Transfer matrix approach to 1d random band matrices

Tatyana Shcherbina*
based on the joint papers with M.Shcherbina

Princeton University

XIX International Congress on Mathematical Physics, Montréal, July 23 - 28, 2018
*Supported in part by NSF grant DMS-1700009

Local statistics, localization and delocalization

One of the key physical parameter of models is the localization length, which describes the typical length scale of the eigenvectors of random matrices. The system is called delocalized if the localization length ℓ is comparable with the matrix size, and it is called localized otherwise.

- Localized eigenvectors: lack of transport (insulators), and Poisson local spectral statistics (typically strong disorder)
- Delocalization: diffusion (electric conductors), and GUE/GOE local statistics (typically weak disorder).

The questions of the order of the localization length are closely related to the universality conjecture of the bulk local regime of the random matrix theory.

From the RMT point of view, the main objects of the local regime are k -point correlation functions $\mathrm{R}_{\mathrm{k}}(\mathrm{k}=1,2, \ldots)$, which can be defined by the equalities:

$$
\begin{aligned}
& \mathbb{E}\left\{\sum_{\mathrm{j}_{1} \neq \ldots \neq \mathrm{j}_{\mathrm{k}}} \varphi_{\mathrm{k}}\left(\lambda_{\mathrm{j}_{1}}^{(\mathrm{N})}, \ldots, \lambda_{\mathrm{j}_{\mathrm{k}}}^{(\mathrm{N})}\right)\right\} \\
& \quad=\int_{\mathbb{R}^{\mathrm{k}}} \varphi_{\mathrm{k}}\left(\lambda_{1}^{(\mathrm{N})}, \ldots, \lambda_{\mathrm{k}}^{(\mathrm{N})}\right) \mathrm{R}_{\mathrm{k}}\left(\lambda_{1}^{(\mathrm{N})}, \ldots, \lambda_{\mathrm{k}}^{(\mathrm{N})}\right) \mathrm{d} \lambda_{1}^{(\mathrm{N})} \ldots \mathrm{d} \lambda_{\mathrm{k}}^{(\mathrm{N})}
\end{aligned}
$$

where $\varphi_{\mathrm{k}}: \mathbb{R}^{\mathrm{k}} \rightarrow \mathbb{C}$ is bounded, continuous and symmetric in its arguments.

Universality conjecture in the bulk of the spectrum (hermitian case, deloc.eg.s.) (Wigner - Dyson):

$$
(\mathrm{N} \rho(\mathrm{E}))^{-\mathrm{k}} \mathrm{R}_{\mathrm{k}}\left(\left\{\mathrm{E}+\xi_{\mathrm{j}} / \mathrm{N} \rho(\mathrm{E})\right\}\right) \quad \stackrel{\mathrm{N} \rightarrow \infty}{\longrightarrow} \quad \operatorname{det}\left\{\frac{\sin \pi\left(\xi_{\mathrm{i}}-\xi_{\mathrm{j}}\right)}{\pi\left(\xi_{\mathrm{i}}-\xi_{\mathrm{j}}\right)}\right\}_{\mathrm{i}, \mathrm{j}=1}^{\mathrm{k}}
$$

- Wigner matrices, β-ensembles with $\beta=1,2$, sample covariance matrices, etc.: delocalization, GUE/GOE local spectral statistics
- Anderson model (Random Schrödinger operators):

$$
\mathrm{H}_{\mathrm{RS}}=-\Delta+\mathrm{V},
$$

where \triangle is the discrete Laplacian in lattice box $\Lambda=[1, n]^{\mathrm{d}} \cap \mathbb{Z}^{\mathrm{d}}, \mathrm{V}$ is a random potential (i.e. a diagonal matrix with i.i.d. entries). In $\mathrm{d}=1$: narrow band matrix with i.i.d. diagonal

$$
\mathrm{H}_{\mathrm{RS}}=\left(\begin{array}{cccccc}
\mathrm{V}_{1} & 1 & 0 & 0 & \ldots & 0 \\
1 & \mathrm{~V}_{2} & 1 & 0 & \ldots & 0 \\
0 & 1 & \mathrm{~V}_{3} & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & \ldots & 0 & 1 & \mathrm{~V}_{\mathrm{n}-1} & 1 \\
0 & \ldots & 0 & 0 & 1 & \mathrm{~V}_{\mathrm{n}}
\end{array}\right)
$$

Localization, Poisson local spectral statistics (Fröhlich, Spencer, Aizenman, Molchanov, ...)

