Kakutani equivalence of unipotent flows

Adam Kanigowski

Montreal, 07.27.2018 (joint w. K. Vinhage and D. Wei)

• (X, \mathcal{B}, μ) – probability standard Borel space;

(T_t): $(X, \mathcal{B}, \mu) \rightarrow (X, \mathcal{B}, \mu)$ – measure-preserving, ergodic flow.

lsomorphism

$$(T_t): (X, \mathcal{B}, \mu) \to (X, \mathcal{B}, \mu), (S_t): (Y, \mathcal{C}, \nu) \to (Y, \mathcal{C}, \nu)$$
 are isomorphic, if

 $R \circ T_t = S_t \circ R$ for $t \in \mathbb{R}$,

where $R : (X, \mathcal{B}, \mu) \to (Y, \mathcal{C}, \nu)$ is invertible and $\nu(C) = \mu(R^{-1}C), C \in \mathcal{C}.$

Classification up to isomorphism

- (X, \mathcal{B}, μ) probability standard Borel space;
- $(T_t): (X, \mathcal{B}, \mu) \to (X, \mathcal{B}, \mu)$ measure-preserving, ergodic flow.

lsomorphism

$$(T_t): (X, \mathcal{B}, \mu) \to (X, \mathcal{B}, \mu), (S_t): (Y, \mathcal{C}, \nu) \to (Y, \mathcal{C}, \nu)$$
 are isomorphic, if

 $R \circ T_t = S_t \circ R$ for $t \in \mathbb{R}$,

where $R : (X, \mathcal{B}, \mu) \to (Y, \mathcal{C}, \nu)$ is invertible and $\nu(\mathcal{C}) = \mu(R^{-1}\mathcal{C}), \ \mathcal{C} \in \mathcal{C}.$

Classification up to isomorphism

- (X, \mathcal{B}, μ) probability standard Borel space;
- $(T_t): (X, \mathcal{B}, \mu) \to (X, \mathcal{B}, \mu)$ measure-preserving, ergodic flow.

Isomorphism

$$(T_t): (X, \mathcal{B}, \mu) \to (X, \mathcal{B}, \mu), (S_t): (Y, \mathcal{C}, \nu) \to (Y, \mathcal{C}, \nu)$$
 are isomorphic, if

$$R \circ T_t = S_t \circ R$$
 for $t \in \mathbb{R}$,

where $R: (X, \mathcal{B}, \mu) \to (Y, \mathcal{C}, \nu)$ is invertible and $\nu(\mathcal{C}) = \mu(R^{-1}\mathcal{C}), \ \mathcal{C} \in \mathcal{C}.$

Classification up to isomorphism

- (X, \mathcal{B}, μ) probability standard Borel space;
- $(T_t): (X, \mathcal{B}, \mu) \to (X, \mathcal{B}, \mu)$ measure-preserving, ergodic flow.

Isomorphism

$$(T_t): (X, \mathcal{B}, \mu) \to (X, \mathcal{B}, \mu), (S_t): (Y, \mathcal{C}, \nu) \to (Y, \mathcal{C}, \nu)$$
 are isomorphic, if

$$R \circ T_t = S_t \circ R$$
 for $t \in \mathbb{R}$,

where $R : (X, \mathcal{B}, \mu) \to (Y, \mathcal{C}, \nu)$ is invertible and $\nu(\mathcal{C}) = \mu(R^{-1}\mathcal{C}), \ \mathcal{C} \in \mathcal{C}.$

Classification up to isomorphism

Orbit equivalence

- (T_t) and (S_t) are orbit equivalent, if there exists a invertible transformation that maps orbits of (T_t) to orbits of (S_t) .
- (Dye's theorem, 1959) Every two ergodic flows are orbit equivalent.

