a measure.

・ 回 ト ・ ヨ ト ・ ヨ ト

• The sequence

 $\nu_n = \frac{1}{n} \sum_{k=0}^{n-1} e^{-kh_*} \mathcal{L}^k 1, \text{ is uniformly bounded in } \mathcal{B}.$

By compactness, a subsequence converges in \mathcal{B}_w . Let $\nu \in \mathcal{B}_w$ be a limit point of ν_n . ν is a measure.

• Similarly, let $\tilde{\nu} \in (\mathcal{B}_w)^*$ be a limit point of the sequence $\frac{1}{n} \sum_{k=0}^{n-1} e^{-kh_*} (\mathcal{L}^*)^k (d\mu_{\text{SRB}}).$

・ 回 と ・ ヨ と ・ ヨ と

• The sequence

 $\nu_n = \frac{1}{n} \sum_{k=0}^{n-1} e^{-kh_*} \mathcal{L}^k 1, \text{ is uniformly bounded in } \mathcal{B}.$

By compactness, a subsequence converges in \mathcal{B}_w . Let $\nu \in \mathcal{B}_w$ be a limit point of ν_n . ν is a measure.

• Similarly, let $\tilde{\nu} \in (\mathcal{B}_w)^*$ be a limit point of the sequence $\frac{1}{n} \sum_{k=0}^{n-1} e^{-kh_*} (\mathcal{L}^*)^k (d\mu_{\text{SRB}}).$

• Define
$$\mu_*(\psi) = \frac{\tilde{\nu}(\psi\nu)}{\tilde{\nu}(\nu)}$$
, for $\psi \in C^1(M)$.

• The sequence

 $\nu_n = \frac{1}{n} \sum_{k=0}^{n-1} e^{-kh_*} \mathcal{L}^k 1, \text{ is uniformly bounded in } \mathcal{B}.$

By compactness, a subsequence converges in \mathcal{B}_w . Let $\nu \in \mathcal{B}_w$ be a limit point of ν_n . ν is a measure.

• Similarly, let $\tilde{\nu} \in (\mathcal{B}_w)^*$ be a limit point of the sequence $\frac{1}{n} \sum_{k=0}^{n-1} e^{-kh_*} (\mathcal{L}^*)^k (d\mu_{\text{SRB}}).$

• Define
$$\mu_*(\psi) = \frac{\tilde{\nu}(\psi\nu)}{\tilde{\nu}(\nu)}$$
, for $\psi \in C^1(M)$.

Since $\mathcal{L}\nu = e^{h_*}\nu$ and $\mathcal{L}^*\tilde{\nu} = e^{h_*}\tilde{\nu}$, we have $\mu_*(\psi \circ T) = \mu_*(\psi)$, i.e. μ_* is an invariant measure for T.

Key Fact: Although $\nu \in \mathcal{B}_w$, it follows from the convergence of ν_n to ν in the weak norm that the strong norm of ν is bounded.

伺 と く き と く き とう

Key Fact: Although $\nu \in \mathcal{B}_w$, it follows from the convergence of ν_n to ν in the weak norm that the strong norm of ν is bounded.

This implies estimates of the form:

• For any
$$k \in \mathbb{Z}$$
, $\exists C_k > 0$ s.t.

 $u(\mathcal{N}_{\varepsilon}(\mathcal{S}_k)) \leq C_k(-\log \varepsilon)^{-\gamma}, \qquad \mu_*(\mathcal{N}_{\varepsilon}(\mathcal{S}_k)) \leq C_k(-\log \varepsilon)^{-\gamma}.$

 $\mathcal{N}_{\varepsilon}(\mathcal{S}_k) = \varepsilon$ -neighborhood of \mathcal{S}_k in M.

(周) (ヨ) (ヨ) (ヨ)

Key Fact: Although $\nu \in \mathcal{B}_w$, it follows from the convergence of ν_n to ν in the weak norm that the strong norm of ν is bounded.

This implies estimates of the form:

• For any
$$k \in \mathbb{Z}$$
, $\exists C_k > 0$ s.t.

 $u(\mathcal{N}_{\varepsilon}(\mathcal{S}_k)) \leq C_k(-\log \varepsilon)^{-\gamma}, \qquad \mu_*(\mathcal{N}_{\varepsilon}(\mathcal{S}_k)) \leq C_k(-\log \varepsilon)^{-\gamma}.$

 $\mathcal{N}_{\varepsilon}(\mathcal{S}_k) = \varepsilon$ -neighborhood of \mathcal{S}_k in M.