Random band matrices

Can be defined in any dimension, but we will speak about $\mathrm{d}=1$.
Entries are independent (up to the symmetry) but not identically distributed.

$$
\mathrm{H}=\left\{\mathrm{H}_{\mathrm{jk}}\right\}_{\mathrm{j}, \mathrm{k}=1}^{\mathrm{N}}, \quad \mathrm{H}=\mathrm{H}^{*}, \quad \mathbb{E}\left\{\mathrm{H}_{\mathrm{jk}}\right\}=0
$$

Variance is given by some function J (even, compact support or rapid decay)

$$
\mathbb{E}\left\{\left|\mathrm{H}_{\mathrm{jk}}\right|^{2}\right\}=\mathrm{W}^{-1} \mathrm{~J}(|\mathrm{j}-\mathrm{k}| / \mathrm{W})
$$

Main parameter: band width $\mathrm{W} \in[1 ; \mathrm{N}]$.

1d case

$$
\mathrm{H}=\left(\begin{array}{ccccccccccccccc}
. & . & . & . & . & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
. & . & . & . & . & . & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
. & . & . & . & . & . & . & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
. & . & . & . & . & . & . & . & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
. & . & . & . & . & . & . & . & . & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & . & . & . & . & . & . & . & . & . & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & . & . & . & . & . & . & . & . & . & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & . & . & . & . & . & . & . & . & . & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & . & . & . & . & . & . & . & . & . & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & . & . & . & . & . & . & . & . & . & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & . & . & . & . & . & . & . & . & . \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & . & . & . & . & . & . & . & . \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & . & . & . & . & . & . & .
\end{array}\right)
$$

$\mathrm{W}=\mathrm{O}(1)[\sim$ random Schrödinger] $\longleftrightarrow \mathrm{W}=\mathrm{N}$ [Wigner matrices]

We consider the following two models:

- Random band matrices: specific covariance

$$
\mathrm{J}_{\mathrm{ij}}=\left(-\mathrm{W}^{2} \Delta+1\right)_{\mathrm{ij}}^{-1} \approx \mathrm{C}_{1} \mathrm{~W}^{-1} \exp \left\{-\mathrm{C}_{2}|\mathrm{i}-\mathrm{j}| / \mathrm{W}\right\}
$$

- Block band matrices

Only 3 block diagonals are non zero.

$$
\mathrm{H}=\left(\begin{array}{ccccccc}
\mathrm{A}_{1} & \mathrm{~B}_{1} & 0 & 0 & 0 & \ldots & 0 \\
\mathrm{~B}_{1}^{*} & \mathrm{~A}_{2} & \mathrm{~B}_{2} & 0 & 0 & \ldots & 0 \\
0 & \mathrm{~B}_{2}^{*} & \mathrm{~A}_{3} & \mathrm{~B}_{3} & 0 & \ldots & 0 \\
. & \cdot & \mathrm{B}_{3}^{*} & \cdot & . & \cdot & . \\
. & \cdot & \cdot & \cdot & . & \mathrm{A}_{\mathrm{n}-1} & \mathrm{~B}_{\mathrm{n}-1} \\
0 & \cdot & \cdot & \cdot & 0 & \mathrm{~B}_{\mathrm{n}-1}^{*} & \mathrm{~A}_{\mathrm{n}}
\end{array}\right)
$$

A_{j} - independent $\mathrm{W} \times \mathrm{W}$ GUE-matrices with entry's variance $(1-2 \alpha) / \mathrm{W}, \quad \alpha<\frac{1}{4}$
B_{j}-independent $\mathrm{W} \times \mathrm{W}$ Ginibre matrices with entry's variance α / W