Kakutani equivalence, 1943

 $(T_t): (X, \mathcal{B}, \mu) \to (X, \mathcal{B}, \mu)$ and $(S_t): (Y, \mathcal{C}, \nu) \to (Y, \mathcal{C}, \nu)$ are Kakutani equivalent (denoted $(T_t) \stackrel{K}{\sim} (S_t)$), if they have isomorphic sections, i.e. can be represented as special flows over the same transformation.

- Let (R_t^{α}) : $\mathbb{T}^2 \to \mathbb{T}^2$, $R_t^{\alpha}(x, y) = (x + t, y + t\alpha)$. Then, for every $\alpha, \beta \notin \mathbb{Q}$, $(R_t^{\alpha}) \stackrel{K}{\sim} (R_t^{\beta})$ (Katok, 1976; Ornstein, Rudolph, Weiss, 1982);
- (T_t) is standard, if $(T_t) \stackrel{\kappa}{\sim} (R_t^{\alpha})$ for some $\alpha \notin \mathbb{Q}$.

Orbit equivalence

- (T_t) and (S_t) are orbit equivalent, if there exists a invertible transformation that maps orbits of (T_t) to orbits of (S_t) .
- (Dye's theorem, 1959) Every two ergodic flows are orbit equivalent.

Kakutani equivalence, 1943

 $(T_t): (X, \mathcal{B}, \mu) \to (X, \mathcal{B}, \mu)$ and $(S_t): (Y, \mathcal{C}, \nu) \to (Y, \mathcal{C}, \nu)$ are Kakutani equivalent (denoted $(T_t) \stackrel{\kappa}{\sim} (S_t)$), if they have isomorphic sections, i.e. can be represented as special flows over the same transformation.

- Let (R_t^{α}) : $\mathbb{T}^2 \to \mathbb{T}^2$, $R_t^{\alpha}(x, y) = (x + t, y + t\alpha)$. Then, for every $\alpha, \beta \notin \mathbb{Q}$, $(R_t^{\alpha}) \stackrel{\kappa}{\sim} (R_t^{\beta})$ (Katok, 1976; Ornstein, Rudolph, Weiss, 1982);
- (T_t) is standard, if $(T_t) \stackrel{\kappa}{\sim} (R_t^{\alpha})$ for some $\alpha \notin \mathbb{Q}$.

Orbit equivalence

- (T_t) and (S_t) are orbit equivalent, if there exists a invertible transformation that maps orbits of (T_t) to orbits of (S_t) .
- (Dye's theorem, 1959) Every two ergodic flows are orbit equivalent.

Kakutani equivalence, 1943

 $(T_t) : (X, \mathcal{B}, \mu) \to (X, \mathcal{B}, \mu)$ and $(S_t) : (Y, \mathcal{C}, \nu) \to (Y, \mathcal{C}, \nu)$ are Kakutani equivalent (denoted $(T_t) \stackrel{\kappa}{\sim} (S_t)$), if they have isomorphic sections, i.e. can be represented as special flows over the same transformation.

- Let (R_t^{α}) : $\mathbb{T}^2 \to \mathbb{T}^2$, $R_t^{\alpha}(x, y) = (x + t, y + t\alpha)$. Then, for every $\alpha, \beta \notin \mathbb{Q}$, $(R_t^{\alpha}) \stackrel{\kappa}{\sim} (R_t^{\beta})$ (Katok, 1976; Ornstein, Rudolph, Weiss, 1982);
- (T_t) is standard, if $(T_t) \stackrel{\kappa}{\sim} (R_t^{\alpha})$ for some $\alpha \notin \mathbb{Q}$.

Orbit equivalence

- (T_t) and (S_t) are orbit equivalent, if there exists a invertible transformation that maps orbits of (T_t) to orbits of (S_t) .
- (Dye's theorem, 1959) Every two ergodic flows are orbit equivalent.

