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Talk Outline

Generalization:  How can networks learn probabilistic models of the world and imagine 
things they have not explicitly been taught? 

Expressivity:  Why deep?  What can a deep neural network “say” that a shallow network 
cannot? 

Modelling arbitrary probability distributions using non-equilibrium thermodynamics, 
J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, S. Ganguli,  ICML 2015.  

B. Poole, S. Lahiri, M. Raghu, J. Sohl-Dickstein, and S. Ganguli, Exponential expressivity in deep 
neural networks through transient chaos, NIPS 2016. 



with Jascha Sohl-Dickstein!
Eric Weiss, Niru Maheswaranathan!

      Learning deep generative models by  
                     reversing diffusion 

Goal:  Model complex probability distributions – i.e. the distribution over natural images. 

Once you have learned such a model, you can use it to:

                             Imagine new images
                             Modify images
                             Fix errors in corrupted images



Jascha Sohl-Dickstein Modeling Complex Data

Goal: achieve highly flexible but also tractable 
probabilistic generative models of data!

•  Physical motivation!

•  Destroy structure in data through a diffusive process.!

•  Carefully record  the destruction.!

•   Use deep networks to reverse time and create structure from 
noise.!

•  Inspired by recent results in non-equilibrium statistical 
mechanics which show that entropy can transiently 
decrease for short time scales (violations of second law)!



Jascha Sohl-Dickstein Modeling Complex Data

Physical Intuition: Destruction 
of Structure through Diffusion!

•  Dye density represents probability density!

•  Goal: Learn structure of probability density!

•  Observation: Diffusion destroys structure!

Data distribution! Uniform distribution!



Jascha Sohl-Dickstein Modeling Complex Data

Physical Intuition: Recover 
Structure by Reversing Time!

•  What if we could reverse time?!

•  Recover data distribution by starting from 
uniform distribution and running dynamics 
backwards!

Data distribution! Uniform distribution!



Jascha Sohl-Dickstein Modeling Complex Data

•  What if we could reverse time?!

•  Recover data distribution by starting from 
uniform distribution and running dynamics 
backwards (using a trained deep network)!

Data distribution! Uniform distribution!

Physical Intuition: Recover 
Structure by Reversing Time!



Jascha Sohl-Dickstein Modeling Complex Data

Reversing time using a 
neural network!

Complex 
Data  
Distribution 

Simple 
Distribution 

Finite time diffusion steps 

Neural network processing 

Minimize the Kullback-Leibler divergence between forward and backward 
trajectories over the weights of the neural network  



Jascha Sohl-Dickstein Modeling Complex Data

Swiss Roll!

•  Forward diffusion process!

•  Start at data!

•  Run Gaussian diffusion until samples become Gaussian blob!



Jascha Sohl-Dickstein Modeling Complex Data

Swiss Roll!

•  Reverse diffusion process!

•  Start at Gaussian blob!

•  Run Gaussian diffusion until samples become data distribution!



Jascha Sohl-Dickstein Modeling Complex Data

Dead Leaf Model!

•  Training data!



Jascha Sohl-Dickstein Modeling Complex Data

Dead Leaf Model!

•  Comparison to state of the art!

Training Data! Sample from!
[Theis et al, 2012]!

Sample from!
diffusion model!

multi-information!
2.75 bits/pixel!

multi-information!
3.14 bits/pixel!

multi-information!
< 3.32 bits/pixel!



Jascha Sohl-Dickstein Modeling Complex Data

Natural Images!

•  Training data!



Jascha Sohl-Dickstein Modeling Complex Data

Natural Images!

•  Inpainting!



Jascha Sohl-Dickstein Modeling Complex Data

A key idea: solve the mixing !
problem during learning!

•  We want to model a complex multimodal 
distribution with energy barriers separating modes!

•  Often we model such distributions as the stationary 
distribution of a stochastic process!

•  But then mixing time can be long – exponential in 
barrier heights!

•  Here: Demand that we get to the stationary 
distribution in a finite time transient non-eq 
process!!

•  Build in this requirement into the learning process 
to obtain non-equilibrium models of data!



Talk Outline

Generalization:  How can networks learn probabilistic models of the world and imagine 
things they have not explicitly been taught? 

Expressivity:  Why deep?  What can a deep neural network “say” that a shallow network 
cannot? 

Modelling arbitrary probability distributions using non-equilibrium thermodynamics, 
J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, S. Ganguli,  ICML 2015.  

B. Poole, S. Lahiri, M. Raghu, J. Sohl-Dickstein, and S. Ganguli, Exponential expressivity in deep 
neural networks through transient chaos, NIPS 2016. 



        A theory of deep neural expressivity  
       through transient input-output chaos 

Stanford                                                  Google 

Ben Poole 
     Jascha 
Sohl-Dickstein 

    Subhaneil  
       Lahiri 

     Maithra  
     Raghu 

Expressivity: what kinds of functions can a deep network express that  
shallow networks cannot?  
 
Exponential expressivity in deep neural networks through transient chaos,  B. Poole, S. Lahiri,M. Raghu, 
J. Sohl-Dickstein, S. Ganguli, NIPS 2016. 

 
On the expressive power of deep neural networks,  M.Raghu, B. Poole,J. Kleinberg, J. Sohl-Dickstein, S. 
Ganguli, under review, ICML 2017. 
 
 



                                   The problem of expressivity 

Overall idea: there exist certain (special?) functions that can be computed: 
  
    a) efficiently using a deep network (poly # of neurons in input dimension) 
 
    b) but not by a shallow network (requires exponential # of neurons) 
 
Intellectual traditions in boolean circuit theory: parity function is such a 
function for boolean circuits. 