Anderson transition in random band matrices

Varying W, we can see the transition:
Conjecture (in the bulk of the spectrum):

$$
\begin{array}{lll}
\mathrm{d}=1: & \ell \sim \mathrm{W}^{2} & \mathrm{~W} \gg \sqrt{\mathrm{~N}}
\end{array} \quad \text { Delocalization, GUE statistics } \quad \text { Localization, Poisson statistics }
$$

Partial results $(\mathrm{d}=1)$:

- Schenker (2009): $\ell \leq \mathrm{W}^{8}$ localization techniques; improved to W^{7};
- Erdős, Yau, Yin (2011): $\ell \geq \mathrm{W}$ - RM methods;
- Erdős, Knowles (2011): $\ell \gg W^{7 / 6}$ (in a weak sense);
- Erdôs, Knowles, Yau, Yin (2012): $\ell \gg W^{5 / 4}$ (in a weak sense, not uniform in N);
- Bourgade, Erdős, Yau, Yin (2016): gap universality for W ~ N;
- Bourgade, Yau, Yin (2018): W $\gg N^{3 / 4}$ (quantum unique ergodicity);

Another method, which allows to work with random operators with non-trivial spatial structures, is supersymmetry techniques (SUSY), which based on the representation of the determinant as an integral over the Grassmann (anticommuting) variables.

The method allows to obtain an integral representation for the main spectral characteristic (such as density of states, second correlation functions, or the average of an elements of the resolvent) as the averages of certain observables in some SUSY statistical mechanics models (so-called dual representation in terms of SUSY). This is basically an algebraic step, and usually can be done by the standard algebraic manipulations. The real mathematical challenge is a rigour analysis of the obtained integral representation.

$$
\begin{aligned}
& \mathcal{R}_{1}\left(\mathrm{z}_{1}, \mathrm{z}_{1}^{\prime}\right):=\mathbb{E}\left\{\frac{\operatorname{det}\left(\mathrm{H}-\mathrm{z}_{1}^{\prime}\right)}{\operatorname{det}\left(\mathrm{H}-\mathrm{z}_{1}\right)}\right\} \\
& \mathcal{R}_{2}\left(\mathrm{z}_{1}, \mathrm{z}_{1}^{\prime} ; \mathrm{z}_{2}, \mathrm{z}_{2}^{\prime}\right):=\mathbb{E}\left\{\frac{\left.\operatorname{det}\left(\mathrm{H}-\mathrm{z}_{1}^{\prime}\right) \operatorname{det}\left(\mathrm{H}-\mathrm{z}_{2}^{\prime}\right)\right)}{\left.\operatorname{det}\left(\mathrm{H}-\mathrm{z}_{1}\right) \operatorname{det}\left(\mathrm{H}-\mathrm{z}_{2}\right)\right)}\right\}
\end{aligned}
$$

We study these functions for $\mathrm{z}_{1,2}=\mathrm{E}+\xi_{1,2} / \rho(\mathrm{E}) \mathrm{N}$, $\mathrm{z}_{1,2}^{\prime}=\mathrm{E}+\xi_{1,2}^{\prime} / \rho(\mathrm{E}) \mathrm{N}, \mathrm{E} \in(-2,2)$.

Link with the spectral correlation functions:

$$
\mathrm{E}\left\{\operatorname{Tr}\left(\mathrm{H}-\mathrm{z}_{1}\right)^{-1} \operatorname{Tr}\left(\mathrm{H}-\mathrm{z}_{2}\right)^{-1}\right\}=\left.\frac{\mathrm{d}^{2}}{\mathrm{dz}_{1}^{\prime} \mathrm{dz}_{2}^{\prime}} \mathcal{R}\left(\mathrm{z}_{1}, \mathrm{z}_{1}^{\prime} ; \mathrm{z}_{2}, \mathrm{z}_{2}^{\prime}\right)\right|_{\mathrm{z}_{1}^{\prime}=\mathrm{z}_{1}, \mathrm{z}_{2}^{\prime}=\mathrm{z}_{2}}
$$

