Introduction 00	Hypoellipticity	First examples and Lyapunov functional	Botzmann without cutoff case	Applications of regularizing properties

short time regularization of diffusive inhomogeneous kinetic equations

F. Hérau (Nantes)

on recent works with R. Alexandre, W.-X. Li, L. Thomann, D. Tonon and I. Tristani

ICMP conference - Montreal

July 24, 2018

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Introduction Hypoe

First examples and Lyapunov functional

Botzmann without cutoff case

Applications of regularizing properties

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Table of contents

- 2 Hypoellipticity
- First examples and Lyapunov functional
- 4 Botzmann without cutoff case
- 5 Applications of regularizing properties

Introduction •O	Hypoellipticity 0000	First examples and Lyapunov functional	Botzmann without cutoff case	Applications of regularizing properties
Introc	duction			

We look at a system described by a density of particles $0 \le f(t, x, v)$ with $t \ge 0$, $x \in \mathbb{T}^3$ or \mathbb{R}^3 and $v \in \mathbb{R}^3$.

Inhomogeneous kinetic equations :

$$\partial_t f + \mathbf{v} \cdot \nabla_{\mathbf{x}} f = C(f), \qquad f|_{t=0} = f^0$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

This problem has a long history (Maxwell, Boltzmann, Laudau).

Focus on models when the collision kernel has some diffusion properties

Introduction	Hypoellipticity	First examples and Lyapunov functional	Botzmann without cutoff case	Applications of regularizing properties
00	0000	000000	0000	000000

Possible models of diffusive collision kernels C(f) may be

 \rightarrow Bilinear : Q_B Boltzmann without cutoff, Q_L Landau

-> Linear : *L_K* Kolmogorov, *L_{FP}* Fokker-Planck, *L_B* Boltzmann linéarisé, *L_L* Landau Linéarisé

For example the historical Kolmogorov equation reads

$$\partial_t f + \mathbf{v} \partial_{\mathbf{x}} f = \Delta_{\mathbf{v}} f,$$

-> hypoellipticity : Solutions are known to be smooth for positive time

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Natural questions

- is it true for others models?
- what are the applications?
- are there quantitative estimates ?

Introduction 00	Hypoellipticity •000	First examples and Lyapunov functional	Botzmann without cutoff case	Applications of regularizing properties
Нуро	elliptici	ty		

Consider the Kolmogorov equation

$$\partial_t f = \Lambda f$$
 with $\Lambda = -\nu \cdot \nabla_x + \Delta_v$.

The theory of (type II) hypoelliptic operators by Hörmander (1967) says that if $U \subset \mathbb{R}^6_{x,v}$ open bounded and $u \in \mathcal{C}^{\infty}_0(U)$ then

subelliptic estimate

$$\|u\|_{s}^{2} \leq C(\|\Lambda u\|_{0}^{2} + \|u\|_{0}^{2}) \text{ with } s = 2/3$$

Optimal because only k = 1 commutator is needed :

$$-\Lambda = X_0 + \sum X_j^* X_j$$
 and $\left(X_0, X_j, Y_j \stackrel{\text{def}}{=} [X_j, X_0]\right)$

(ロ) (同) (三) (三) (三) (○) (○)

span the whole tangent space $T\mathbb{R}^{2n}$ and s = 2/(2k + 1).

Introduction	lypoellipticity	First examples and Lyapunov functional	Botzmann without cutoff case	Applications of regularizing properties
00 0	000	000000	0000	000000

General remarks about the preceding result :

- A lot of methods exists to get this result (mention Kohn where s = 1/4, Hörmander, Helffer-Nourrigat, Rotchild-Stein,....).
- In general local methods.
- $-\Lambda$ not selfadjoint, nor elliptic.

