International Congress of Mathematical Physics July 23rd, 2018 in Montréal, Québec

Thermal stability in universal adiabatic computation

Elizabeth Crosson

Joint work with Tomas Jochym-O'Connor and John Preskill

Quantum Physics and Computational Complexity

- ► Local Hamiltonian problem: it's QMA-complete to decide the ground state energy of a local *H* up to inverse poly precision.
- ▶ Proof uses universal computation in ground state of local *H*,

$$|\psi_t\rangle = U_t...U_1|0^n\rangle \longrightarrow |\Psi_{\mathrm{hist}}\rangle = \frac{1}{\sqrt{T+1}}\sum_{t=0}^T |t\rangle |\psi_t\rangle$$

- ► Can this complexity of ground states persist at finite temperatures?
- $|\Psi_{\rm hist}\rangle$ used to show that (ideal, noiseless) adiabatic computation can be universal. Can this construction be made fault-tolerant?
- ▶ Today: we combine $|\psi_{\rm hist}\rangle$ with self-correcting topological quantum memories, thereby encoding universal quantum computation into a metastable Gibbs state of a k-local Hamiltonian.

Thermally Stable Universal Adiabatic Computation

▶ Hamiltonian enforces circuit constraints and code constraints:

$$H_{\text{final}} = H_{\text{circuit}} + H_{\text{code}}$$

 \triangleright Begin in (noisy) ground state of H_{init} and linearly interpolate:

$$H(s) = (1-s)H_{\text{init}} + s H_{\text{final}}$$

- ▶ Noise model: low temp thermal noise, intrinsic control errors
- ► *H*_{final} has a metastable Gibbs state, in the sense of a self correcting quantum memory with exponentially long lifetime.
- ▶ Goal is to prepare the metastable Gibbs state of $H_{\rm final}$ so that readout + classical decoding yields the result of the computation.
- ▶ H(s) is k-local for some $k = \mathcal{O}(1)$, with $\mathcal{O}(1)$ interaction degree and at most poly(n) terms. (Proof of principle with large overheads)

Outline

- Introduction and background
 - Quantum ground state computing
 - Universal adiabatic computation
 - Local clocks: spacetime circuit Hamiltonians
 - Self-correcting memories
- Quantum computation in thermal equilibrium
 - ▶ Local circuit Hamiltonians ⇒ transversal operations
 - ► Transversal operations ⇒ local clocks
 - Coherent classical post-processing
 - ▶ Self-correction in spacetime: dressing stabilizers
 - ► The 4D Fault-tolerant quantum computing laboratory
 - Analysis: symmetry and the global rotation
 - Summary and Outlook

Quantum Ground State Computing

- ▶ Highly entangled states look maximally mixed with respect to local operators. How to check quantum computation with local *H*?
- ► Kitaev solved this problem by repurposing an idea from Feynman to entangle the time steps of the computation with a "clock register":

$$|\psi_{\mathcal{T}}\rangle = U_{\mathcal{T}}...U_{1}|0^{n}\rangle \longrightarrow |\Psi_{\mathrm{hist}}\rangle = \frac{1}{\sqrt{\mathcal{T}+1}}\sum_{t=0}^{\mathcal{T}}|t\rangle|\psi_{t}\rangle$$

▶ These "history states" can be checked by a local Hamiltonian:

$$H_{
m circ} = \underbrace{|0
angle\langle 0| \otimes \left(\sum_{
m input \ at \ t = 0} |1
angle\langle 1|_i
ight)}_{
m input \ at \ t = 0} + \sum_{t=0}^T H_{
m prop}(t) \quad , \quad |t
angle = |\underbrace{11...1}_{t \
m times} 00...0
angle$$

$$H_{ ext{prop}}(t) = rac{1}{2} \left(|t
angle \langle t| \otimes I + |t-1
angle \langle t-1| \otimes I - |t
angle \langle t-1| \otimes U_t - |t-1
angle \langle t| \otimes U_t^\dagger
ight)$$

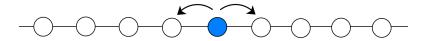
Analyzing Circuit Hamiltonians

Analysis: propagation Hamiltonian is unitarily equivalent to a particle hopping on a line. Define a unitary W,

$$W = \sum_{t=0}^{T} |t\rangle\langle t| \otimes U_t...U_1$$

 \blacktriangleright W transforms H_{prop} into a sum of hopping terms,

$$W^\dagger H_{
m prop} W = \sum_{t=0}^T rac{1}{2} \left(|t
angle \langle t| + |t-1
angle \langle t-1| - |t
angle \langle t-1| - |t-1
angle \langle t|
ight)$$



▶ Diffusive random walk: mixing time $\sim T^2$, spectral gap $\sim T^{-2}$.

