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Introduction

We look at a system described by a density of particles 0 ≤ f (t , x , v)
with t ≥ 0, x ∈ T3 or R3 and v ∈ R3.

Inhomogeneous kinetic equations :

∂t f + v .∇x f = C(f ), f |t=0 = f 0

This problem has a long history (Maxwell, Boltzmann, Laudau).

Focus on models when the collision kernel has some diffusion
properties
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Possible models of diffusive collision kernels C(f ) may be

–> Bilinear : QB Boltzmann without cutoff, QL Landau

–> Linear : LK Kolmogorov, LFP Fokker-Planck, LB Boltzmann
linéarisé, LL Landau Linéarisé

For example the historical Kolmogorov equation reads

∂t f + v∂x f = ∆v f ,

–> hypoellipticity : Solutions are known to be smooth for positive time

Natural questions

is it true for others models ?
what are the applications ?
are there quantitative estimates ?
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Hypoellipticity

Consider the Kolmogorov equation

∂t f = Λf with Λ = −v .∇x + ∆v .

The theory of (type II) hypoelliptic operators by Hörmander (1967)
says that if U ⊂ R6

x,v open bounded and u ∈ C∞0 (U) then

subelliptic estimate

‖u‖2
s ≤ C(‖Λu‖2

0 + ‖u‖2
0) with s = 2/3

Optimal because only k = 1 commutator is needed :

−Λ = X0 +
∑

X ∗j Xj and
(

X0,Xj ,Yj
def
= [Xj ,X0]

)
span the whole tangent space TR2n and s = 2/(2k + 1).
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General remarks about the preceding result :
A lot of methods exists to get this result (mention Kohn where
s = 1/4, Hörmander, Helffer-Nourrigat, Rotchild-Stein,....).
In general local methods.
−Λ not selfadjoint, nor elliptic.

From kinetic considerations we would like :
Explicit methods and constants.
Robust methods (apply to other models).
Look at the time dependent problem t −→ SΛ(t)f0
measuring precisely the gain of regularity for the Cauchy problem
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First results on the example of the Fokker-Planck equation

∂t f = Λf with Λ = −v .∇x +∇v .(∇v +v) LFP = ∇v .(∇v +v)

In three steps :

global maximal explicit subelliptic estimate (H. Nier 02,
Helffer-Nier 05) :∥∥|Dv |2u

∥∥2
+
∥∥∥|Dx |2/3u

∥∥∥2
. ‖Λu‖2 .

∥∥|Dv |2u
∥∥2

+
∥∥|Dx |2u

∥∥2

Deduce that the spectrum of −Λ ≥ 0 is in
{
|Im (z)| . (Re (z))3

}
and get a resolvent estimate outside : cuspidal operators
Use a Cauchy integral formula

SΛ(t)f0 =
1

2iπ

∫
Γ

e−tz(z + Λ)−1f0dz
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Using this method

Theorem

for all r ∈ R, ‖SΛ(t)f0‖H r,r
x,v
≤ Cr

tNr
‖f0‖H−r,−r

x,v

Done for FP in R3 (H. Nier 02), chains of oscillators (step 2,
Eckmann-Hairer 03) general quadratic models (Hitrik, Pravda
Starov, Viola 15)...
Robust proof
Sometimes sufficient for applications
But not optimal, decay depends on directions :

1 Melher Formulas (Green kernels)
2 Old result concerning Subunit balls, harmonic analysis (Fefferman

83, Coulhon,Saloff-Coste, Varopoulos 92)
3 Next section.
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First examples and Lyapunov functionals

The basic heat equation example

∂t f −∆v f = 0, Λ = ∆v

for a density f (t , v) (forget variable x for a moment). Consider a
time-dependant functional

H(t ,g) = ‖g‖2 + 2t ‖∇v g‖2

d
dt
H(t , f (t)) = −2 ‖∇v f (t)‖2 + 2 ‖∇v f (t)‖2 − 2t ‖∆v f (t)‖2 ≤ 0

So that ‖∇v f (t)‖2 ≤ C1
t ‖f0‖

2 which writes for Λ = ∆v

‖SΛ(t)f0‖H1
v
≤ C1

t1/2 ‖f0‖L2
v

We shall do the same for inhomogeneous models using the
commutation identity [∇v , v .∇x ] = ∇x .
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Consider now the full (conjugated) Fokker Planck equation

∂t f = Λf with Λ = −v .∇x−(−∇v +v).∇v LFP = −(−∇v +v).∇v

For C > D > E > 1 to be defined later on, we define the functional

H(t ,g) = C ‖g‖2 + Dt ‖∂v g‖2 + Et2 〈∂v g, ∂xg〉+ t3 ‖∂xg‖2
.

(where the norms are in L2(dµ), µ is the Gaussian in velocity).

Then for C,D,E well chosen, we check similarly that

d
dt
H(t , f (t)) ≤ 0.

