Kakutani equivalence of unipotent flows

Adam Kanigowski

Montreal, 07.27.2018
(joint w. K. Vinhage and D. Wei)

General setting

- $(X, \mathcal{B}, \mu)-$ probability standard Borel space;
- $\left(T_{t}\right):(X, \mathcal{B}, \mu) \rightarrow(X, \mathcal{B}, \mu)$ - measure-preserving, flow.

|somorphism

$\left(T_{t}\right):(X, \mathcal{B}, \mu) \rightarrow(X, \mathcal{B}, \mu),\left(S_{t}\right):(Y, \mathcal{C}, \nu) \rightarrow(Y, \mathcal{C}, \nu)$ are

$$
R \circ \bar{T}_{t}=S_{t} \circ R \text { for } t \in \mathbb{R},
$$

where $R:(X, \mathcal{B}, \mu) \rightarrow(Y, \mathcal{C}, \nu)$ is invertible and
$\nu(C)=\mu\left(R^{-1} C\right), C \in \mathcal{C}$

Classification up to isomorphism
possible in general (M. Foreman, D. Rudolph, B. Weiss, 2011)

General setting

- (X, \mathcal{B}, μ) - probability standard Borel space;

■ $\left(T_{t}\right):(X, \mathcal{B}, \mu) \rightarrow(X, \mathcal{B}, \mu)$ - measure-preserving, ergodic flow.

Classification up to isomorphism
nossible in general (M Foreman, D. Rudolph, B. Weiss, 2011)

General setting

- $(X, \mathcal{B}, \mu)-$ probability standard Borel space;
- $\left(T_{t}\right):(X, \mathcal{B}, \mu) \rightarrow(X, \mathcal{B}, \mu)$ - measure-preserving, ergodic flow.

Isomorphism

$\left(T_{t}\right):(X, \mathcal{B}, \mu) \rightarrow(X, \mathcal{B}, \mu),\left(S_{t}\right):(Y, \mathcal{C}, \nu) \rightarrow(Y, \mathcal{C}, \nu)$ are isomorphic, if

$$
R \circ T_{t}=S_{t} \circ R \text { for } t \in \mathbb{R}
$$

where $R:(X, \mathcal{B}, \mu) \rightarrow(Y, \mathcal{C}, \nu)$ is invertible and $\nu(C)=\mu\left(R^{-1} C\right), C \in \mathcal{C}$.
\qquad
possible in general (M. Foreman, D. Rudolph, B. Weiss, 2011)

General setting

$\square(X, \mathcal{B}, \mu)-$ probability standard Borel space;
■ $\left(T_{t}\right):(X, \mathcal{B}, \mu) \rightarrow(X, \mathcal{B}, \mu)$ - measure-preserving, ergodic flow.

Isomorphism

$\left(T_{t}\right):(X, \mathcal{B}, \mu) \rightarrow(X, \mathcal{B}, \mu),\left(S_{t}\right):(Y, \mathcal{C}, \nu) \rightarrow(Y, \mathcal{C}, \nu)$ are isomorphic, if

$$
R \circ T_{t}=S_{t} \circ R \text { for } t \in \mathbb{R},
$$

where $R:(X, \mathcal{B}, \mu) \rightarrow(Y, \mathcal{C}, \nu)$ is invertible and $\nu(C)=\mu\left(R^{-1} C\right), C \in \mathcal{C}$.

Classification up to isomorphism

NOT possible in general (M. Foreman, D. Rudolph, B. Weiss, 2011)

Orbit and Kakutani equivalence

Orbit equivalence

- $\left(T_{t}\right)$ and $\left(S_{t}\right)$ are orbit equivalent, if there exists a invertible transformation that maps orbits of $\left(T_{t}\right)$ to orbits of $\left(S_{t}\right)$.
- (Dye's theorem, 1959) Every two ergodic flows are orbit equivalent.