Universal Adiabatic Computation

▶ Begin in an easily prepared ground state and slowly change *H* while remaining in the ground state by the adiabatic principle,

$$H(s) = (1 - s)H_{\text{init}} + s H_{\text{final}}$$
, $0 < s < 1$

- ▶ Run-time estimate: $\sim \|\dot{H}\|/\Delta_{\min}^{-2}$, where $\Delta = \min_s gap(H(s))$.
- ▶ Universal AQC: $H_{\text{final}} = H_{\text{init}} + H_{\text{prop}}$
- Monotonicity argument shows that the minimum spectral gap occurs at s=1, so $\Delta \approx T^{-2}$ and overall run time is polynomial in n, T.
- ▶ Perturbative gadgets enable universal AQC with 2-local H,

$$H = \sum_{i} h_i Z_i + \sum_{i} \Delta_i X_i + \sum_{i,j} J_{i,j} Z_i Z_j + \sum_{i,j} K_{i,j} X_i X_j$$

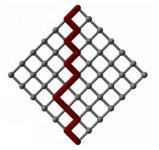
History States with Local Clocks

 Instead of propagating every qubit according to a global clock, assign local clock registers to the individual qubits,

$$| au
angle = |t_1...t_n
angle \quad , \quad |\Psi_{
m hist}
angle = \sum_{m{ au} \; {
m valid}} |m{ au}
angle |\psi(m{ au})
angle$$

 Makes history state Hamiltonians more realistic for 2D AQC (Gosset, Terhal, Vershynina, 2014. Lloyd and Terhal, 2015).

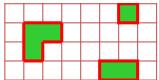
Instead of a hopping particle, the Hamiltonian is unitarily equivalent to the diffusion of a string or membrane.



Classical Self-Correcting Memories

- ▶ Ferromagnets and repetition codes: the Ising model
- ▶ 1D Ising model: thermal fluctuations can flip a droplet of spins, energy cost is independent of the size of the droplet

▶ 2D Ising model: energy cost of droplet proportional to boundary,



- At temperature T droplets of size L are supressed by $e^{-L/T}$. Ferromagnetic order at $T < T_c$, magnetization close to $\pm n$.
- ▶ Robust storage of classical information: lifetime scales exponentially in the size of the block. Hard disk drives work at room temperature.

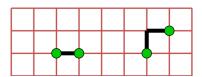
Topological Quantum Error Correction

Quantum codes require local indistinguishability

 topological order (toric code) instead of symmetry-breaking order (Ising model).

$$H_{\mathrm{code}} = -\sum_{s \in \mathcal{S}} H_s$$
 , $\mathcal{S} = \{ \text{ stabilizer generators } \}$

▶ 2D toric code analogous to 1D Ising model: thermal fluctuations create pairs of anyons connected by a string. No additional cost to growing the string ⇒ constant energy cost for a logical error.



- ▶ 4D toric code: logical operators are 2D membranes, energy cost scales like the 1D boundary so errors supressed by $e^{-L/T}$.
- Open question: finite temperature topological order in 3D?

Challenges in Adiabatic Fault-Tolerance

- ▶ Past approaches replace bare operators X, Z with logical operators X_L , Z_L . 4-qubit code suppresses 1-local thermal noise (JFS'05).
- ► Challenge: Codes with macroscopic distance have high-weight logical operators that don't correspond to local Hamiltonian terms.
- ➤ **Solution**: use circuit Hamiltonians for gate model fault-tolerance schemes with only transversal operations and local measurements.
- ► Consequence 1: circuit-model fault-tolerance requires parallelization ⇒ spacetime construction with local clocks.
- ► Consequence 2: there can be no universal set of transversal gates ⇒ history state must include measurement and classical feedback.

Challenges in Adiabatic Fault-Tolerance

- ► Challenge: What is the noise model?
- ▶ **Solution**: (1) weak coupling to a Markovian thermal bath, (2) Hamiltonian coupling errors , (3) probabilistic fault-paths.
- ► Self-correcting memories protect against thermalization, and even turn it into an advantage by using it to erase information.
- Protection from Hamiltonian coupling errors and probabilistic fault-paths relies on gate model FT and self-correcting clocks.

Self-Correcting History States

- ▶ Each logical qubit $Q_1, ..., Q_n$ in the history state is made of physical qubits $q_{i,1}, ..., q_{i,m}$. Each physical qubit $q_{i,j}$ has its own clock $t_{i,j}$.
- ▶ Just as in the classical case, both the computation and the code stabilizers are enforced by local Hamiltonian terms.

$$H = \sum_{oldsymbol{ au}} H_{ ext{prop}}(oldsymbol{ au}) + \sum_{oldsymbol{ au}} H_{ ext{code}}(oldsymbol{ au})$$

- ▶ H_{prop} needs to consist of local gates, and H_{code} needs to accomodate the propagation of the circuit without frustration.
- ▶ Apply to any FT scheme with local code checks and local operations e.g. 2D surface code with magic state injection.
- ▶ Gate teleportation uses logical measurement and classical post-processing, which will all be part of the history state.