Kakutani equivalence, 1943

 $(T_t): (X, \mathcal{B}, \mu) \to (X, \mathcal{B}, \mu)$ and $(S_t): (Y, \mathcal{C}, \nu) \to (Y, \mathcal{C}, \nu)$ are Kakutani equivalent (denoted $(T_t) \stackrel{\kappa}{\sim} (S_t)$), if they have isomorphic sections, i.e. can be represented as special flows over the same transformation.

- Let (R_t^{α}) : $\mathbb{T}^2 \to \mathbb{T}^2$, $R_t^{\alpha}(x, y) = (x + t, y + t\alpha)$. Then, for every $\alpha, \beta \notin \mathbb{Q}$, $(R_t^{\alpha}) \stackrel{\kappa}{\sim} (R_t^{\beta})$ (Katok, 1976; Ornstein, Rudolph, Weiss, 1982);
- (T_t) is standard, if $(T_t) \stackrel{\kappa}{\sim} (R_t^{\alpha})$ for some $\alpha \notin \mathbb{Q}$.

Orbit equivalence

- (T_t) and (S_t) are orbit equivalent, if there exists a invertible transformation that maps orbits of (T_t) to orbits of (S_t) .
- (Dye's theorem, 1959) Every two ergodic flows are orbit equivalent.

Kakutani equivalence, 1943

 $(T_t): (X, \mathcal{B}, \mu) \to (X, \mathcal{B}, \mu)$ and $(S_t): (Y, \mathcal{C}, \nu) \to (Y, \mathcal{C}, \nu)$ are Kakutani equivalent (denoted $(T_t) \stackrel{\kappa}{\sim} (S_t)$), if they have isomorphic sections, i.e. can be represented as special flows over the same transformation.

- Let (R_t^{α}) : $\mathbb{T}^2 \to \mathbb{T}^2$, $R_t^{\alpha}(x, y) = (x + t, y + t\alpha)$. Then, for every $\alpha, \beta \notin \mathbb{Q}$, $(R_t^{\alpha}) \stackrel{\kappa}{\sim} (R_t^{\beta})$ (Katok, 1976; Ornstein, Rudolph, Weiss, 1982);
 - (T_t) is standard, if $(T_t) \stackrel{\kappa}{\sim} (R_t^{lpha})$ for some $lpha \notin \mathbb{Q}$.

Orbit equivalence

- (T_t) and (S_t) are orbit equivalent, if there exists a invertible transformation that maps orbits of (T_t) to orbits of (S_t) .
- (Dye's theorem, 1959) Every two ergodic flows are orbit equivalent.

Kakutani equivalence, 1943

 $(T_t): (X, \mathcal{B}, \mu) \to (X, \mathcal{B}, \mu)$ and $(S_t): (Y, \mathcal{C}, \nu) \to (Y, \mathcal{C}, \nu)$ are Kakutani equivalent (denoted $(T_t) \stackrel{\kappa}{\sim} (S_t)$), if they have isomorphic sections, i.e. can be represented as special flows over the same transformation.

- Let (R_t^{α}) : $\mathbb{T}^2 \to \mathbb{T}^2$, $R_t^{\alpha}(x, y) = (x + t, y + t\alpha)$. Then, for every $\alpha, \beta \notin \mathbb{Q}$, $(R_t^{\alpha}) \stackrel{\kappa}{\sim} (R_t^{\beta})$ (Katok, 1976; Ornstein, Rudolph, Weiss, 1982);
- (T_t) is standard, if $(T_t) \stackrel{\kappa}{\sim} (R_t^{\alpha})$ for some $\alpha \notin \mathbb{Q}$.

Standard systems

- finite rank systems (Ornstein, Rudolph, Weiss, 1982);
- closed under factors, inverse limits, compact extensions (Katok, 1976; Ornstein, Rudolph, Weiss, 1982)
- horocycle flows (Ratner, 1978)

- first example due to Feldman, 1975;
- uncountably many pairwise non Kakutani equivalent systems (Ornstein, Rudolph, Weiss, 1982);
- Let (h_t) denote the horocycle flow on $SL(2, \mathbb{R})/\Gamma$. Then $(h_t)^k \stackrel{K}{\sim} (h_t)^l$ for $k \neq l$ (Ratner, 1980).