Kakutani equivalence, 1943

(denoted $\left(T_{t}\right) \stackrel{K}{\sim}\left(S_{t}\right)$), if they have isomorphic
i.e. can be represented as special flows over the same

transformation.

```
Standard flows
    -Let ( }\mp@subsup{R}{t}{\alpha}):\mp@subsup{\mathbb{T}}{}{2}->\mp@subsup{\mathbb{T}}{}{2},\mp@subsup{R}{t}{a}(x,y)=(x+t,y+ta).Then, for every
    \alpha,\beta\not\in\mathbb{Q},(\mp@subsup{R}{t}{\alpha})}\underset{~}{~}(\mp@subsup{R}{t}{\beta})(Katok, 1976; Ornstein, Rudolph, Weiss
    1982);
    = (T})\mathrm{ is standard, if ( }\mp@subsup{T}{t}{})\stackrel{K}{~}(\mp@subsup{R}{t}{\alpha})\mathrm{ for some }\alpha\not\in\mathbb{Q
```


Orbit and Kakutani equivalence

Orbit equivalence

- $\left(T_{t}\right)$ and $\left(S_{t}\right)$ are orbit equivalent, if there exists a invertible transformation that maps orbits of $\left(T_{t}\right)$ to orbits of $\left(S_{t}\right)$.
- (Dye's theorem, 1959) Every two ergodic flows are orbit equivalent.

Orbit and Kakutani equivalence

Orbit equivalence

- $\left(T_{t}\right)$ and $\left(S_{t}\right)$ are orbit equivalent, if there exists a invertible transformation that maps orbits of $\left(T_{t}\right)$ to orbits of $\left(S_{t}\right)$.
- (Dye's theorem, 1959) Every two ergodic flows are orbit equivalent.

Kakutani equivalence, 1943
$\left(T_{t}\right):(X, \mathcal{B}, \mu) \rightarrow(X, \mathcal{B}, \mu)$ and $\left(S_{t}\right):(Y, \mathcal{C}, \nu) \rightarrow(Y, \mathcal{C}, \nu)$ are Kakutani equivalent (denoted $\left.\left(T_{t}\right) \stackrel{K}{\sim}\left(S_{t}\right)\right)$, if they have isomorphic sections, i.e. can be represented as special flows over the same transformation.

Orbit and Kakutani equivalence

Orbit equivalence

- $\left(T_{t}\right)$ and $\left(S_{t}\right)$ are orbit equivalent, if there exists a invertible transformation that maps orbits of $\left(T_{t}\right)$ to orbits of $\left(S_{t}\right)$.
- (Dye's theorem, 1959) Every two ergodic flows are orbit equivalent.

Kakutani equivalence, 1943

$\left(T_{t}\right):(X, \mathcal{B}, \mu) \rightarrow(X, \mathcal{B}, \mu)$ and $\left(S_{t}\right):(Y, \mathcal{C}, \nu) \rightarrow(Y, \mathcal{C}, \nu)$ are Kakutani equivalent (denoted $\left.\left(T_{t}\right) \stackrel{K}{\sim}\left(S_{t}\right)\right)$, if they have isomorphic sections, i.e. can be represented as special flows over the same transformation.

Orbit and Kakutani equivalence

Orbit equivalence

- $\left(T_{t}\right)$ and $\left(S_{t}\right)$ are orbit equivalent, if there exists a invertible transformation that maps orbits of $\left(T_{t}\right)$ to orbits of $\left(S_{t}\right)$.
- (Dye's theorem, 1959) Every two ergodic flows are orbit equivalent.

Kakutani equivalence, 1943

$\left(T_{t}\right):(X, \mathcal{B}, \mu) \rightarrow(X, \mathcal{B}, \mu)$ and $\left(S_{t}\right):(Y, \mathcal{C}, \nu) \rightarrow(Y, \mathcal{C}, \nu)$ are Kakutani equivalent (denoted $\left.\left(T_{t}\right) \stackrel{K}{\sim}\left(S_{t}\right)\right)$, if they have isomorphic sections, i.e. can be represented as special flows over the same transformation.