From kinetic considerations we would like :

- Explicit methods and constants.
- Robust methods (apply to other models).
- Look at the time dependent problem $t \longrightarrow S_{\Lambda}(t) f_0$
- measuring precisely the gain of regularity for the Cauchy problem

Introduction	Hypoellipticity	First examples and Lyapunov functional	Botzmann without cutoff case	Applications of regularizing properties
00	0000	000000	0000	000000

First results on the example of the Fokker-Planck equation

 $\partial_t f = \Lambda f$ with $\Lambda = -v \cdot \nabla_x + \nabla_v \cdot (\nabla_v + v)$ $L_{FP} = \nabla_v \cdot (\nabla_v + v)$

In three steps :

 global maximal explicit subelliptic estimate (H. Nier 02, Helffer-Nier 05) :

$$\||D_{\nu}|^{2}u\|^{2} + \||D_{x}|^{2/3}u\|^{2} \lesssim \|\Lambda u\|^{2} \lesssim \||D_{\nu}|^{2}u\|^{2} + \||D_{x}|^{2}u\|^{2}$$

- Deduce that the spectrum of −Λ ≥ 0 is in {|Im(z)| ≤ (Re(z))³} and get a resolvent estimate outside : cuspidal operators
- Use a Cauchy integral formula

$$S_{\Lambda}(t)f_0 = \frac{1}{2i\pi}\int_{\Gamma}e^{-tz}(z+\Lambda)^{-1}f_0dz$$

(日) (日) (日) (日) (日) (日) (日)

Introduction	Hypoellipticity	First examples and Lyapunov functional	Botzmann without cutoff case	Applications of regularizing properties
00	0000	000000	0000	000000

Using this method

Theorem

for all
$$r \in \mathbb{R}$$
, $\|S_{\Lambda}(t)f_0\|_{H^{r,r}_{x,v}} \leq \frac{C_r}{t^{N_r}} \|f_0\|_{H^{-r,-r}_{x,v}}$

- Done for FP in ℝ³ (H. Nier 02), chains of oscillators (step 2, Eckmann-Hairer 03) general quadratic models (Hitrik, Pravda Starov, Viola 15)...
- Robust proof
- Sometimes sufficient for applications
- But not optimal, decay depends on directions :
 - Melher Formulas (Green kernels)
 - Old result concerning Subunit balls, harmonic analysis (Fefferman 83, Coulhon,Saloff-Coste, Varopoulos 92)
 - Next section.

Introduction Hypoelliptic

So t

First examples and Lyapunov functional

Botzmann without cutoff case

Applications of regularizing properties

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

First examples and Lyapunov functionals

The basic heat equation example

$$\partial_t f - \Delta_v f = 0, \qquad \Lambda = \Delta_v$$

for a density f(t, v) (forget variable x for a moment). Consider a time-dependent functional

$$\mathcal{H}(t,g) = \|g\|^2 + 2t \|\nabla_v g\|^2$$
$$\frac{d}{dt}\mathcal{H}(t,f(t)) = -2 \|\nabla_v f(t)\|^2 + 2 \|\nabla_v f(t)\|^2 - 2t \|\Delta_v f(t)\|^2 \le 0$$
hat $\|\nabla_v f(t)\|^2 \le \frac{C_1}{t} \|f_0\|^2$ which writes for $\Lambda = \Delta_v$

$$\|S_{\Lambda}(t)f_{0}\|_{H^{1}_{v}} \leq \frac{C_{1}}{t^{1/2}} \|f_{0}\|_{L^{2}_{v}}$$

We shall do the same for inhomogeneous models using the commutation identity $[\nabla_{v}, v.\nabla_{x}] = \nabla_{x}$.

Introduction	Hypoellipticity	First examples and Lyapunov functional	Botzmann without cutoff case	Applications of regularizing properties
00	0000	00000	0000	000000

Consider now the full (conjugated) Fokker Planck equation

$$\partial_t f = \Lambda f$$
 with $\Lambda = -v \cdot \nabla_x - (-\nabla_v + v) \cdot \nabla_v$ $L_{FP} = -(-\nabla_v + v) \cdot \nabla_v$

For C > D > E > 1 to be defined later on, we define the functional

$$\mathcal{H}(t,g) = C \left\|g\right\|^2 + Dt \left\|\partial_{\nu}g\right\|^2 + Et^2 \left\langle\partial_{\nu}g,\partial_{\chi}g\right\rangle + t^3 \left\|\partial_{\chi}g\right\|^2.$$

(where the norms are in $L^2(d\mu)$, μ is the Gaussian in velocity).

