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Fig. 5: Distribution of W = 0 vacua in complex structure fundamental domain
for L = 2000 for large values of Im τ .

are given by

max(Im τ) ∼
√
L

2
at Re τ = 0,±0.5 . (4.57)

The next peaks have height Im τ ∼
√
L/4 at Re τ = ±0.25. We also confirm numerically

that the distribution of vacua in the complex structure fundamental domain is in accord

with 1/(Im τ)2.
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Fig. 6: Void structure of distribution of W = 0 vacua in dilaton fundamental
domain for L = 600.

49



I.  Introduction

Here are two interesting questions about 
string theory and string compactification:

i. Some prototypical string models, such as 
 Calabi-Yau compactifications, come with moduli  

spaces of vacua.

I.  Introduction

Simple supersymmetric solutions of string theory often 
give rise to moduli spaces of vacua.  These are parametrized 

by vevs of the scalar fields in the low-energy theory.

Canonical example to keep in mind:  moduli space of complex 
structures on a torus.

e.g. compactification 
on a two-torus:



The string theory depends on the choice of complex 
structure on the torus.

⌧ ' a⌧ + b

c⌧ + d
, ad� bc = 1 large 

diffeomorphisms

Resulting fundamental domain:

Can specify the shape of a 
torus with a parallelogram:
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diffeomorphisms

Resulting fundamental domain:

Can specify the shape of a 
torus with a parallelogram:



The resulting moduli space of complex structures:

⌧ ' a⌧ + b

c⌧ + d
, ad� bc = 1 large 

diffeomorphisms

Resulting fundamental domain:

Can specify the shape of a 
torus with a parallelogram:

Q:  Are there special points in such moduli spaces?

(If so, we might think physics is interesting there, or 
eventually prefers them.)



In the moduli space at hand, the obvious choice would 
be the tori with enhanced symmetry:

Given such a space, it is natural to ask: are there 
special points singled out by the physics?

The most obvious notion of such special points would 
be at tori with extra discrete symmetry.

But this only happens at the two points above…This is not a bad answer, but as it only singles out two 
points, it isn’t very rich.  

There is a richer possible story!



We can consider tori with a modular parameter  
solving

a⌧2 + b⌧ + c = 0

a, b, c 2 Z

Such tori are said to admit “complex multiplication.” 
We will see that they are physically special too, after 

embedding them in a more elaborate physical 
setting.



ii. What are the properties of black holes in string 
theory?

We start with the “goldilocks setting” of  
compactification on a Calabi-Yau threefold X.

The moduli space splits, locally, into a product:

M = Mv ⇥Mh

associated with scalars 
in vector multiplets

associated with scalars  
in hyper multiplets

In IIB string theory on X, the vector multiplet 
moduli space is the moduli space of complex 

structures on X.



L =

Z
d

4
x fab(�)Fµ⌫

a
F

µ⌫b + · · ·

The low energy effective field theory resulting 
from compactification on X has a Lagrangian

coupling the scalars spanning          — the complex  
moduli of X — to the abelian gauge fields. 

Mv

There are, in particular, abelian gauge fields in 
correspondence with complex structure deformations 

of X.



Now, suppose we wish to consider a charged 
black hole arising in compactification on X.

Because of the coupling of the gauge fields to 
the scalars, we will find an effective potential 

for the complex moduli of X!

scalars attracted to 
point in moduli space 

that minimizes the 
mass.



Now, we see a relation with our first question:   
The attractor mechanism relates AdS2 near-horizon 
geometries of BPS black holes, to special points in 

the complex structure moduli space of X.

In the rest of the talk, we will try to learn about the 
nature of these special points in a simple example:

X =  K3 x T2.

K3 is perhaps the simplest non-trivial compact Calabi-Yau 
manifold, so this is perhaps the easiest threefold 

to start with.



II.  Attractor black holes on X = K3 x T2

We make charged black holes 
by wrapping D3-branes on  
three-cycles in the compact  

dimensions.

We choose a charge:

Q 2 H3(X,Z)

Then, we minimize:

Z =

Z

X
Q ^ ⌦ .