Standard flows

- Let $\left(R_{t}^{\alpha}\right): \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}, R_{t}^{\alpha}(x, y)=(x+t, y+t \alpha)$. Then, for every $\alpha, \beta \notin \mathbb{Q},\left(R_{t}^{\alpha}\right) \stackrel{K}{\sim}\left(R_{t}^{\beta}\right)$ (Katok, 1976; Ornstein, Rudolph, Weiss, 1982);

Orbit and Kakutani equivalence

Orbit equivalence

- $\left(T_{t}\right)$ and $\left(S_{t}\right)$ are orbit equivalent, if there exists a invertible transformation that maps orbits of $\left(T_{t}\right)$ to orbits of $\left(S_{t}\right)$.
- (Dye's theorem, 1959) Every two ergodic flows are orbit equivalent.

Kakutani equivalence, 1943

$\left(T_{t}\right):(X, \mathcal{B}, \mu) \rightarrow(X, \mathcal{B}, \mu)$ and $\left(S_{t}\right):(Y, \mathcal{C}, \nu) \rightarrow(Y, \mathcal{C}, \nu)$ are Kakutani equivalent (denoted $\left.\left(T_{t}\right) \stackrel{K}{\sim}\left(S_{t}\right)\right)$, if they have isomorphic sections, i.e. can be represented as special flows over the same transformation.

Standard flows

- Let $\left(R_{t}^{\alpha}\right): \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}, R_{t}^{\alpha}(x, y)=(x+t, y+t \alpha)$. Then, for every $\alpha, \beta \notin \mathbb{Q},\left(R_{t}^{\alpha}\right) \stackrel{K}{\sim}\left(R_{t}^{\beta}\right)$ (Katok, 1976; Ornstein, Rudolph, Weiss, 1982);
- $\left(T_{t}\right)$ is standard, if $\left(T_{t}\right) \stackrel{K}{\sim}\left(R_{t}^{\alpha}\right)$ for some $\alpha \notin \mathbb{Q}$.

Some results on Kakutani equivalence

Standard systems

- finite rank systems (Ornstein, Rudolph, Weiss, 1982);
- closed under factors, inverse limits, compact extensions (Katok, 1976; Ornstein, Rudolph, Weiss, 1982)
- horocycle flows (Ratner, 1978)

```
Non-standard systems
    - first example due to Feldman, 1975;
    ■ uncountably many pairwise non Kakutani equivalent systems
    (Ornstein, Rudolph, Weiss, 1982);
    ■ Let ( }\mp@subsup{h}{t}{}\mathrm{ ) denote the horocycle flow on SL(2, R})/\Gamma\mathrm{ . Then
    (ht)}\mp@subsup{)}{}{k}\stackrel{K}{~}(\mp@subsup{h}{t}{}\mp@subsup{)}{}{\prime}\mathrm{ for }k\not=1 (Ratner, 1980)
```


Some results on Kakutani equivalence

Standard systems

- finite rank systems (Ornstein, Rudolph, Weiss, 1982);
- closed under factors, inverse limits, compact extensions (Katok, 1976; Ornstein, Rudolph, Weiss, 1982)
- horocycle flows (Ratner, 1978)

```
Non-standard systems
- first example due to Feldman, 1975;
■ uncountably many pairwise non Kakutani equivalent systems
    (Ornstein, Rudolph, Weiss, 1982);
■ Let ( }\mp@subsup{h}{t}{}\mathrm{ ) denote the horocycle flow on SL(2, R})/\Gamma\mathrm{ . Then
(ht)}\mp@subsup{)}{}{k}\stackrel{K}{~}(\mp@subsup{h}{t}{}\mp@subsup{)}{}{\prime}\mathrm{ for }k\not=I\mathrm{ (Ratner, 1980).
```