Then for C, D, E well chosen, we check similarly that

$$\frac{d}{dt}\mathcal{H}(t,f(t))\leq 0.$$

First note that if $E^2 < D$, the crossed term is controlled by the two others. We have just modified a (time-dependent) norm in H^1 .

Introduction	Hypoellipticity	First examples and Lyapunov functional	Botzmann without cutoff case	Applications of regularizing properties
00	0000	00000	0000	000000

Some Computations in a simpler case. \vartriangleright First term

$$\frac{d}{dt} \|f\|^2 = 2 \langle \partial_t f, f \rangle = -2 \langle v \partial_x f, f \rangle - 2 \langle (-\partial_v + v) \partial_v f, f \rangle = -2 \|\partial_v f\|^2$$

 \triangleright Second term

$$\begin{aligned} \frac{d}{dt} \|\partial_{v}f\|^{2} &= 2 \left\langle \partial_{v}(\partial_{t}f), \partial_{v}f \right\rangle \\ &= -2 \left\langle \partial_{v}(v\partial_{x}f + (-\partial_{v} + v)\partial_{v}f), \partial_{v}f \right\rangle \\ &= -2 \left\langle v\partial_{x}\partial_{v}f, \partial_{v}f \right\rangle - 2 \left\langle [\partial_{v}, v\partial_{x}]f, \partial_{v}f \right\rangle - 2 \left\langle \partial_{v}(-\partial_{v} + v)\partial_{v}f, \partial_{v}f \right\rangle . \\ &= -2 \left\langle \partial_{x}f, \partial_{v}f \right\rangle - 2 \left\| (-\partial_{v} + v)\partial_{v}f \right\|^{2} \end{aligned}$$

⊳ Last term

$$\frac{d}{dt}\left\|\partial_{x}f\right\|^{2}=-2\left\|\partial_{v}\partial_{x}f\right\|^{2}$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

Introduction	Hypoellipticity	First examples and Lyapunov functional	Botzmann without cutoff case	Applications of regularizing properties
00	0000	000000	0000	000000

> Third important term

$$\begin{aligned} \frac{d}{dt} & \langle \partial_x f, \partial_v f \rangle \\ &= - \langle \partial_x (v \partial_x f + (-\partial_v + v) \partial_v f), \partial_v f \rangle - \langle \partial_x f, \partial_v (v \partial_x f + (-\partial_v + v) \partial_v f) \rangle \\ &= - \langle v \partial_x (\partial_x f), \partial_v f \rangle - \langle (-\partial_v + v) \partial_v f, \partial_x \partial_v f \rangle \\ &- \langle \partial_x f, [\partial_v, v \partial_x] f \rangle - \langle \partial_x f, v \partial_x \partial_v f \rangle \\ &- \langle \partial_x f, [\partial_v, (-\partial_v + v)] \partial_v f \rangle - \langle (-\partial_v + v) \partial_v f, \partial_x \partial_v f \rangle . \end{aligned}$$

we have

$$\langle v \partial_x \partial_x f, \partial_v f \rangle + \langle \partial_x f, v \partial_x \partial_v f \rangle = 0.$$

and

$$[\partial_{\nu},(-\partial_{\nu}+\nu)]=1$$

so that

$$\frac{d}{dt}\langle \partial_x f, \partial_v f \rangle = - \left\| \partial_x f \right\|^2 + 2 \left\langle (-\partial_v + v) \partial_v f, \partial_x \partial_v f \right\rangle - \left\langle \partial_x f, \partial_v f \right\rangle.$$

Introduction	Hypoellipticity	First examples and Lyapunov functional	Botzmann without cutoff case	Applications of regularizing properties
00	0000	000000	0000	000000