The result is a set of points in the complex structure 
moduli space of X.

For X = K3xT2, the answer is particularly elegant.

↵,� 2 H1(T 2)

!i 2 H2(K3), I = 1, · · · , 22

Without loss of generality:

Q =
X

i

(qi!i) ^ ↵+ (pi!i) ^ � . q, p are the electric and  
magnetic charge vectors



The attractor varieties have a very simple structure.

Define the Picard rank

⇢ = dim
�
H1,1(X) \H2(X,Z)

�

Then the attractor varieties consist of:

— A “singular” K3, i.e. one with 
⇢ = 20 .

— A torus whose complex structure solves a  
quadratic equation with discriminant:

D = (p · q)2 � p2q2 < 0 .

Moore 



The “singular” K3 associated with a given torus is 
in fact determined (partly via a theorem of Shioda and  

Inose) by the complex structure of the torus.

To the data in our problem, we can associate a  
binary quadratic form:

In physics, there is an SL(2,Z) duality group that 
acts on the electric and magnetic charges.



In mathematics, Gauss discovered a natural SL(2,Z) 
action on binary quadratic forms.  We say two 

quadratic forms 

[a, b, c] → ax2 + bxy + cy2

[a′, b′, c′] → a′x2 + b′xy + c′y2

are equivalent if 

[a, b, c](x, y) = [a′, b′, c′](αx+ βy, γx+ δy)

αδ − βγ = 1 .



The number of SL(2,Z) inequivalent quadratic forms at 
a given D < 0 is called the class number associated to 

D.  (They in fact form a group, the class group.)

We’ve now seen a sketch of the logic that leads to  
the striking result:

Attractors on K3 x T2 SL(2,Z) equivalence classes  
of binary quadratic forms

The class numbers and CM points have interesting 
structure!



— CM points are equidistributed.

— Determining the class numbers as a function 
of the discriminant has inspired great effort over 

the centuries.  Here is a plot:

— Amazingly, the class numbers (or really the CM  
points) are automorphic!



Define the Hurwitz class numbers:

Z(N) =
∑

N

H(N)qN , q = e2πiτ .

Next, define the counting function:

Z is the holomorphic piece of a mock-modular form 
of weight 3/2!



III.  Kudla-Millson theory

What we saw here is a simple example of a  
more general story in mathematics, that enjoys 

other applications to string theory.

Consider the arithmetic locally symmetric space:

M(p, q) = O(p, q;Z)\O(p, q;R)/(O(p)×O(q)) .

Many of the most canonical moduli spaces of string 
compactifications take this form (often with p-q = 8k).



Heuristically, we can think of this moduli space as arising 
from taking a lattice of signature (p,q) and decomposing it 

into p left-movers and q right-movers.

Now, define “special cycles” as follows:

Choose a vector of norm -N:

⟨x, x⟩ = −N .

Dx ≡ {locus in M where x is purely left−moving} .



These loci in the moduli space are known as  
“special cycles.”

What is special about them?

— They are totally geodesic submanifolds.

— In suitable string theory problems, they are 
the loci on moduli space where the spectrum of 

BPS states enhances (“jumps”).



Now, define the sum:

DN ≡
∑

x,⟨x,x⟩=−N

Dx .

We can consider a cohomology class on the moduli 
space:

φ(τ) =
∑

N

[DN ]qN .



For the special cases of most interest, where we  
consider moduli spaces associated to even unimodular 

lattices (p-q = 8k), there is a result:

Kudla−Millson : φ(τ)is an automorphic form of weight

p+ q

2
for SL(2,Z) .

Special cycles of higher dimension can be defined 
by intersections of the basic special cycles we 

discussed.  Kudla-Millson assign Siegel forms of 
higher degree to these structures.



The modularity of the counting function enumerating 
attractors on K3xT2 (whose q-expansion has Hurwitz 
numbers as coefficients and black hole entropies as 

exponents), arises as a special case.

There are other examples where functions “counting” loci 
where BPS states jump are similarly automorphic.   

A physics understanding of why would be nice.