Some results on Kakutani equivalence

Standard systems

- finite rank systems (Ornstein, Rudolph, Weiss, 1982);
- closed under factors, inverse limits, compact extensions (Katok, 1976; Ornstein, Rudolph, Weiss, 1982)
- horocycle flows (Ratner, 1978)

Some results on Kakutani equivalence

Standard systems

- finite rank systems (Ornstein, Rudolph, Weiss, 1982);
- closed under factors, inverse limits, compact extensions (Katok, 1976; Ornstein, Rudolph, Weiss, 1982)
- horocycle flows (Ratner, 1978)

Non-standard systems

- first example due to Feldman, 1975;

Some results on Kakutani equivalence

Standard systems

- finite rank systems (Ornstein, Rudolph, Weiss, 1982);
- closed under factors, inverse limits, compact extensions (Katok, 1976; Ornstein, Rudolph, Weiss, 1982)
- horocycle flows (Ratner, 1978)

Non-standard systems

- first example due to Feldman, 1975;
- uncountably many pairwise non Kakutani equivalent systems (Ornstein, Rudolph, Weiss, 1982);

Some results on Kakutani equivalence

Standard systems

- finite rank systems (Ornstein, Rudolph, Weiss, 1982);
- closed under factors, inverse limits, compact extensions (Katok, 1976; Ornstein, Rudolph, Weiss, 1982)
- horocycle flows (Ratner, 1978)

Non-standard systems

- first example due to Feldman, 1975;
- uncountably many pairwise non Kakutani equivalent systems (Ornstein, Rudolph, Weiss, 1982);
- Let $\left(h_{t}\right)$ denote the horocycle flow on $\operatorname{SL}(2, \mathbb{R}) / \Gamma$. Then $\left(h_{t}\right)^{k} \stackrel{K}{\sim}\left(h_{t}\right)^{\prime}$ for $k \neq 1$ (Ratner, 1980).

Some results on Kakutani equivalence

Standard systems

- finite rank systems (Ornstein, Rudolph, Weiss, 1982);
- closed under factors, inverse limits, compact extensions (Katok, 1976; Ornstein, Rudolph, Weiss, 1982)
- horocycle flows (Ratner, 1978)

Non-standard systems

- first example due to Feldman, 1975;
- uncountably many pairwise non Kakutani equivalent systems (Ornstein, Rudolph, Weiss, 1982);
- Let $\left(h_{t}\right)$ denote the horocycle flow on $\operatorname{SL}(2, \mathbb{R}) / \Gamma$. Then $\left(h_{t}\right)^{k} \stackrel{K}{\sim}\left(h_{t}\right)^{\prime}$ for $k \neq 1$ (Ratner, 1980).

Kakutani invariant of M. Ratner

Kakutani invariant (Ratner, 1980)

- $\left(T_{t}\right) \mapsto e\left(\left(T_{t}\right)\right) \in[0,+\infty] ;$
- If $\left(T_{t}\right) \stackrel{K}{\sim}\left(S_{t}\right)$, then $e\left(\left(T_{t}\right)\right)=e\left(\left(S_{t}\right)\right)$.

```
f}\mathrm{ -metric
rix a finite partition P}\mathrm{ and }\epsilon>0\mathrm{ . For }N>0,x,y\inX\mathrm{ are
matchable for time N if there exists a set A\subset[0,N], }A|A|>(1-\epsilon)N\mathrm{ and
an increasing, measure preserving map h:A->h(A) such that T}\mp@subsup{T}{t}{}x\mathrm{ and
Th(t)y}\mathrm{ are in one atom of }\mathcal{P}\mathrm{ for }t\inA
```


Kakutani invariant of M. Ratner

> Kakutani invariant (Ratner, 1980)
> - $\left(T_{t}\right) \mapsto e\left(\left(T_{t}\right)\right) \in[0,+\infty] ;$
> - If $\left(T_{t}\right) \stackrel{K}{\sim}\left(S_{t}\right)$, then $e\left(\left(T_{t}\right)\right)=e\left(\left(S_{t}\right)\right)$.