> Entropy dissipation inequality (simplest case)

$$\frac{d}{dt}\mathcal{H}(1,f(t)) = -2C \|\partial_{v}f\|^{2} - 2D\|(-\partial_{v}+v)\partial_{v}f\|^{2} - E\|\partial_{x}f\|^{2} - 2\|\partial_{x}\partial_{v}f\|^{2} - 2(D+E)\langle\partial_{x}f,\partial_{v}f\rangle - 2E\langle(-\partial_{v}+v)\partial_{v}f,\partial_{x}\partial_{v}f\rangle.$$

Therefore, using Cauchy-Schwartz : for 1 < E < D < C well chosen,

$$\frac{d}{dt}\mathcal{H}(1,f(t))\leq 0$$

The same occurs with *t* instead of 1 inside the definition of \mathcal{H} . This method, developed first in (H. 05)) gives for any $t \in [0, 1)$

Theorem

$$\|S_{\Lambda}(t)h_0\|_{L^2_xH^1_\nu} \leq \frac{C}{t^{1/2}} \|h_0\|_{L^2_{x,\nu}}, \qquad \|S_{\Lambda}(t)h_0\|_{H^1_xL^2_\nu} \leq \frac{C_1}{t^{3/2}} \|h_0\|_{L^2_{x,\nu}}.$$

Introduction	Hypoellipticity	First examples and Lyapunov functional	Botzmann without cutoff case	Applications of regularizing properties
00	0000	00000	0000	000000

The Fractional Kolmogorov case reads

$$\partial_t f = \Lambda f$$
 with $\Lambda = -\nu \cdot \nabla_x - (1 - \Delta_v)^{s/2}$ $L_{FK} = -(1 - \Delta_v)^{s/2}$

The same procedure can be applied and we get

Theorem

H., Tonon, Tristani 17

$$\|S_{\Lambda}(t)h_0\|_{L^2_xH^s_\nu} \leq \frac{C}{t^{1/2}}\|h_0\|_{L^2_{x,\nu}}, \qquad \|S_{\Lambda}(t)h_0\|_{H^s_xL^2_\nu} \leq \frac{C_1}{t^{(1+2s)/2}}\|h_0\|_{L^2_{x,\nu}}.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Introduction	Hypoellipticity	First examples and Lyapunov functional	Botzmann without cutoff case	Applications of
00	0000	000000	●000	000000

The Boltzmann without cutoff case

The Boltzmann equation in the torus reads

$$\partial_t f + \mathbf{v} \cdot \nabla_{\!\!\mathbf{x}} f = Q_B(f, f)$$

• Conservation of momentum and energy :

$$v + v_* = v' + v'_*, \quad |v|^2 + |v_*|^2 = |v'|^2 + |v'_*|^2.$$

• Parametrization of $(\mathbf{v}', \mathbf{v}'_*)$ by an element $\sigma \in S^2$.

Introduction	Hypoellipticity	First examples and Lyapunov functional	Botzmann without cutoff case	Applications of regularizing properties
00	0000	000000	0000	000000

- Particles interacting according to a repulsive potential of the form
 φ(r) = r^{-(p-1)}, p ∈ (2, +∞). We only deal with the case p > 5 (
 hard potentials).
- The collision kernel B(v v_{*}, σ) satisfies

 $B(\mathbf{v} - \mathbf{v}_*, \sigma) = C|\mathbf{v} - \mathbf{v}_*|^{\gamma} b(\cos \theta), \quad \cos \theta = rac{\mathbf{v} - \mathbf{v}_*}{|\mathbf{v} - \mathbf{v}_*|} \cdot \sigma$

• *b* is not integrable on S^2 :

$$\sin \theta \, b(\cos \theta) pprox \theta^{-1-2s}, \quad s = rac{1}{p-1}, \quad \forall \, \theta \in (0, \pi/2].$$

For hard potentials $s \in (0, 1/4)$.