First note that if E2 < D, the crossed term is controlled by the two
others. We have just modified a (time-dependant) norm in H1.
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Some Computations in a simpler case.
� First term

d
dt
‖f‖2 = 2 〈∂t f , f 〉 = −2 〈v∂x f , f 〉 − 2 〈(−∂v + v)∂v f , f 〉 = −2 ‖∂v f‖2

� Second term

d
dt
‖∂v f‖2 = 2 〈∂v (∂t f ), ∂v f 〉

= −2 〈∂v (v∂x f + (−∂v + v)∂v f ), ∂v f 〉
= −2 〈v∂x∂v f , ∂v f 〉 − 2 〈[∂v , v∂x ] f , ∂v f 〉 − 2 〈∂v (−∂v + v)∂v f , ∂v f 〉 .

= −2 〈∂x f , ∂v f 〉 − 2 ‖(−∂v + v)∂v f‖2

� Last term
d
dt
‖∂x f‖2 = −2 ‖∂v∂x f‖2
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� Third important term

d
dt
〈∂x f , ∂v f 〉

= −〈∂x (v∂x f + (−∂v + v)∂v f ), ∂v f 〉 − 〈∂x f , ∂v (v∂x f + (−∂v + v)∂v f )〉
= −〈v∂x (∂x f ), ∂v f 〉 − 〈(−∂v + v)∂v f , ∂x∂v f 〉
− 〈∂x f , [∂v , v∂x ] f 〉 − 〈∂x f , v∂x∂v f 〉
− 〈∂x f , [∂v , (−∂v + v)] ∂v f 〉 − 〈(−∂v + v)∂v f , ∂x∂v f 〉 .

we have
〈v∂x∂x f , ∂v f 〉+ 〈∂x f , v∂x∂v f 〉 = 0.

and
[∂v , (−∂v + v)] = 1

so that

d
dt
〈∂x f , ∂v f 〉 = −‖∂x f‖2 + 2 〈(−∂v + v)∂v f , ∂x∂v f 〉 − 〈∂x f , ∂v f 〉 .
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� Entropy dissipation inequality (simplest case)

d
dt
H(1, f (t)) = −2C ‖∂v f‖2 − 2D ‖(−∂v + v)∂v f‖2 − E ‖∂x f‖2 − 2 ‖∂x∂v f‖2

− 2(D + E) 〈∂x f , ∂v f 〉 − 2E 〈(−∂v + v)∂v f , ∂x∂v f 〉 .

Therefore, using Cauchy-Schwartz : for 1 < E < D < C well chosen,

d
dt
H(1, f (t)) ≤ 0

The same occurs with t instead of 1 inside the definition of H. This
method, developed first in (H. 05)) gives for any t ∈ [0,1)

Theorem

‖SΛ(t)h0‖L2
x H1

v
≤ C

t1/2 ‖h0‖L2
x,v
, ‖SΛ(t)h0‖H1

x L2
v
≤ C1

t3/2 ‖h0‖L2
x,v
.
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The Fractional Kolmogorov case reads

∂t f = Λf with Λ = −v .∇x−(1−∆v )s/2 LFK = −(1−∆v )s/2

The same procedure can be applied and we get

Theorem
H., Tonon, Tristani 17

‖SΛ(t)h0‖L2
x Hs

v
≤ C

t1/2 ‖h0‖L2
x,v
, ‖SΛ(t)h0‖Hs

x L2
v
≤ C1

t (1+2s)/2 ‖h0‖L2
x,v
.
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The Boltzmann without cutoff case

The Boltzmann equation in the torus reads

∂t f + v · ∇x f = QB(f , f )

(v ′, v ′∗)︸ ︷︷ ︸
before collision

−→
←−

(v , v∗)︸ ︷︷ ︸
after collision

Conservation of momentum and energy :

v + v∗ = v ′ + v ′∗, |v |2 + |v∗|2 = |v ′|2 + |v ′∗|2.

Parametrization of (v ′, v ′∗) by an element σ ∈ S2.

QB(g, f )(v) =

∫
R3×Spect2

B(v − v∗, σ)︸ ︷︷ ︸
collision kernel

(
f (v ′) g(v ′∗)︸ ︷︷ ︸

“appearing”

− f (v) g(v∗)︸ ︷︷ ︸
“disappearing”

)
dv∗ dσ
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Particles interacting according to a repulsive potential of the form
φ(r) = r−(p−1), p ∈ (2,+∞). We only deal with the case p > 5 (
hard potentials).
The collision kernel B(v − v∗, σ) satisfies

B(v − v∗, σ) = C|v − v∗|γ b(cos θ), cos θ =
v − v∗
|v − v∗|

· σ

b is not integrable on S2 :

sin θ b(cos θ) ≈ θ−1−2s, s =
1

p − 1
, ∀ θ ∈ (0, π/2].

For hard potentials s ∈ (0,1/4).
The kinetic factor |v − v∗|γ satisfies γ = p−5

p−1 . For hard potentials
γ > 0.
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Near the equilibrium f = µ+ h, the Linearized Boltzmann equation
reads

∂th = −v · ∇xh + Q(µ,h) + Q(h, µ)︸ ︷︷ ︸
Λh = linear part

(+ Q(h,h)︸ ︷︷ ︸
Nonlinear part

).