Correlation function of the characteristic polynomials:

$$
\mathcal{R}_{0}\left(\lambda_{1}, \lambda_{2}\right)=\mathbb{E}\left\{\operatorname{det}\left(\mathrm{H}-\lambda_{1}\right) \operatorname{det}\left(\mathrm{H}-\lambda_{2}\right)\right\}, \quad \lambda_{1,2}=\mathrm{E} \pm \xi / \rho(\mathrm{E}) \mathrm{N}
$$

Integral representation for characteristic polynomials

$$
\mathcal{R}_{0}\left(\lambda_{1}, \lambda_{2}\right)=\mathrm{C}_{\mathrm{N}} \int_{\mathcal{H}_{2}^{\mathrm{N}}} \exp \left\{-\frac{1}{2} \sum_{\mathrm{j}, \mathrm{k}} \mathrm{~J}_{\mathrm{jk}}^{-1} \operatorname{Tr} \mathrm{X}_{\mathrm{j}} \mathrm{X}_{\mathrm{k}}\right\} \prod_{\mathrm{j}} \operatorname{det}\left(\mathrm{X}_{\mathrm{j}}-\mathrm{i} \Lambda / 2\right) \mathrm{d} \overline{\mathrm{X}}
$$

where $\left\{\mathrm{X}_{\mathrm{j}}\right\}$ are hermitian 2×2 matrices, $\Lambda=\operatorname{diag}\left\{\lambda_{1}, \lambda_{2}\right\}$, and $\hat{\xi}=\operatorname{diag}\{\xi,-\xi\}$.

For the density of states X_{j} will be super-matrices

$$
\mathrm{X}_{\mathrm{j}}=\left(\begin{array}{cc}
\mathrm{a}_{\mathrm{j}} & \rho_{\mathrm{j}} \\
\tau_{\mathrm{j}} & \mathrm{~b}_{\mathrm{j}}
\end{array}\right)
$$

with real variables $\mathrm{a}_{\mathrm{j}}, \mathrm{b}_{\mathrm{j}}$ and Grassmann variables $\rho_{\mathrm{j}}, \tau_{\mathrm{j}}$.

The formulas can be obtain in any dimension and for any J, although the specific $\mathrm{J}=\left(-\mathrm{W}^{2} \Delta+1\right)^{-1}$ gives a nearest neighbour model. In particular, it becomes accessible for transfer matrix approach.

The idea of the transfer operator approach is very simple and natural. Let $\mathcal{K}(\mathrm{X}, \mathrm{Y})$ be the matrix kernel of the compact integral operator in $\oplus_{\mathrm{i}=1}^{\mathrm{p}} \mathrm{L}_{2}[\mathrm{X}, \mathrm{d} \mu(\mathrm{X})]$. Then

$$
\begin{aligned}
& \int \mathrm{g}\left(\mathrm{X}_{1}\right) \mathcal{K}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \ldots \mathcal{K}\left(\mathrm{X}_{\mathrm{n}-1}, \mathrm{X}_{\mathrm{n}}\right) \mathrm{f}\left(\mathrm{X}_{\mathrm{n}}\right) \prod \mathrm{d} \mu\left(\mathrm{X}_{\mathrm{i}}\right)=\left(\mathcal{K}^{\mathrm{n}-1} \mathrm{f}, \overline{\mathrm{~g}}\right) \\
& =\sum_{\mathrm{j}=0}^{\infty} \lambda_{\mathrm{j}}^{\mathrm{n}-1}(\mathcal{K}) c_{\mathrm{j}}, \quad \text { with } \quad c_{\mathrm{j}}=\left(\mathrm{f}, \psi_{\mathrm{j}}\right)\left(\mathrm{g}, \tilde{\psi}_{\mathrm{j}}\right)
\end{aligned}
$$