Networks with one hidden layer are 
universal function approximators. 
 
So why do we need depth? 
 



                     Seminal works on the expressive power of depth 

            Nonlinearity                       Measure of Functional Complexity  
 
  Rectified Linear Unit (ReLu)             Number of linear regions 
 
 
There exists a “saw-tooth” function computable by a deep network where 
the number of linear regions is exponential in the depth.  
 
To approximate this function with a shallow network, one would require 
exponentially many more neurons. 

Guido F Montufar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio. 
On the number of linear regions of deep neural networks, NIPS 2014 



                     Seminal works on the expressive power of depth 

            Nonlinearity                       Measure of Functional Complexity  
 
      Sum-product network                         Number of monomials 
 
There exists a function computable by a deep network where the number 
of unique monomials is exponential in the depth.  
 
To approximate this function with a shallow network, one would require 
exponentially many more neurons. 

Olivier Delalleau and Yoshua Bengio. Shallow vs. deep sum-product networks, NIPS 2011. 



                                                   Questions 
 
The particular functions exhibited by prior work do not seem natural? 
 
Are such functions rare curiosities? 
 
Or is this phenomenon much more generic than these specific examples? 
 
In some sense, is any function computed by a generic deep network 
not efficiently computable by a shallow network? 
 
 
If so we would like a theory of deep neural expressivity that demonstrates this for  
                    1)  Arbitrary nonlinearities 
                    2)  A natural, general measure of functional complexity.  
 
We will combine Riemannian geometry + dynamic mean field theory to show that 
even in generic, random deep neural networks, measures of functional curvature 
grow exponentially with depth but not width!  
 
More over the origins of this exponential growth can be traced to chaos theory.    
 
 
 



A maximum entropy ensemble of deep random networks 

Structure:              i.i.d. random Gaussian weights and biases: 

Nl = number of neurons in layer l

D = depth(l = 1, . . . , D)
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           Emergent, deterministic signal propagation  
                     in random neural networks 

Question:  how do simple input manifolds propagate through the layers?              
 
A pair of points:          Do they become more similar or more different, and 
                                   how fast? 
 
A smooth manifold:    How does its curvature and volume change?  

Nl = number of neurons in layer l

D = depth(l = 1, . . . , D)
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   Propagation of two points through a deep network  
 

Do nearby points come closer together or separate? 

χ is the mean squared singular value of the Jacobian across 1 layer  

 χ < 1 :  nearby points come closer together; gradients exponentially vanish 
 χ > 1 :  nearby points are driven apart; gradients exponentially explode 
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   Propagation of a manifold through a deep network  
 

The geometry of the manifold is captured by the similarity matrix - 
How similar two points are in internal representation space):  

Or autocorrelation function: 
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   Propagation of a manifold through a deep network  
 
h1
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p
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⇤ A great circle  
input manifold 



Riemannian geometry: Extrinsic Gaussian Curvature 
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Point on the curve 

Tangent or velocity 
vector 

Acceleration vector 

The velocity and acceleration vector span a 2 dimensional plane in N dim space. 
 
Within this plane, there is a unique circle that touches the curve at h(θ), with the 
same velocity and acceleration.  
 
The extrinsic curvature κ(θ) is the inverse of the radius of this circle.  
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                   An example: the great circle 

A great circle  
input manifold 
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Behavior under isotropic linear expansion via multiplicative stretch χ1: 
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  Theory of curvature propagation in deep networks 
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Ordered:      χ1 < 1 
 
Chaotic:       χ1 > 1 

  Local      
Stretch 

 Extrinsic  
Curvature       

Grassmannian  
      Length       

Contraction          Explosion               Constant 

Expansion         Attenuation +        Exponential 
                             Addition                  Growth 

 Modification of existing curvature due to stretch 
 
 Addition of new curvature due to nonlinearity  



     Curvature propagation: theory and experiment 

Unlike linear expansion, deep neural signal propagation can: 
        
             1)  exponentially expand length,  
             2)  without diluting Gaussian curvature, 
             3) thereby yielding exponential growth of Grassmannian length.  
 
As a result, the circle will become fill space as it winds around at  
a constant rate of curvature to explore many dimensions! 



  Exponential expressivity is not achievable by shallow nets 

 N1 

x
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                                 Summary 
We have combined Riemannian geometry with dynamical mean field theory 
to study the emergent deterministic properties of signal propagation in deep 
nonlinear nets. 
 
We derived analytic recursion relations for Euclidean length, correlations, 
curvature, and Grassmannian length as simple input manifolds propagate 
forward through the network. 
 
We obtain an excellent quantitative match between theory and simulations. 
 
Our results reveal the existence of a transient chaotic phase in which the 
network expands input manifolds without straightening them out, leading to 
“space filling” curves that explore many dimensions while turning at a  
constant rate.  The number of turns grows exponentially with depth.  
 
Such exponential growth does not happen with width in a shallow net. 
 
Chaotic deep random networks can also take exponentially curved N-1 
Dimensional decision boundaries in the input and flatten them into  
Hyperplane decision boundaries in the final layer: exponential disentangling! 
 
 
 
 
 
 
                                (see Poggio’s talk later today!) 
 
Are such functions rare curiosities? 
 
Or is in some sense any function computed by a generic deep network 
not efficiently computable by a shallow network? 
 
 
If so we would like a theory of deep neural expressivity that demonstrates this 
for  
                    1)  Arbitrary nonlinearities 
 
                    2)  A natural, general measure of functional complexity.  
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