• The kinetic factor $|v - v_*|^{\gamma}$ satisfies $\gamma = \frac{p-5}{p-1}$. For hard potentials $\gamma > 0$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Introduction	Hypoellipticity	First examples and Lyapunov functional	Botzmann without cutoff case	Applications of regularizing properties
00	0000	000000	0000	000000

Near the equilibrium $f = \mu + h$, the Linearized Boltzmann equation reads

$$\partial_t h = \underbrace{-\mathbf{v} \cdot \nabla_{\!\!\mathbf{x}} h + Q(\mu, h) + Q(h, \mu)}_{\Lambda h = \text{linear part}} \quad (+ \underbrace{Q(h, h)}_{\text{Nonlinear part}}).$$

Theorem (H.-Tonon-Tristani '17) We have for k large enough and k' > k large enough : $\|S_{\Lambda}(t)h_{0}\|_{L^{2}_{x}H^{s}_{v}(\langle v \rangle^{k})} \leq \frac{C_{s}}{t^{1/2}}\|h_{0}\|_{L^{2}_{x,v}(\langle v \rangle^{k'})}, \quad \forall t \in (0, 1],$ and $\|S_{\Lambda}(t)h_{0}\|_{H^{s}_{x}L^{2}_{v}(\langle v \rangle^{k})} \leq \frac{C_{r}}{t^{(1+2s)/2}}\|h_{0}\|_{L^{2}_{x,v}(\langle v \rangle^{k'})}, \quad \forall t \in (0, 1].$

- \hookrightarrow Key point to develop our perturbative Cauchy theory.
- $\hookrightarrow\,$ tools In the spirit of [Alexandre-Hérau-Li '15] for the Boltzmann case.

Introduction	Hypoellipticity	First examples and Lyapunov functional	Botzmann without cutoff case	Applications of regularizing properties
00	0000	000000	000●	000000

Elements of proof :

 apart from a regularizing part, the linearized Boltzmann Kernel looks like (with D_v = i⁻¹∇_v)

$$\Lambda \sim -\nu.\nabla_{x} + \left\langle \nu \right\rangle^{\gamma} (1 + \left| D_{\nu} \right|^{2} + \left| D_{\nu} \wedge \nu \right|^{2} + \left| \nu \right|^{2})^{s}$$

- we can use microlocal/pseudo-differential techniques to estimate the collision part. Anyway, due to bad symbolic properties, Weyl has to be replaced by Wick and Garding inequality by unconditional positivity.
- from Alexandre-Hérau-Li '15, we use symbolic estimates and built a close-to-semiclassical class of symbols.
- a Lyapunov functional very similar to the one of the fractional FP can be built.

(日) (日) (日) (日) (日) (日) (日)

Introduction	Hypoellipticity	First examples and Lyapunov functional	Botzmann without cutoff case	Applications of regularizing propertie
00	0000	000000	0000	00000

The Vlasov-Poisson-Fokker-Planck equation reads

$$\begin{cases} \partial_t f + v \cdot \nabla_x f - (\varepsilon_0 E + \nabla_x V) \cdot \nabla_v f - \gamma \nabla_v \cdot (\nabla_v + v) f = 0, \\ E(t, x) = -\frac{1}{|\mathbb{S}^{d-1}|} \frac{x}{|x|^d} \star_x \rho(t, x), & \text{where} \quad \rho(t, x) = \int f(t, x, v) dv, \\ f(0, x, v) = f_0(x, v), \end{cases}$$

We can write $-\Lambda = v \cdot \nabla_x f - \nabla_x V \cdot \nabla_v f - \gamma \nabla_v \cdot (\nabla_v + v) f$ and consider the Duhamel formula

$$f(t) = S_{\Lambda}(t)f_0 + \varepsilon_0 \int_0^t E \underbrace{S_{\Lambda}(t-s)\nabla_v}_{\text{integrable singularity}} f(s) \, ds.$$

By fixed point Theorem, this yields a result of existence and trend to the equilibrium in $H^{a,a}$ spaces with $a \in (1/2, 2/3)$ (H. Thomann '15)

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Introduction	Hypoellipticity	First examples and Lyapunov functional	Botzmann without cutoff case	Applications of regularizing properties
00	0000	000000	0000	00000

This type of regularizing result can also be crucial in the Cauchy theory in large spaces as recently proposed by Gualdani-Mischler and Mouhot 15'. We consider here the Boltzmann without cutoff case :