Here $\left\{\lambda_{\mathrm{j}}(\mathcal{K})\right\}_{\mathrm{j}=0}^{\infty}$ are the eigenvalues of $\mathcal{K}\left(\left|\lambda_{0}\right| \geq\left|\lambda_{1}\right| \geq \ldots\right), \psi_{\mathrm{j}}$ are corresponding eigenvectors, and $\tilde{\psi}_{\mathrm{j}}$ are the eigenvectors of \mathcal{K}^{*}. Hence, to study the correlation function, it suffices to study the integral operator with a kernel $\mathcal{K}(\mathrm{X}, \mathrm{Y})$.

The main difficulties:
(1) the transfer operator is not self-adjoint, and thus the perturbation theory is not easily applied in a rigorous way;
(2) the transfer operator has a complicated structure including a part that acts on unitary and hyperbolic groups, hence we need to work with corresponding special functions;
(3) the kernel of the transfer operator for the density of states and for the second correlation function contains not only only the complex, but also some Grassmann variables. Therefore, for the density of states \mathcal{K}_{1} is a 2×2 matrix kernel, containing the Jordan cell, and for the second correlation function \mathcal{K}_{2} is a $2^{8} \times 2^{8}$ matrix kernel, containing 4×4 Jordan cell in the main block.
Using the symmetry of the problem, \mathcal{K}_{2} could be replaced by 70×70 matrix kernel, but it is still very complicated.

Results for the characteristic polynomials:
Let $\mathrm{D}_{2}=\mathcal{R}_{0}(\mathrm{E}, \mathrm{E}), \overline{\mathcal{R}}_{0}(\mathrm{E}, \xi)=\mathrm{D}_{2}^{-1} \cdot \mathcal{R}_{0}(\mathrm{E}+\hat{\xi} / 2 \mathrm{~N} \rho(\mathrm{E}))$.

$$
\lim _{\mathrm{n} \rightarrow \infty} \overline{\mathcal{R}}_{0}(\mathrm{E}, \xi)=\left\{\begin{array}{cc}
\frac{\sin \pi \xi}{\pi \xi}, & \mathrm{W} \geq \mathrm{N}^{1 / 2+\theta} \\
\left(\mathrm{e}^{-\mathrm{C}_{*} \mathrm{t}_{*} \Delta_{\mathrm{U}}-\mathrm{i} \xi \hat{\nu}} \cdot 1,1\right), & \mathrm{N}=\mathrm{C}_{*} \mathrm{~W}^{2} \\
1, & 1 \ll \mathrm{~W} \leq \sqrt{\frac{\mathrm{N}}{\mathrm{C}_{*} \log \mathrm{~N}}}
\end{array}\right.
$$

where $\mathrm{t}_{*}=(2 \pi \rho(\mathrm{E}))^{2}$,

$$
\Delta_{\mathrm{U}}=-\frac{\mathrm{d}}{\mathrm{dx}} \mathrm{x}(1-\mathrm{x}) \frac{\mathrm{d}}{\mathrm{dx}}, \quad \nu(\mathrm{U})=\pi(1-2 \mathrm{x}), \quad \mathrm{x}=\left|\mathrm{U}_{12}\right|^{2}
$$

Delocalization part: S., 2013 - saddle-point analysis; (the case of orthogonal symmetry is also done, S., 2015)

Localization part: M. Shcherbina, S., 2016 - transfer matrix approach.

Near the crossover: S., 2018

SUSY results for the density of states:

Let $\mathrm{g}(\mathrm{z})=\mathrm{N}^{-1} \mathbb{E}\left\{\operatorname{Tr}(\mathrm{H}-\mathrm{z})^{-1}\right\}, \mathrm{g}_{\mathrm{sc}}$ is a Stieltjes transform of semi-circle.

