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General setting

(X ,B, µ) – probability standard Borel space;

(Tt) : (X ,B, µ)→ (X ,B, µ) – measure-preserving, ergodic
flow.

Isomorphism

(Tt) : (X ,B, µ)→ (X ,B, µ), (St) : (Y , C, ν)→ (Y , C, ν) are
isomorphic, if

R ◦ Tt = St ◦ R for t ∈ R,

where R : (X ,B, µ)→ (Y , C, ν) is invertible and
ν(C ) = µ(R−1C ), C ∈ C.

Classification up to isomorphism

NOT possible in general (M. Foreman, D. Rudolph, B. Weiss,
2011)
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Orbit and Kakutani equivalence

Orbit equivalence

(Tt) and (St) are orbit equivalent, if there exists a invertible
transformation that maps orbits of (Tt) to orbits of (St).

(Dye’s theorem, 1959) Every two ergodic flows are orbit equivalent.

Kakutani equivalence, 1943

(Tt) : (X ,B, µ)→ (X ,B, µ) and (St) : (Y , C, ν)→ (Y , C, ν) are

Kakutani equivalent (denoted (Tt)
K∼ (St)), if they have isomorphic

sections, i.e. can be represented as special flows over the same
transformation.

Standard flows

Let (Rα
t ) : T2 → T2, Rα

t (x , y) = (x + t, y + tα). Then, for every

α, β /∈ Q, (Rα
t )

K∼ (Rβ
t ) (Katok, 1976; Ornstein, Rudolph, Weiss,

1982);

(Tt) is standard, if (Tt)
K∼ (Rα

t ) for some α /∈ Q.
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Some results on Kakutani equivalence

Standard systems

finite rank systems (Ornstein, Rudolph, Weiss, 1982);

closed under factors, inverse limits, compact extensions
(Katok, 1976; Ornstein, Rudolph, Weiss, 1982)

horocycle flows (Ratner, 1978)

Non-standard systems

first example due to Feldman, 1975;

uncountably many pairwise non Kakutani equivalent systems
(Ornstein, Rudolph, Weiss, 1982);

Let (ht) denote the horocycle flow on SL(2,R)/Γ. Then

(ht)
k K� (ht)

l for k 6= l (Ratner, 1980).
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Kakutani invariant of M. Ratner

Kakutani invariant (Ratner, 1980)

(Tt) 7→ e((Tt)) ∈ [0,+∞];

If (Tt)
K∼ (St), then e((Tt)) = e((St)).

f̄ -metric

Fix a finite partition P and ε > 0. For N > 0, x , y ∈ X are (ε,P)-
matchable for time N if there exists a set A ⊂ [0,N], |A| > (1− ε)N and
an increasing, measure preserving map h : A→ h(A) such that Ttx and
Th(t)y are in one atom of P for t ∈ A.
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Kakutani equivalence of unipotent flows

Ratner’s problem, 1994

What can be said about Kakutani equivalence for unipotent flows
on quotients of semisimple Lie groups?

Setting

G is a semisimple matrix Lie group with Lie algebra Lie(G );

U ∈ Lie(G ) is such that adU is nilpotent, where
adU : Lie(G )→ Lie(G ), adU(V ) = [U,V ];

Γ is a uniform lattice in G ;

φUt : G/Γ→ G/Γ, φUt (xΓ) = exp(tU)xΓ.
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Chain basis

Chain basis for unipotent elements

U ∈ Lie(G ) is a unipotent element. There exists a basis

(X i
j )1≤j≤mi ,1≤i≤K , of Lie(G ) such that

X i
mi

adU7→ X i
mi−1

adU7→ . . .
adU7→ X i

1

adU7→ 0,

for every 1 ≤ i ≤ K . In particular, X i
1 ∈ C (U) for 1 ≤ i ≤ K .

Growth number of U

Let

GR(U) :=
1

2

K∑
i=1

mi (mi − 1).
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Main theorem

Main theorem (K., Vinhage, Wei, 2018)

Let (φUt ) be a unipotent flow on G/Γ. Then

e((φUt )) = GR(U)− 3.

Moreover, if GR(U) = 3, then (φUt ) is standard.

Corollaries

The only standard unipotent flows are of the form

id ×
(

1 t
0 1

)
acting on (G × SL(2,R))/Γ, where Γ is

irreducible;

If dimG > 3 and G is simple, then no unipotent flow on G/Γ
is standard.
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Examples

Jakobson-Morozov theorem

For every unipotent U ∈ Lie(G ), there exists V ,X ∈ Lie(G ) such that

[X ,U] = 2U, [X ,V ] = −2V , [U,V ] = X .

So, V 7→ X 7→ −2U is always one of the chains and hence GR(U) ≥ 3.

Examples

e((ht)
k) = 3k − 3;

Let U =

0 1 0
0 0 1
0 0 0

 ∈ Lie(SL(3,R)). Then

e((φUt )) = 10.
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Some questions

Questions

Is the flow generated by U on G/Γ Kakutani equivalent to the
flow generated by U on G/Γ′?

Is the Kakutani invariant a full invariant in the class of
unipotent flows?
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THANK YOU !
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