•
$$\int_M -\log d(x, \mathcal{S}_{\pm 1}) \, d\mu_*(x) < \infty$$
 (since $\gamma > 1$).

Key Fact: Although $\nu \in \mathcal{B}_w$, it follows from the convergence of ν_n to ν in the weak norm that the strong norm of ν is bounded.

This implies estimates of the form:

• For any
$$k \in \mathbb{Z}$$
, $\exists C_k > 0$ s.t.

 $u(\mathcal{N}_{\varepsilon}(\mathcal{S}_k)) \leq C_k(-\log \varepsilon)^{-\gamma}, \qquad \mu_*(\mathcal{N}_{\varepsilon}(\mathcal{S}_k)) \leq C_k(-\log \varepsilon)^{-\gamma}.$

$$\mathcal{N}_{\varepsilon}(\mathcal{S}_k) = \varepsilon$$
-neighborhood of \mathcal{S}_k in M .

•
$$\int_M -\log d(x, \mathcal{S}_{\pm 1}) \, d\mu_*(x) < \infty$$
 (since $\gamma > 1$).

 μ_{*}-a.e. x ∈ M has a stable and unstable manifold of positive length. The same is true with respect to ν.

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ● ○ ○ ○ ○

Since μ_* is hyperbolic, we cover a full measure set of M with Cantor rectangles, and study the properties of μ_* on each rectangle.

A Cantor Rectangle R

• 3 >

- - E - F

Since μ_* is hyperbolic, we cover a full measure set of M with Cantor rectangles, and study the properties of μ_* on each rectangle.

A Cantor Rectangle ${\cal R}$

Lemma (Absolute continuity)

On each Cantor rectangle R, the holonomy map sliding along unstable manifolds in R is absolutely continuous with respect to μ_*

The bound on the strong norm of ν is crucial for this lemma.

Since μ_* is hyperbolic, we cover a full measure set of M with Cantor rectangles, and study the properties of μ_* on each rectangle.

A Cantor Rectangle ${\cal R}$

Lemma (Absolute continuity)

On each Cantor rectangle R, the holonomy map sliding along unstable manifolds in R is absolutely continuous with respect to μ_*

The bound on the strong norm of ν is crucial for this lemma.

Consequences:

• Each Cantor rectangle R belongs to one ergodic component of $\mu_{\ast}.$

・ 同 ト ・ ヨ ト ・ ヨ ト

Since μ_* is hyperbolic, we cover a full measure set of M with Cantor rectangles, and study the properties of μ_* on each rectangle.

A Cantor Rectangle ${\cal R}$

Lemma (Absolute continuity)

On each Cantor rectangle R, the holonomy map sliding along unstable manifolds in R is absolutely continuous with respect to μ_*

The bound on the strong norm of ν is crucial for this lemma.

Consequences:

- Each Cantor rectangle R belongs to one ergodic component of $\mu_{\ast}.$
- Since T is topologically mixing T, we can force images of rectangles to overlap $\implies (T^n, \mu_*)$ is ergodic for all n.

Mixing and Bernoulli Property of μ_*

 The local product structure of the Cantor rectangles, together with a global argument showing that a full measure set of points on each component of M can be connected by a network of stable/unstable manifolds, enables us to prove that (T, μ_{*}) is K-mixing, following techniques of [Pesin '77, '92].

< 回 > < 注 > < 注 > … 注

- The local product structure of the Cantor rectangles, together with a global argument showing that a full measure set of points on each component of M can be connected by a network of stable/unstable manifolds, enables us to prove that (T, μ_{*}) is K-mixing, following techniques of [Pesin '77, '92].
- K-mixing + hyperbolicity + absolute continuity of μ_{*} + bounds on μ_{*}(N_ε(S_{±1}))
 ⇒ the partition M¹₋₁ is very weakly Bernoulli, following the technique of [Chernov, Haskell '96].

Since $\bigvee_{n=-\infty}^{\infty} T^{-n}(\mathcal{M}_{-1}^1)$ generates the full σ -algebra for T, this implies by [Ornstein, Weiss '73] that (T, μ_*) is Bernoulli.