- Disertori, Pinson, Spencer, 2002: The smoothness and the local semicircle for averaged density for RBM in 3d, i.e.

$$
\left|\mathrm{g}(\mathrm{z})-\mathrm{g}_{\mathrm{sc}}(\mathrm{z})\right| \leq \mathrm{C} / \mathrm{W}^{2}
$$

uniformly in $\operatorname{Imz}, \mathrm{W} \geq \mathrm{W}_{0}$.

- Disertori, Lager, 2016: the same in 2d.
- M. Shcherbina, S., 2016: local semicircle for averaged density for RBM in 1d (with an arrow W^{-1}).

First and second results use the cluster expansion, the third one uses the supersymmetric transfer matrices.

Sigma-model $\mathcal{R}_{2}^{(\sigma)}$

The model can be obtained by some scaling limit ($\alpha=\beta / \mathrm{W}, \mathrm{W} \rightarrow \infty$, β, n -fixed) from the expression for \mathcal{R}_{2}.
The crossover is expected for $\beta \sim \mathrm{n}$. First result is a rigorous derivation of sigma-model approximation:

$$
\mathcal{R}_{2}^{(\sigma)}=\int \exp \left\{\frac{\beta}{4} \sum \operatorname{Str} \mathrm{Q}_{\mathrm{j}} \mathrm{Q}_{\mathrm{j}+1}+\frac{\varepsilon+\mathrm{i} \xi}{4 \mathrm{n}} \sum \operatorname{Str}_{\mathrm{Q}} \wedge\right\} \prod \mathrm{d} \mathrm{Q}_{\mathrm{j}}
$$

Here Q_{j} is a 4×4 super matrix of the block form:

$$
\begin{gathered}
\mathrm{Q}_{\mathrm{j}}=\left(\begin{array}{cc}
\mathrm{U}_{\mathrm{j}}^{*} & 0 \\
0 & \mathrm{~S}_{\mathrm{j}}^{-1}
\end{array}\right)\left(\begin{array}{cc}
\left(\mathrm{I}+2 \hat{\rho}_{\mathrm{j}} \hat{\tau}_{\mathrm{j}}\right) \mathrm{L} & 2 \hat{\tau}_{\mathrm{j}} \\
2 \hat{\rho}_{\mathrm{j}} & -\left(\mathrm{I}-2 \hat{\rho}_{\mathrm{j}} \hat{\gamma}_{\mathrm{j}}\right) \mathrm{L}
\end{array}\right)\left(\begin{array}{cc}
\mathrm{U}_{\mathrm{j}} & 0 \\
0 & \mathrm{~S}_{\mathrm{j}}
\end{array}\right), \\
\mathrm{dQ}=\prod \mathrm{d} Q_{\mathrm{j}}, \quad \mathrm{~d} Q_{\mathrm{j}}=\left(1-2 \rho_{\mathrm{j} 1} \tau_{\mathrm{j} 1} \rho_{\mathrm{j} 2} \tau_{\mathrm{j} 2}\right) \mathrm{d} \rho_{\mathrm{j} 1} \mathrm{~d} \tau_{\mathrm{j} 1} \mathrm{~d} \rho_{\mathrm{j} 2} \mathrm{~d} \tau_{\mathrm{j} 2} \mathrm{dU}_{\mathrm{j}} \mathrm{dS}_{\mathrm{j}}
\end{gathered}
$$

with

$$
\hat{\rho}_{\mathrm{j}}=\operatorname{diag}\left\{\rho_{\mathrm{j} 1}, \rho_{\mathrm{j} 2}\right\}, \quad \hat{\tau}_{\mathrm{j}}=\operatorname{diag}\left\{\tau_{\mathrm{j} 1}, \rho_{\mathrm{j} 2}\right\}, \quad \mathrm{L}=\operatorname{diag}\{1,-1\} .
$$

Here $\left\{\mathrm{U}_{\mathrm{j}}\right\}$ are unitary matrices, $\left\{\mathrm{S}_{\mathrm{j}}\right\}$ are hyperbolic matrices, $\mathrm{Q}_{\mathrm{j}}^{2}=\mathrm{I}$.