Considering the Boltzmann model, we have

• Conservation of mass, momentum and energy :

$$\int_{\mathbb{R}^3} Q(f,f)(v) \begin{pmatrix} 1 \\ v_i \\ |v|^2 \end{pmatrix} dv = 0$$

• Entropy inequality (H-theorem) :

$$D(f) := -\int_{\mathbb{R}^3} Q(f, f)(v) \log f(v) \, dv \ge 0$$

and

 $D(f) = 0 \Leftrightarrow f$ is a Gaussian in v)

Introduction	Hypoellipticity	First examples and Lyapunov functional	Botzmann without cutoff case	Applications of regularizing properties
00	0000	000000	0000	00000

A priori estimates

We fix $\mu = (2\pi)^{-3/2} e^{-|v|^2/2}$.

In what follows, we shall consider initial data ${\it f}_{\rm 0}$ with same mass, momentum, energy as μ

A priori estimates : if f_t is solution of the Boltzmann equation associated to f_0 with finite mass, energy and entropy then :

$$\sup_{t\geq 0}\int \left(1+|\boldsymbol{v}|^2+|\log f_t|\right)f_t\,dx\,d\boldsymbol{v}+\int_0^\infty D(f_s)\,ds<\infty.$$

and

$$\int_{\mathbb{T}^3\times\mathbb{R}^3} f_t \begin{pmatrix} 1\\ v_i\\ |v|^2 \end{pmatrix} dx dv = \int_{\mathbb{T}^3\times\mathbb{R}^3} f_0 \begin{pmatrix} 1\\ v_i\\ |v|^2 \end{pmatrix} dx dv.$$

Does $f_t \xrightarrow[t \to \infty]{} \mu$? If yes, what is the rate of convergence ? is it explicit ?

Introduction 00	Hypoellipticity 0000	First examples and Lyapunov functional	Botzmann without cutoff case	Applications of regularizing properties
Main re	sults			

$$\partial_t f + \mathbf{v} \cdot \nabla_{\!\!\mathbf{x}} f = Q_{\!B}(f, f) \quad (t, \mathbf{x}, \mathbf{v}) \in \mathbb{R}^+ \times \mathbb{T}^3 \times \mathbb{R}^3$$

Theorem (Hérau-Tonon-T. '17)

If f_0 is close enough to the equilibrium μ , then there exists a global solution $f \in L^{\infty}_t(X)$ to the Boltzmann equation. Moreover, for any $0 < \lambda < \lambda_*$ there exists C > 0 such that

$$\forall t \geq 0, \quad \|f_t - \mu\|_X \leq C e^{-\lambda t} \|f_0 - \mu\|_X.$$

- X is a Sobolev space of type $H_x^3 L_v^2(\langle v \rangle^k)$ with k large enough.
- λ_{*} > 0 is the optimal rate given by the semigroup decay of the associated linearized operator.
- Key element of the proof in the enlargment theory : Duhamel formula for $\Lambda = A + B$

$$S_{\Lambda}(t) = S_{B}(t) + \int_{0}^{t} S_{\Lambda}(t-s) A S_{B}(s) \, ds.$$

Introduction	Hypoellipticity	First examples and Lyapunov functional	Botzmann without cutoff case	Applications of regularizing properties
00	0000	000000	0000	000000

- Global renormalized solutions with a defect measure : DiPerna Lions '89, Villani '96, Alexandre-Villani '04
- * Perturbative solutions in $H_{x,v}^{\ell}(\mu^{-1/2})$
 - Landau equation : Guo '02, Mouhot-Neumann '06
 - Boltzmann equation : Gressman-Strain '11, Alexandre et al. '11

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

 Solutions in Sobolev spaces with polynomial weight for the Boltzmann equation : He-Jiang '17, Alonso et al. '17

★ Improvements :

- The weights are less restrictive.
- Less assumptions on the derivatives.

00 0000 00000 00000 00000	Introduction	Hypoellipticity	First examples and Lyapunov functional	Botzmann without cutoff case	Applications of regularizing propertie
	00	0000	000000	0000	00000

Thank you !

