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|. Introduction

Here are two interesting questions about
string theory and string compactification:

. Some prototypical string models, such as
Calabi-Yau compactitications, come with moduli
spaces of vacua.

e.g. compactification
on a two-torus:




The string theory depends on the choice of complex
structure on the torus.
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diffeomorphisms




The resulting moduli space of complex structures:

Q: Are there special points in such moduli spaces?

(If so, we might think physics is interesting there, or
eventually prefers them.)



In the moduli space at hand, the obvious choice would
be the tori with enhanced symmetry:

This Is not a bad answer, but as it only singles out two
points, 1t isn't very rich.



We can consider tori with a modular parameter
solving

Such tori are said to admit “complex multiplication.”
We will see that they are physically special too, after
embedding them in a more elaborate physical
setting.



II. What are the properties of black holes in string
theory”

We start with the “goldilocks setting” of
compactitication on a Calabi-Yau threefold X.

The moduli space splits, locally, into a product:

/ N

associated with scalars associated with scalars
In vector multiplets In hyper multiplets

In 1IB string theory on X, the vector multiplet
moduli space Is the moduli space of complex
structures on X.



There are, in particular, abelian gauge fields In
correspondence with complex structure deformations
of X.

The low energy effective field theory resulting
from compactification on X has a Lagrangian

coupling the scalars spanning — the complex
moduli of X — to the abelian gauge fields.



Now, suppose we wish to consider a charged
black hole arising in compactification on X.

Because of the coupling of the gauge fields to
the scalars, we will find an effective potential
for the complex moduli of X!




Now, we see a relation with our first qguestion:

In the rest of the talk, we will try to learn about the
nature of these special points in a simple example:

X= K3xI2.

K3 is perhaps the simplest non-trivial compact Calabi-Yau
manifold, so this is perhaps the easiest threetold
to start with.



[l. Attractor black holeson X = K3 x T2

We make charged black holes
by wrapping D3-branes on
three-cycles in the compact

dimensions.

We choose a charge:

Then, we minimize:



The result is a set of points in the complex structure
moduli space of X.

For X = K3xT12, the answer Is particularly elegant.
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The attractor varieties have a very simple structure.

Define the Picard rank

Then the attractor varieties consist of: Moore

— A “"singular” K3, I.e. one with

— A torus whose complex structure solves a
guadratic equation with discriminant:



The “singular” K3 associated with a given torus is
in fact determined (partly via a theorem of Shioda and
Inose) by the complex structure of the torus.

To the data in our problem, we can associate a
binary quadratic form:

In physics, there is an SL(2,7) duality group that
acts on the electric and magnetic charges.



In mathematics, Gauss discovered a natural SL(2,7)
action on binary quadratic forms. We say two
quadratic forms

are equivalent if



he number of SL(2,7) inequivalent quadratic forms at
a given D < 0O is called the associated to
D. (They in fact form a group, the )

We've now seen a sketch of the logic that leads to
the striking result:

SL(2,7) equivalence classes

Attractors on K3 x 12 of binary quadratic forms



— CM points are equidistributed.

— Determining the class numbers as a function
of the discriminant has inspired great effort over
the centuries. Here is a plot:
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— Amazingly, the class numbers (or really the CM
points) are automorphic!



Define the

H(N) = #{SL(2,Z) equivalence classes of possibly imprimitive quadratic
forms with discriminant — N weighted by the inverse order of their auto—

morphism group} .

Next, define the counting function:

Z 1S the holomorphic piece of a mock-modular form
of weight 3/2!



I, Kudla-Millson theory

What we saw here is a simple example of a
more general story in mathematics, that enjoys
other applications to string theory.

Consider the arithmetic locally symmetric space:

Many of the most canonical moduli spaces of string
compactifications take this form (often with p-g = 8Kk).



Heuristically, we can think of this moduli space as arising
from taking a lattice of signature (p,q) and decomposing it
into p left-movers and g right-movers.

Now, define “special cycles” as tollows:

Choose a vector of norm -N:



These loci In the moduli space are known as
‘special cycles.”

What is special about them?

— They are totally geodesic submanitolds.

— In suitable string theory problems, they are
the loci on moduli space where the spectrum of
BPS states enhances (“jumps”).



Now, define the sum:

We can consider a cohomology class on the moduli
space:



For the special cases of most interest, where we
consider moduli spaces associated to even unimodular
lattices (p-g = 8k), there is a result:

Special cycles of higher dimension can be defined
by intersections of the basic special cycles we
discussed. Kudla-Millson assign Siegel torms of
higher degree to these structures.



The modularity of the counting function enumerating

attractors on K3xT2 (whose g-expansion has
numbers as coefficients and black hole entro
exponents), arises as a special case.

Hurwitz

nles as

There are other examples where functions “counting” loci
where BPS states jump are similarly automorphic.

A physics understanding of why would be nice.