Result for $\mathcal{R}_{2}^{(\sigma)}$ [M. Shcherbina, S., 2018]

In the dimension $d=1$ the behavior of the sigma-model approximation $\mathcal{R}_{2}^{(\sigma)}$ of the second order correlation function, as $\beta \gg \mathrm{n}$, in the bulk of the spectrum coincides with those for the GUE. More precisely, if $\Lambda=[1, \mathrm{n}] \cap \mathbb{Z}$ and $\mathrm{H}_{\mathrm{N}}, \mathrm{N}=\mathrm{Wn}$ are block RBM with $\mathrm{J}=1 / \mathrm{W}+\beta \Delta / \mathrm{W}^{2}$, then for any $|\mathrm{E}|<\sqrt{2}$

$$
(\mathrm{N} \rho(\mathrm{E}))^{-2} \mathcal{R}_{2}\left(\mathrm{E}+\frac{\xi_{1}}{\rho(\mathrm{E}) \mathrm{N}}, \mathrm{E}+\frac{\xi_{2}}{\rho(\mathrm{E}) \mathrm{N}}\right) \longrightarrow 1-\frac{\sin ^{2}\left(\pi\left(\xi_{1}-\xi_{2}\right)\right)}{\pi^{2}\left(\xi_{1}-\xi_{2}\right)^{2}}
$$

in the limit first $\mathrm{W} \rightarrow \infty$, and then $\beta, \mathrm{n} \rightarrow \infty, \beta \geq \mathrm{Cn} \log ^{2} \mathrm{n}$.
"Right" limit: $\beta=\alpha \mathrm{W}, \alpha$ is fixed, $\mathrm{W}, \mathrm{n} \rightarrow \infty, \mathrm{W} \gg \mathrm{n}$.

Other SUSY results for the full model:

- S., 2014: Gaussian case, three diagonal block band matrices with

$$
\begin{aligned}
& \mathrm{J}=\frac{\alpha}{\mathrm{W}} \Delta+\frac{1}{\mathrm{~W}} \text {. If } \mathrm{W} \sim \mathrm{~N}, \text { then } \\
& \frac{1}{\left(\mathrm{~N} \rho\left(\lambda_{0}\right)\right)^{2}} \mathrm{R}_{2}\left(\lambda_{0}+\mathrm{x} / \mathrm{N} \rho\left(\lambda_{0}\right), \lambda_{0}+\mathrm{y} / \mathrm{N} \rho\left(\lambda_{0}\right)\right) \xrightarrow{\mathrm{N} \rightarrow \infty} 1-\frac{\sin ^{2}(\pi(\mathrm{x}-\mathrm{y}))}{\pi^{2}(\mathrm{x}-\mathrm{y})^{2}}
\end{aligned}
$$

in any dimension.

Other SUSY results for the full model:

- S., 2014: Gaussian case, three diagonal block band matrices with

$$
\begin{aligned}
& \mathrm{J}=\frac{\alpha}{\mathrm{W}} \Delta+\frac{1}{\mathrm{~W}} \text {. If } \mathrm{W} \sim \mathrm{~N}, \text { then } \\
& \frac{1}{\left(\mathrm{~N} \rho\left(\lambda_{0}\right)\right)^{2}} \mathrm{R}_{2}\left(\lambda_{0}+\mathrm{x} / \mathrm{N} \rho\left(\lambda_{0}\right), \lambda_{0}+\mathrm{y} / \mathrm{N} \rho\left(\lambda_{0}\right)\right) \xrightarrow{\mathrm{N} \rightarrow \infty} 1-\frac{\sin ^{2}(\pi(\mathrm{x}-\mathrm{y}))}{\pi^{2}(\mathrm{x}-\mathrm{y})^{2}}
\end{aligned}
$$

in any dimension.

- Erdôs, Bao, 2015: Combining this techniques with Green's function comparison strategy (Erdős-Yau), they proved

$$
\ell \geq \mathrm{W}^{7 / 6}
$$

in a strong sense for the block band matrices with more or less general element's distribution (subexponential tails, four Gaussian moments).