Theorem ( H.-Tonon-Tristani ’17)

We have for k large enough and k ′ > k large enough :

‖SΛ(t)h0‖L2
x Hs

v (〈v〉k ) ≤
Cs

t1/2 ‖h0‖L2
x,v (〈v〉k′ ), ∀ t ∈ (0,1],

and

‖SΛ(t)h0‖Hs
x L2

v (〈v〉k ) ≤
Cr

t (1+2s)/2 ‖h0‖L2
x,v (〈v〉k′ ), ∀ t ∈ (0,1].

↪→ Key point to develop our perturbative Cauchy theory.
↪→ tools In the spirit of [ Alexandre-Hérau-Li ’15] for the Boltzmann

case.
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Elements of proof :

apart from a regularizing part, the linearized Boltzmann Kernel
looks like (with Dv = i−1∇v )

Λ ∼ −v .∇x + 〈v〉γ (1 + |Dv |2 + |Dv ∧ v |2 + |v |2)s

we can use microlocal/pseudo-differential techniques to estimate
the collision part. Anyway, due to bad symbolic properties, Weyl
has to be replaced by Wick and Garding inequality by
unconditional positivity.
from Alexandre-Hérau-Li ’15, we use symbolic estimates and
built a close-to-semiclassical class of symbols.
a Lyapunov functional very similar to the one of the fractional FP
can be built.
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The Vlasov-Poisson-Fokker-Planck equation reads


∂t f + v .∇x f − (ε0E +∇xV ).∇v f − γ∇v . (∇v + v) f = 0,

E(t , x) = − 1
|Sd−1|

x
|x |d

?x ρ(t , x), where ρ(t , x) =

∫
f (t , x , v)dv ,

f (0, x , v) = f0(x , v),

We can write −Λ = v .∇x f −∇xV .∇v f − γ∇v . (∇v + v) f and consider
the Duhamel formula

f (t) = SΛ(t)f0 + ε0

∫ t

0
E SΛ(t − s)∇v︸ ︷︷ ︸

integrable singularity

f (s) ds.

By fixed point Theorem, this yields a result of existence and trend to
the equilibrium in Ha,a spaces with a ∈ (1/2,2/3) (H. Thomann ’15)
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This type of regularizing result can also be crucial in the Cauchy
theory in large spaces as recently proposed by Gualdani-Mischler
and Mouhot 15’. We consider here the Boltzmann without cutoff
case :

Considering the Boltzmann model, we have
Conservation of mass, momentum and energy :∫

R3
Q(f , f )(v)

 1
vi
|v |2

 dv = 0

Entropy inequality (H-theorem) :

D(f ) := −
∫
R3

Q(f , f )(v) log f (v) dv ≥ 0

and
D(f ) = 0⇔ f is a Gaussian in v )
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A priori estimates

We fix µ = (2π)−3/2e−|v |
2/2.

In what follows, we shall consider initial data f0 with same mass,
momentum, energy as µ

A priori estimates : if ft is solution of the Boltzmann equation
associated to f0 with finite mass, energy and entropy then :

sup
t≥0

∫ (
1 + |v |2 + | log ft |

)
ft dx dv +

∫ ∞
0

D(fs) ds <∞.

and ∫
T3×R3

ft

(
1
vi
|v |2

)
dx dv =

∫
T3×R3

f0

(
1
vi
|v |2

)
dx dv .

Does ft −−−→
t→∞

µ? If yes, what is the rate of convergence ? is it

explicit ?
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Main results

∂t f + v · ∇x f = QB(f , f ) (t , x , v) ∈ R+ × T3 × R3.

Theorem ( Hérau-Tonon-T. ’17)

If f0 is close enough to the equilibrium µ, then there exists a global
solution f ∈ L∞t (X ) to the Boltzmann equation. Moreover, for any
0 < λ < λ? there exists C > 0 such that

∀ t ≥ 0, ‖ft − µ‖X ≤ C e−λt ‖f0 − µ‖X .

X is a Sobolev space of type H3
x L2

v (〈v〉k ) with k large enough.

λ? > 0 is the optimal rate given by the semigroup decay of the
associated linearized operator.

Key element of the proof in the enlargment theory : Duhamel formula for
Λ = A + B

SΛ(t) = SB(t) +

∫ t

0
SΛ(t − s)ASB(s) ds.
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? Global renormalized solutions with a defect measure : DiPerna
Lions ’89, Villani ’96, Alexandre-Villani ’04

? Perturbative solutions in H`
x,v (µ−1/2)

– Landau equation : Guo ’02, Mouhot-Neumann ’06
– Boltzmann equation : Gressman-Strain ’11, Alexandre et al. ’11

? Solutions in Sobolev spaces with polynomial weight for the
Boltzmann equation : He-Jiang ’17, Alonso et al. ’17

? Improvements :
– The weights are less restrictive.
– Less assumptions on the derivatives.
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Thank you !