Standard systems

- finite rank systems (Ornstein, Rudolph, Weiss, 1982);
- closed under factors, inverse limits, compact extensions (Katok, 1976; Ornstein, Rudolph, Weiss, 1982)
- horocycle flows (Ratner, 1978)

- first example due to Feldman, 1975;
- uncountably many pairwise non Kakutani equivalent systems (Ornstein, Rudolph, Weiss, 1982);
- Let (h_t) denote the horocycle flow on $SL(2, \mathbb{R})/\Gamma$. Then $(h_t)^k \stackrel{K}{\sim} (h_t)^l$ for $k \neq l$ (Ratner, 1980).

Standard systems

- finite rank systems (Ornstein, Rudolph, Weiss, 1982);
- closed under factors, inverse limits, compact extensions (Katok, 1976; Ornstein, Rudolph, Weiss, 1982)
- horocycle flows (Ratner, 1978)

- first example due to Feldman, 1975;
- uncountably many pairwise non Kakutani equivalent systems (Ornstein, Rudolph, Weiss, 1982);
- Let (h_t) denote the horocycle flow on $SL(2, \mathbb{R})/\Gamma$. Then $(h_t)^k \stackrel{K}{\sim} (h_t)^l$ for $k \neq l$ (Ratner, 1980).

Standard systems

- finite rank systems (Ornstein, Rudolph, Weiss, 1982);
- closed under factors, inverse limits, compact extensions (Katok, 1976; Ornstein, Rudolph, Weiss, 1982)
- horocycle flows (Ratner, 1978)

Non-standard systems

first example due to Feldman, 1975;

 uncountably many pairwise non Kakutani equivalent systems (Ornstein, Rudolph, Weiss, 1982);

Let (h_t) denote the horocycle flow on $SL(2,\mathbb{R})/\Gamma$. Then $(h_t)^k \stackrel{K}{\sim} (h_t)^l$ for $k \neq l$ (Ratner, 1980).

Standard systems

- finite rank systems (Ornstein, Rudolph, Weiss, 1982);
- closed under factors, inverse limits, compact extensions (Katok, 1976; Ornstein, Rudolph, Weiss, 1982)
- horocycle flows (Ratner, 1978)

- first example due to Feldman, 1975;
- uncountably many pairwise non Kakutani equivalent systems (Ornstein, Rudolph, Weiss, 1982);
- Let (h_t) denote the horocycle flow on $SL(2,\mathbb{R})/\Gamma$. Then $(h_t)^k \stackrel{K}{\sim} (h_t)^l$ for $k \neq l$ (Ratner, 1980).

Standard systems

- finite rank systems (Ornstein, Rudolph, Weiss, 1982);
- closed under factors, inverse limits, compact extensions (Katok, 1976; Ornstein, Rudolph, Weiss, 1982)
- horocycle flows (Ratner, 1978)

- first example due to Feldman, 1975;
- uncountably many pairwise non Kakutani equivalent systems (Ornstein, Rudolph, Weiss, 1982);
- Let (h_t) denote the horocycle flow on $SL(2, \mathbb{R})/\Gamma$. Then $(h_t)^k \stackrel{K}{\sim} (h_t)^l$ for $k \neq l$ (Ratner, 1980).

Standard systems

- finite rank systems (Ornstein, Rudolph, Weiss, 1982);
- closed under factors, inverse limits, compact extensions (Katok, 1976; Ornstein, Rudolph, Weiss, 1982)
- horocycle flows (Ratner, 1978)

- first example due to Feldman, 1975;
- uncountably many pairwise non Kakutani equivalent systems (Ornstein, Rudolph, Weiss, 1982);
- Let (h_t) denote the horocycle flow on $SL(2, \mathbb{R})/\Gamma$. Then $(h_t)^k \stackrel{K}{\sim} (h_t)^l$ for $k \neq l$ (Ratner, 1980).