Kakutani invariant of M. Ratner

Kakutani invariant (Ratner, 1980)

- $\left(T_{t}\right) \mapsto e\left(\left(T_{t}\right)\right) \in[0,+\infty] ;$
- If $\left(T_{t}\right) \stackrel{K}{\sim}\left(S_{t}\right)$, then $e\left(\left(T_{t}\right)\right)=e\left(\left(S_{t}\right)\right)$.

\bar{f}-metric

Fix a finite partition \mathcal{P} and $\epsilon>0$. For $N>0, x, y \in X$ are (ϵ, \mathcal{P}) -
matchable for time N if there exists a set $A \subset[0, N],|A|>(1-\epsilon) N$ and an increasing, measure preserving map $h: A \rightarrow h(A)$ such that $T_{t} x$ and $T_{h(t)} y$ are in one atom of \mathcal{P} for $t \in A$.

Kakutani invariant of M. Ratner

Kakutani invariant (Ratner, 1980)

- $\left(T_{t}\right) \mapsto e\left(\left(T_{t}\right)\right) \in[0,+\infty] ;$
- If $\left(T_{t}\right) \stackrel{K}{\sim}\left(S_{t}\right)$, then $e\left(\left(T_{t}\right)\right)=e\left(\left(S_{t}\right)\right)$.

\bar{f}-metric

Fix a finite partition \mathcal{P} and $\epsilon>0$. For $N>0, x, y \in X$ are (ϵ, \mathcal{P}) -
matchable for time N if there exists a set $A \subset[0, N],|A|>(1-\epsilon) N$ and an increasing, measure preserving map $h: A \rightarrow h(A)$ such that $T_{t} x$ and $T_{h(t)} y$ are in one atom of \mathcal{P} for $t \in A$.

Kakutani equivalence of unipotent flows

Ratner's problem, 1994

What can be said about Kakutani equivalence for unipotent flows on quotients of semisimple Lie groups?

```
Setting
- G is a semisimple matrix Lie group with Lie algebra Lie(G);
■ U Lie(G) is such that adU is nilpotent, where
    adU : Lie(G) -> Lie(G), adu(V)=[U,V];
\square\Gamma is a uniform lattice in G;
|}\mp@subsup{\phi}{t}{U}:G/\Gamma->G/\Gamma,\mp@subsup{\phi}{t}{U}(x\Gamma)=\operatorname{exp}(tU)x\Gamma
```


Kakutani equivalence of unipotent flows

Ratner's problem, 1994

What can be said about Kakutani equivalence for unipotent flows on quotients of semisimple Lie groups?

Setting

- G is a semisimple matrix Lie group with Lie algebra $\operatorname{Lie}(G)$;

Kakutani equivalence of unipotent flows

Ratner's problem, 1994

What can be said about Kakutani equivalence for unipotent flows on quotients of semisimple Lie groups?

Setting

- G is a semisimple matrix Lie group with Lie algebra $\operatorname{Lie}(G)$;

■ $U \in \operatorname{Lie}(G)$ is such that a_{U} is nilpotent, where $\operatorname{ad}_{U}: \operatorname{Lie}(G) \rightarrow \operatorname{Lie}(G), \operatorname{ad}_{U}(V)=[U, V]$;

Kakutani equivalence of unipotent flows

Ratner's problem, 1994

What can be said about Kakutani equivalence for unipotent flows on quotients of semisimple Lie groups?

Setting

- G is a semisimple matrix Lie group with Lie algebra $\operatorname{Lie}(G)$;

■ $U \in \operatorname{Lie}(G)$ is such that a_{U} is nilpotent, where $\operatorname{ad}_{U}: \operatorname{Lie}(G) \rightarrow \operatorname{Lie}(G), \operatorname{ad}_{U}(V)=[U, V] ;$
$■$ ■ is a uniform lattice in G;

Kakutani equivalence of unipotent flows

Ratner's problem, 1994

What can be said about Kakutani equivalence for unipotent flows on quotients of semisimple Lie groups?