Transversal Unitaries in a Local Hamiltonian

- lacktriangledown Transversal operations: $\mathit{U}[\mathit{Q}_{\mathrm{logical}}] = igotimes_q \mathit{U}[\mathit{q}_{\mathrm{physical}}]$
- ► Advancing all clocks in a logical qubit at once would not be local ⇒ local clocks must be advanced independently by local terms,

$$H_U[\mathbf{t}_{Q_i},Q_i] \longrightarrow \sum_{q_i \in Q_i} H_{\text{prop}}[t_{q_i},q_i]$$

- Need to protect the clocks from getting far out of sync \Longrightarrow $H_{\text{prop}}[t_{q_i}, q_i]$ checks the neighboring clocks before advancing t_i, q_i
- ► Challenge: advancing clocks one at a time would violate terms in H_{code} . We solve this with "dressed stabilizers."

Dressing stabilizers to avoid frustration

▶ We need to tell the stabilizers "what time it is" so that they can accommodate diffusive propagation without frustration,

$$|t_{s_1},...,t_{s_m}\rangle\langle t_{s_1},...,t_{s_m}|\otimes H_s(t_{s_1},...,t_{s_m})$$

 Stabilizers acting on "staggered" time configurations rotate the qubits that are lagging behind (or getting ahead),

$$|\mathbf{t}_s
angle\langle\mathbf{t}_s|\otimes H_s(\mathbf{t}):=\left(igotimes_{k\in s}|t_k
angle\langle t_k|_{t_k}
ight)igotimes\left(\prod_{t_k}U_{t_k,t}^\dagger[q_k]
ight)H_s\left(\prod_{t_k}U_{t_k,t}[q_k]
ight)$$

- Spacetime view of advanced / retarded potentials in E&M
- ▶ Dressing for two qubit gates intertwines stabilizers from distinct logical qubits, but terms remain *k*-local.
- Suffices to limit staggering to constant window c (speed of light). Locality and number of terms grows exponentially in c.

Everything is unitary in a larger Hilbert space

▶ Replace projective measurement $\Pi_0 + \Pi_1 = I$ of the physical qubits with coherent unitaries onto the classical ancillas:

$$|\psi\rangle|0\rangle \longrightarrow \Pi_0|\psi\rangle|0\rangle + \Pi_1|\psi\rangle|1\rangle$$

- ► Each physical qubit is measured by a "classical wire". The classical wire is a logical ancilla encoded in the repetition code.
- ▶ Tip of the wire is very pointy (local, bounded degree interactions), then grows like a concatenated tree to become macroscopic.
- Classical post-processing is global and takes poly time. The rest of the computation "waits around" for this to be done.

The 4D spacetime view of active error correction

- ► Consider the history state of a fault-tolerant quantum computer e.g. surface code qubits connected to a classical computer.
- ▶ Instead of a code Hamiltonian, such a scheme depends on actively measuring and correcting stabilizers.
- ▶ There is no energetic protection of the qubits, but there is energetic protection from the materials in the classical computer.
- ▶ Active error correction is possible because we dump entropy from quantum computers into classical self-correcting memories.
- ▶ In our case it suffices for H_{code} to be a repetition code acting on the (coherent) classical ancilla.

Analysis of the rotated Gibbs state

► The entire Hamiltonian is unitarily equivalent to a diffusing membrane and a static code Hamiltonian, the dressing disappears:

$$W = \sum_{ au ext{valid}} U(au) | au
angle \langle au | \quad , \quad W^\dagger H W = H_{ ext{membrane}} \otimes I + I \otimes H_{ ext{code}}$$

- ▶ Put time configurations on a circle $(U_1^{\dagger}...U_T^{\dagger}U_T...U_1)$, symmetry makes all valid time configurations equally likely in every eigenstate.
- ▶ Initialization: classical ancillas in logical $\bar{0}$ state protected by repetition $H_{\rm code}$, computational qubits in arbitrary state.
- ▶ Metastable Gibbs state of $W^{\dagger}HW$ is uniform over times, maximally mixed on computational qubits, and close to $\bar{0}$ on ancillas.

Analysis of the real Gibbs state

▶ Diagonal elements of the thermal density matrix of *H* in the time register basis have the form

$$| au
angle\langle au|\otimes U(au)\left(
ho_{ ext{encoded}}\otimes
ho_{ ext{encoded}}top lpha_{ ext{encoded}}
ight)U^\dagger(au)$$

- ▶ FT circuit $U(\tau)$ coherently measures and corrects syndromes to initialize the quantum code and evolve the computation.
- ightharpoonup Correct operation of U(au) depends on dumping entropy into the thermally stable classical logical ancillas.
- ▶ Thermal stability of the ancillas is unaffected by *W* (e.g. Davies generators only depend on the spectral properties of *H*).
- ▶ Intrinsic control errors in local H terms: $||W_{\text{actual}} W_{\text{ideal}}||$ is small because W is a fault-tolerant circuit.

Summary and Outlook

Universal quantum computation in a finite temperature state of a k-local Hamiltonian with polynomial overhead.

▶ 4D self-correcting memory from the history state of 3D FT-QC. Relates planar FT architectures to self-correction in 3D.

- ▶ Lower bounding the gap of H_{membrane} is an open problem in mathematical physics; to obtain a tractable gap analysis we consider nonuniform distributions of time configurations.
- ▶ Benefit of applying the scheme to smaller geometrically local architectures that may not be fully thermally stable?
- ▶ Thank you for your attention!