Kakutani invariant (Ratner, 1980)

- $(T_t) \mapsto e((T_t)) \in [0, +\infty];$
- If $(T_t) \stackrel{\kappa}{\sim} (S_t)$, then $e((T_t)) = e((S_t))$.

\bar{f} -metric

Fix a finite partition \mathcal{P} and $\epsilon > 0$. For N > 0, $x, y \in X$ are (ϵ, \mathcal{P}) matchable for time N if there exists a set $A \subset [0, N]$, $|A| > (1 - \epsilon)N$ and an increasing, measure preserving map $h : A \to h(A)$ such that $T_t x$ and $T_{h(t)}y$ are in one atom of \mathcal{P} for $t \in A$.

Kakutani invariant (Ratner, 1980)

• $(T_t) \mapsto e((T_t)) \in [0, +\infty];$

If
$$(T_t) \stackrel{\kappa}{\sim} (S_t)$$
, then $e((T_t)) = e((S_t))$.

Ī-metric

Fix a finite partition \mathcal{P} and $\epsilon > 0$. For N > 0, $x, y \in X$ are (ϵ, \mathcal{P}) -matchable for time N if there exists a set $A \subset [0, N]$, $|A| > (1 - \epsilon)N$ and an increasing, measure preserving map $h : A \to h(A)$ such that $T_t x$ and $T_{h(t)}y$ are in one atom of \mathcal{P} for $t \in A$.

Kakutani invariant (Ratner, 1980)

•
$$(T_t) \mapsto e((T_t)) \in [0, +\infty];$$

If
$$(T_t) \stackrel{\kappa}{\sim} (S_t)$$
, then $e((T_t)) = e((S_t))$.

f-metric

Fix a finite partition \mathcal{P} and $\epsilon > 0$. For N > 0, $x, y \in X$ are (ϵ, \mathcal{P}) matchable for time N if there exists a set $A \subset [0, N]$, $|A| > (1 - \epsilon)N$ and an increasing, measure preserving map $h : A \to h(A)$ such that $T_t x$ and $T_{h(t)}y$ are in one atom of \mathcal{P} for $t \in A$.

Kakutani invariant (Ratner, 1980)

•
$$(T_t) \mapsto e((T_t)) \in [0, +\infty];$$

If
$$(T_t) \stackrel{\kappa}{\sim} (S_t)$$
, then $e((T_t)) = e((S_t))$.

f-metric

Fix a finite partition \mathcal{P} and $\epsilon > 0$. For N > 0, $x, y \in X$ are (ϵ, \mathcal{P}) matchable for time N if there exists a set $A \subset [0, N]$, $|A| > (1 - \epsilon)N$ and an increasing, measure preserving map $h : A \to h(A)$ such that $T_t x$ and $T_{h(t)}y$ are in one atom of \mathcal{P} for $t \in A$.

What can be said about Kakutani equivalence for unipotent flows on quotients of semisimple Lie groups?

- G is a semisimple matrix Lie group with Lie algebra Lie(G);
- $U \in Lie(G)$ is such that ad_U is nilpotent, where $ad_U : Lie(G) \rightarrow Lie(G)$, $ad_U(V) = [U, V]$;
- Γ is a uniform lattice in G;
- $\phi_t^U : G/\Gamma \to G/\Gamma, \ \phi_t^U(x\Gamma) = \exp(tU)x\Gamma.$

What can be said about Kakutani equivalence for unipotent flows on quotients of semisimple Lie groups?

- G is a semisimple matrix Lie group with Lie algebra *Lie*(G);
- $U \in Lie(G)$ is such that ad_U is nilpotent, where $ad_U : Lie(G) \rightarrow Lie(G)$, $ad_U(V) = [U, V]$;
- Γ is a uniform lattice in G
- $\phi^U_t: G/\Gamma \to G/\Gamma, \ \phi^U_t(x\Gamma) = \exp(tU)x\Gamma.$

What can be said about Kakutani equivalence for unipotent flows on quotients of semisimple Lie groups?