Setting

- G is a semisimple matrix Lie group with Lie algebra $\operatorname{Lie}(G)$;

■ $U \in \operatorname{Lie}(G)$ is such that a_{U} is nilpotent, where $\operatorname{ad}_{U}: \operatorname{Lie}(G) \rightarrow \operatorname{Lie}(G), \operatorname{ad}_{U}(V)=[U, V] ;$
$\square \Gamma$ is a uniform lattice in G;

- $\phi_{t}^{U}: G / \Gamma \rightarrow G / \Gamma, \phi_{t}^{U}(x \Gamma)=\exp (t U) x \Gamma$.

Chain basis

Chain basis for unipotent elements

$U \in \operatorname{Lie}(G)$ is a unipotent element. There exists a basis $\left(X_{j}^{i}\right)_{1 \leq j \leq m_{i}, 1 \leq i \leq K}$, of $\operatorname{Lie}(G)$ such that

$$
X_{m_{i}}^{i} \stackrel{\stackrel{a d}{\longmapsto}}{\longmapsto} X_{m_{i}-1}^{i} \stackrel{a d \mu}{\longmapsto} \ldots \stackrel{a d u}{\mapsto} X_{1}^{i} \stackrel{a d}{\longmapsto} 0,
$$

for every $1 \leq i \leq K$. In particular, $X_{1}^{i} \in C(U)$ for $1 \leq i \leq K$.

Chain basis

Chain basis for unipotent elements
$U \in \operatorname{Lie}(G)$ is a unipotent element. There exists a basis $\left(X_{j}^{i}\right)_{1 \leq j \leq m_{i}, 1 \leq i \leq K}$, of $\operatorname{Lie}(G)$ such that

$$
X_{m_{i}}^{i} \stackrel{\stackrel{a d}{\longmapsto}}{\mapsto} X_{m_{i}-1}^{i} \stackrel{a d_{u}}{\mapsto} \ldots \stackrel{a d u}{\mapsto} X_{1}^{i} \stackrel{a d d_{u}}{\mapsto} 0
$$

for every $1 \leq i \leq K$. In particular, $X_{1}^{i} \in C(U)$ for $1 \leq i \leq K$.

Growth number of U

Let

$$
G R(U):=\frac{1}{2} \sum_{i=1}^{K} m_{i}\left(m_{i}-1\right)
$$

Main theorem

Main theorem (K., Vinhage, Wei, 2018)

Let $\left(\phi_{t}^{U}\right)$ be a unipotent flow on G / Γ. Then

$$
e\left(\left(\phi_{t}^{U}\right)\right)=G R(U)-3 .
$$

Moreover, if $G R(U)=3$, then $\left(\phi_{t}^{U}\right)$ is standard.

Corollaries

- The only standard unipotent flows are of the form

id $\times\left(\begin{array}{ll}1 & t \\ 0 & 1\end{array}\right)$acting on $(G \times S L(2, \mathbb{R})) / \Gamma$, where Γ is
irreducible;

- If $\operatorname{dim} G>3$ and G is simple, then no unipotent flow on G / Γ is standard.

Main theorem

Main theorem (K., Vinhage, Wei, 2018)

Let $\left(\phi_{t}^{U}\right)$ be a unipotent flow on G / Γ. Then

$$
e\left(\left(\phi_{t}^{U}\right)\right)=G R(U)-3 .
$$

Moreover, if $G R(U)=3$, then $\left(\phi_{t}^{U}\right)$ is standard.