(ロ) (四) (三) (三) (三) (○)

$\text{Define }B(x,n,\varepsilon)=\{y\in M: d(T^{-i}x,T^{-i}y)\leq \varepsilon, \forall i\in [0,n]\}.$

|▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ の Q ()

$\text{Define }B(x,n,\varepsilon)=\{y\in M: d(T^{-i}x,T^{-i}y)\leq \varepsilon, \forall i\in [0,n]\}.$

Proposition (Measure of Bowen Balls) There exists C > 0 s.t. for all $x \in M$ and $n \ge 1$, $\mu_*(B(x, n, \varepsilon)) \le Ce^{-nh_*}$.

$$\text{Define } B(x,n,\varepsilon) = \{y \in M: d(T^{-i}x,T^{-i}y) \leq \varepsilon, \forall i \in [0,n]\}.$$

Proposition (Measure of Bowen Balls) There exists C > 0 s.t. for all $x \in M$ and $n \ge 1$,

 $\mu_*(B(x, n, \varepsilon)) \le Ce^{-nh_*}.$

• [Brin, Katok '81] \implies for μ_* -a.e. $x \in M$,

$$\lim_{\varepsilon \to 0} \limsup_{n \to \infty} -\frac{1}{n} \log \mu_*(B_n(x,\varepsilon)) = h_{\mu_*}(T).$$

(本間) (本語) (本語) (語)

$$\text{Define } B(x,n,\varepsilon) = \{y \in M: d(T^{-i}x,T^{-i}y) \leq \varepsilon, \forall i \in [0,n]\}.$$

Proposition (Measure of Bowen Balls) There exists C > 0 s.t. for all $x \in M$ and $n \ge 1$,

 $\mu_*(B(x, n, \varepsilon)) \le Ce^{-nh_*}.$

• [Brin, Katok '81] \implies for μ_* -a.e. $x \in M$,

$$\lim_{\varepsilon \to 0} \limsup_{n \to \infty} -\frac{1}{n} \log \mu_*(B_n(x,\varepsilon)) = h_{\mu_*}(T).$$

• This plus the Proposition implies $h_{\mu_*}(T) \ge h_*$

- * 同 * * き * * き * … き

$$\text{Define } B(x,n,\varepsilon) = \{y \in M: d(T^{-i}x,T^{-i}y) \leq \varepsilon, \forall i \in [0,n]\}.$$

Proposition (Measure of Bowen Balls) There exists C > 0 s.t. for all $x \in M$ and $n \ge 1$,

 $\mu_*(B(x, n, \varepsilon)) \le Ce^{-nh_*}.$

• [Brin, Katok '81] \implies for μ_* -a.e. $x \in M$,

$$\lim_{\varepsilon \to 0} \limsup_{n \to \infty} -\frac{1}{n} \log \mu_*(B_n(x,\varepsilon)) = h_{\mu_*}(T).$$

- This plus the Proposition implies $h_{\mu_*}(T) \ge h_*$
- But $h_* \ge h_{\mu_*}(T)$ by Theorem 1.

- * 同 * * き * * き * … き

$$\text{Define } B(x,n,\varepsilon) = \{y \in M: d(T^{-i}x,T^{-i}y) \leq \varepsilon, \forall i \in [0,n]\}.$$

Proposition (Measure of Bowen Balls) There exists C > 0 s.t. for all $x \in M$ and $n \ge 1$,

 $\mu_*(B(x, n, \varepsilon)) \le Ce^{-nh_*}.$

• [Brin, Katok '81] \implies for μ_* -a.e. $x \in M$,

$$\lim_{\varepsilon \to 0} \limsup_{n \to \infty} -\frac{1}{n} \log \mu_*(B_n(x,\varepsilon)) = h_{\mu_*}(T).$$

- This plus the Proposition implies $h_{\mu_*}(T) \ge h_*$
- But $h_* \ge h_{\mu_*}(T)$ by Theorem 1.
- Conclude: $h_* = h_{\mu_*}(T)$.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

Theorem 3

Let T be the billiard map corresponding to a finite horizon periodic Lorentz gas. Assume $h_*>s_0\log 2.$ Then,

$$h_* = \lim_{n \to \infty} \frac{1}{n} \log \# \mathcal{M}_0^n = \sup_{\mu} h_{\mu}(T).$$

Moreover, there exists a T-invariant measure μ_* such that

•
$$h_{\mu_*}(T) = h_*$$

•
$$h_* = h_{top}(T, M')$$

• (T, μ_*) is Bernoulli and positive on open sets

•
$$\int -\log d(x, \mathcal{S}_{\pm 1}) \, d\mu_*(x) < \infty$$

・ 同 ト ・ 三 ト ・ 三 ト