- G is a semisimple matrix Lie group with Lie algebra *Lie*(G);
- $U \in Lie(G)$ is such that ad_U is nilpotent, where $ad_U : Lie(G) \rightarrow Lie(G)$, $ad_U(V) = [U, V]$;
- Γ is a uniform lattice in G;
- $\phi^U_t: G/\Gamma \to G/\Gamma, \ \phi^U_t(x\Gamma) = \exp(tU)x\Gamma.$

What can be said about Kakutani equivalence for unipotent flows on quotients of semisimple Lie groups?

- G is a semisimple matrix Lie group with Lie algebra *Lie*(G);
- $U \in Lie(G)$ is such that ad_U is nilpotent, where $ad_U : Lie(G) \rightarrow Lie(G)$, $ad_U(V) = [U, V]$;
- Γ is a uniform lattice in G;
- $\phi^U_t: G/\Gamma \to G/\Gamma, \ \phi^U_t(x\Gamma) = \exp(tU)x\Gamma.$

What can be said about Kakutani equivalence for unipotent flows on quotients of semisimple Lie groups?

- G is a semisimple matrix Lie group with Lie algebra *Lie*(G);
- $U \in Lie(G)$ is such that ad_U is nilpotent, where $ad_U : Lie(G) \rightarrow Lie(G)$, $ad_U(V) = [U, V]$;
- Γ is a uniform lattice in G;
- $\phi_t^U : G/\Gamma \to G/\Gamma, \ \phi_t^U(x\Gamma) = \exp(tU)x\Gamma.$

Chain basis

Chain basis for unipotent elements

 $U \in Lie(G)$ is a unipotent element. There exists a basis $(X_j^i)_{1 \le j \le m_i, 1 \le i \le K}$, of Lie(G) such that

$$X^{i}_{m_{i}} \stackrel{ad_{U}}{\mapsto} X^{i}_{m_{i}-1} \stackrel{ad_{U}}{\mapsto} \dots \stackrel{ad_{U}}{\mapsto} X^{i}_{1} \stackrel{ad_{U}}{\mapsto} 0,$$

for every $1 \le i \le K$. In particular, $X_1^i \in C(U)$ for $1 \le i \le K$.

Growth number of U

Let

$$GR(U) := \frac{1}{2} \sum_{i=1}^{K} m_i(m_i - 1).$$

Chain basis

Chain basis for unipotent elements

 $U \in Lie(G)$ is a unipotent element. There exists a basis $(X_j^i)_{1 \le j \le m_i, 1 \le i \le K}$, of Lie(G) such that

$$X^i_{m_i} \stackrel{ad_U}{\mapsto} X^i_{m_i-1} \stackrel{ad_U}{\mapsto} \dots \stackrel{ad_U}{\mapsto} X^i_1 \stackrel{ad_U}{\mapsto} 0,$$

for every $1 \le i \le K$. In particular, $X_1^i \in C(U)$ for $1 \le i \le K$.

Growth number of U

Let

$$GR(U) := \frac{1}{2} \sum_{i=1}^{K} m_i(m_i - 1).$$

Main theorem

Main theorem (K., Vinhage, Wei, 2018)

Let (ϕ_t^U) be a unipotent flow on G/Γ . Then

$$e((\phi_t^U)) = GR(U) - 3.$$

Moreover, if GR(U) = 3, then (ϕ_t^U) is standard.

Corollaries

- The only standard unipotent flows are of the form $id \times \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}$ acting on $(G \times SL(2, \mathbb{R}))/\Gamma$, where Γ is irreducible;
- If *dim G* > 3 and *G* is simple, then no unipotent flow on *G*/Γ is standard.