Corollaries

- The only standard unipotent flows are of the form id $\times\left(\begin{array}{ll}1 & t \\ 0 & 1\end{array}\right)$ acting on $(G \times S L(2, \mathbb{R})) / \Gamma$, where Γ is irreducible;

```
    -If Ifm G>3 and G is simple, then no unipotent flow on G/\Gamma
    is standard.
```


Main theorem

Main theorem (K., Vinhage, Wei, 2018)

Let $\left(\phi_{t}^{U}\right)$ be a unipotent flow on G / Γ. Then

$$
e\left(\left(\phi_{t}^{U}\right)\right)=G R(U)-3 .
$$

Moreover, if $G R(U)=3$, then $\left(\phi_{t}^{U}\right)$ is standard.

Corollaries

- The only standard unipotent flows are of the form id $\times\left(\begin{array}{ll}1 & t \\ 0 & 1\end{array}\right)$ acting on $(G \times S L(2, \mathbb{R})) / \Gamma$, where Γ is irreducible;
- If $\operatorname{dim} G>3$ and G is simple, then no unipotent flow on G / Γ is standard.

Examples

Jakobson-Morozov theorem

For every unipotent $U \in \operatorname{Lie}(G)$, there exists $V, X \in \operatorname{Lie}(G)$ such that

$$
[X, U]=2 U, \quad[X, V]=-2 V, \quad[U, V]=X
$$

So, $V \mapsto X \mapsto-2 U$ is always one of the chains and hence

Examples

$$
\begin{aligned}
& =e\left(\left(h_{t}\right)^{k}\right)=3 k-3 ; \\
& \text { - Let } U=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) \in \operatorname{Lie}(S L(3, \mathbb{R})) \text {. Then }
\end{aligned}
$$

$$
e\left(\left(\phi_{t}^{U}\right)\right)=10 .
$$

Examples

Jakobson-Morozov theorem

For every unipotent $U \in \operatorname{Lie}(G)$, there exists $V, X \in \operatorname{Lie}(G)$ such that

$$
[X, U]=2 U, \quad[X, V]=-2 V, \quad[U, V]=X
$$

So, $V \mapsto X \mapsto-2 U$ is always one of the chains and hence $G R(U) \geq 3$.

$$
e\left(\left(\phi_{t}^{U}\right)\right)=10 .
$$

Examples

Jakobson-Morozov theorem

For every unipotent $U \in \operatorname{Lie}(G)$, there exists $V, X \in \operatorname{Lie}(G)$ such that

$$
[X, U]=2 U, \quad[X, V]=-2 V, \quad[U, V]=X
$$

So, $V \mapsto X \mapsto-2 U$ is always one of the chains and hence $G R(U) \geq 3$.

Examples

- e(($\left.\left.h_{t}\right)^{k}\right)=3 k-3 ;$

$e\left(\left(\phi_{t}^{U}\right)\right)=10$.

Examples

Jakobson-Morozov theorem

For every unipotent $U \in \operatorname{Lie}(G)$, there exists $V, X \in \operatorname{Lie}(G)$ such that

$$
[X, U]=2 U, \quad[X, V]=-2 V, \quad[U, V]=X
$$

So, $V \mapsto X \mapsto-2 U$ is always one of the chains and hence $G R(U) \geq 3$.

Examples

- e(($\left.\left.h_{t}\right)^{k}\right)=3 k-3 ;$
- Let $U=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right) \in \operatorname{Lie}(S L(3, \mathbb{R}))$. Then

$$
e\left(\left(\phi_{t}^{U}\right)\right)=10 .
$$

Some questions

Questions

Is the flow generated by U on G / Γ Kakutani equivalent to the flow generated by U on G / Γ^{\prime} ?

- Is the Kakutani invariant a full invariant in the class of unipotent flows?

Some questions

Questions

- Is the flow generated by U on G / Γ Kakutani equivalent to the flow generated by U on G / Γ^{\prime} ?

```
- Is the Kakutani invariant a
unipotent flows?
```


Some questions

Questions

- Is the flow generated by U on G / Γ Kakutani equivalent to the flow generated by U on G / Γ^{\prime} ?
- Is the Kakutani invariant a full invariant in the class of unipotent flows?

THANK YOU!