Main theorem

Main theorem (K., Vinhage, Wei, 2018)

Let (ϕ_t^U) be a unipotent flow on G/Γ . Then

$$e((\phi_t^U)) = GR(U) - 3.$$

Moreover, if GR(U) = 3, then (ϕ_t^U) is standard.

Corollaries

- The only standard unipotent flows are of the form $id \times \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}$ acting on $(G \times SL(2, \mathbb{R}))/\Gamma$, where Γ is irreducible;
- If $\dim G > 3$ and G is simple, then no unipotent flow on G/Γ is standard.

Main theorem

Main theorem (K., Vinhage, Wei, 2018)

Let (ϕ_t^U) be a unipotent flow on G/Γ . Then

$$e((\phi_t^U)) = GR(U) - 3.$$

Moreover, if GR(U) = 3, then (ϕ_t^U) is standard.

Corollaries

- The only standard unipotent flows are of the form $id \times \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}$ acting on $(G \times SL(2, \mathbb{R}))/\Gamma$, where Γ is irreducible;
- If $\dim G > 3$ and G is simple, then no unipotent flow on G/Γ is standard.

Jakobson-Morozov theorem

For every unipotent $U \in Lie(G)$, there exists $V, X \in Lie(G)$ such that

$$[X, U] = 2U, \quad [X, V] = -2V, \quad [U, V] = X.$$

So, $V \mapsto X \mapsto -2U$ is always one of the chains and hence $GR(U) \ge 3$.

•
$$e((h_t)^k) = 3k - 3;$$

• Let $U = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \in Lie(SL(3, \mathbb{R})).$ Then
 $e((\phi_t^U)) = 10.$

Jakobson-Morozov theorem

For every unipotent $U \in Lie(G)$, there exists $V, X \in Lie(G)$ such that

$$[X, U] = 2U, \quad [X, V] = -2V, \quad [U, V] = X.$$

So, $V \mapsto X \mapsto -2U$ is always one of the chains and hence $GR(U) \ge 3$.

•
$$e((h_t)^k) = 3k - 3;$$

• Let $U = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \in Lie(SL(3, \mathbb{R})).$ Then
 $e((\phi_t^U)) = 10.$

Jakobson-Morozov theorem

For every unipotent $U \in Lie(G)$, there exists $V, X \in Lie(G)$ such that

$$[X, U] = 2U, \quad [X, V] = -2V, \quad [U, V] = X.$$

So, $V \mapsto X \mapsto -2U$ is always one of the chains and hence $GR(U) \ge 3$.

•
$$e((h_t)^k) = 3k - 3;$$

• Let $U = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \in Lie(SL(3, \mathbb{R})).$ Then
 $e((\phi_t^U)) = 10.$

Jakobson-Morozov theorem

For every unipotent $U \in Lie(G)$, there exists $V, X \in Lie(G)$ such that

$$[X, U] = 2U, \quad [X, V] = -2V, \quad [U, V] = X.$$

So, $V \mapsto X \mapsto -2U$ is always one of the chains and hence $GR(U) \ge 3$.

•
$$e((h_t)^k) = 3k - 3;$$

• Let $U = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \in Lie(SL(3, \mathbb{R})).$ Then
 $e((\phi_t^U)) = 10.$

Some questions

Questions

- Is the flow generated by U on G/Γ Kakutani equivalent to the flow generated by U on G/Γ' ?
- Is the Kakutani invariant a full invariant in the class of unipotent flows?

Some questions

Questions

- Is the flow generated by U on G/Γ Kakutani equivalent to the flow generated by U on G/Γ' ?
- Is the Kakutani invariant a full invariant in the class of unipotent flows?

Some questions

Questions

- Is the flow generated by U on G/Γ Kakutani equivalent to the flow generated by U on G/Γ' ?
- Is the Kakutani invariant a full invariant in the class of unipotent flows?

THANK YOU !