Tau functions, Fredholm determinants and combinatorics

Oleg Lisovyy
Institut Denis-Poisson, Université de Tours, France

Montréal, 27/07/2018
joint work with M. Cafasso \& P. Gavrylenko
1712.08546 [math-ph]

Motivation: Painlevé equations

2D Ising correlation
Painlevé III (massive scaling limit)
[Wu,McCoy, Tracy,Barouch,'76]

Painlevé equations describe simplest cases of monodromy preserving deformations of linear ODEs with rational coefficients. E.g. Painlevé VI corresponds to rank 2 Fuchsian system with 4 regular singularities at $0, t, 1, \infty$:

$$
\partial_{z} \Phi=\Phi A(z), \quad A(z)=\frac{A_{0}}{z}+\frac{A_{t}}{z-t}+\frac{A_{1}}{z-1}
$$

Isomonodromy equations are

$$
\frac{d A_{0}}{d t}=\frac{\left[A_{0}, A_{t}\right]}{t}, \quad \frac{d A_{1}}{d t}=\frac{\left[A_{1}, A_{t}\right]}{t-1}, \quad A_{\infty}=\text { const }
$$

For $A_{0, t, 1}$ and $A_{\infty}:=-A_{0}-A_{t}-A_{1}$ traceless 2×2 matrices, with eigenvalues $\pm \theta_{0, t, 1, \infty}$, these equations are equivalent to Painlevé VI .

Painlevé VI:

$\left(t(t-1) \zeta^{\prime \prime}\right)^{2}=-2 \operatorname{det}\left(\begin{array}{ccc}2 \theta_{0}^{2} & t \zeta^{\prime}-\zeta & \zeta^{\prime}+\theta_{0}^{2}+\theta_{t}^{2}+\theta_{1}^{2}-\theta_{\infty}^{2} \\ t^{\prime}-\zeta & 2 \theta_{t}^{2} \\ \zeta^{\prime}+\theta_{0}^{2}+\theta_{t}^{2}+\theta_{1}^{2}-\theta_{\infty}^{2} & (t-1) \zeta^{\prime}-\zeta & (t-1) \zeta^{\prime}-\zeta\end{array}\right)$

- $\zeta(t)=(t-1) \operatorname{Tr} A_{0} A_{t}+t \operatorname{Tr} A_{1} A_{t}=t(t-1) \frac{d}{d t} \ln \tau$
- $\tau(t)$ is the Painlevé VI tau function

Geometric confluence diagram [Chekhov, Mazzocco, Rubtsov, '15]:

Painlevé project:

- develop a general approach that would allow to derive systematically (asymptotic) series for PI-PV functions
- explicit expressions for coefficients of the series + connection formulas (in terms of monodromy of the associated linear problem)

Painlevé project:

- develop a general approach that would allow to derive systematically (asymptotic) series for PI-PV functions
- explicit expressions for coefficients of the series + connection formulas (in terms of monodromy of the associated linear problem)

All classical "linear" special functions admit explicit representations. The Painlevé transcendents do not.
A. Fokas, A. Its, A. Kapaev, V. Novokshenov, Painlevé transcendents. The Riemann-Hilbert approach, (2006)

General solution of PVI [Gamayun, lorgov, OL, '12]:
PVI tau function is a Fourier transform of $c=1$ Virasoro conformal block:

$$
\tau(t)=\sum_{n \in \mathbb{Z}} e^{i n \eta} \mathcal{B}(\vec{\theta}, \sigma+n, t)=\sum_{n \in \mathbb{Z}} e^{i n \eta}{ }^{\theta_{\infty}} \begin{array}{r|r|r}
\theta_{1} & & \theta_{t}^{\theta_{t}} \\
\theta_{0}
\end{array}(t)
$$

- $\mathcal{B}(\vec{\theta}, \sigma, t)=t^{\sigma^{2}-\theta_{0}^{2}-\theta_{t}^{2}} \sum_{k=0}^{\infty} B_{k}(\vec{\theta}, \sigma) t^{k}$
- B_{k} determined by commutation relations of Vir
- AGT correspondence [Alday, Gaiotto, Tachikawa, '09]:

$$
\mathcal{B}(t)=\mathcal{Z}_{\text {inst }}(t)=\begin{gathered}
\text { sum over pairs } \\
\text { of Young diagrams }
\end{gathered} \quad[\text { Nekrasov, '04] }
$$

Series representation for PVI tau function (proof in [Gavrylenko, OL, '16])

$$
\tau(t)=\sum_{n \in \mathbb{Z}} e^{i n \eta} \sum_{\lambda, \mu \in \mathbb{Y}} \mathcal{B}_{\lambda, \mu}(\vec{\theta}, \sigma+n) t^{(\sigma+n)^{2}+|\lambda|+|\mu|}
$$

- PVI, PV, PIII ${ }_{1,2,3}$ surfaces may be cut into solvable pieces

Gauss

Whittaker

Bessel

- More surprisingly, Fourier transform also appears in "irregular type" expansions for PI-PV at $t=\infty$.

Riemann-Hilbert setup

- let $\mathcal{C} \subset \mathbb{C}$ be a circle centered at the origin
- pick a loop $J(z) \in \operatorname{Hom}\left(\mathcal{C}, \mathrm{GL}_{N}(\mathbb{C})\right)$
- $J(z)$ continues into an annulus $\mathcal{A} \supset \mathcal{C}$

$$
J(z)=\sum_{k \in \mathbb{Z}} J_{k} z^{k},
$$

Two Riemann-Hilbert problems:

$$
\begin{aligned}
\text { direct }: & J(z)=\Psi_{-}(z)^{-1} \Psi_{+}(z) \\
\text { dual : } & J(z)=\bar{\Psi}_{+}(z) \bar{\Psi}_{-}(z)^{-1}
\end{aligned}
$$

Main definition: The tau function of RHPs defined by (\mathcal{C}, J) is defined as Fredholm determinant

$$
\tau[J]=\operatorname{det}_{H_{+}}\left(\Pi_{+} J^{-1} \Pi_{+} J \Pi_{+}\right),
$$

where $H=L^{2}\left(\mathcal{C}, \mathbb{C}^{N}\right)$ and Π_{+}is the orthogonal projection on H_{+}along H_{-}.

Properties:

- dual RHP is solvable iff the operator $P:=\Pi_{+} J^{-1} \Pi_{+}$is invertible on H_{+}, in which case $P^{-1}=\bar{\psi}_{+} \Pi_{+} \bar{\Psi}_{-}^{-1} \Pi_{+}$
- likewise, for direct RHP and $Q:=\Pi_{+} J \Pi_{+}$, with $Q^{-1}=\Psi_{+}^{-1} \Pi_{+} \Psi_{-} \Pi_{+}$
- if either direct or dual RHP is not solvable, then $\tau[J]=0$
- $\tau[J]$ appears in the large size asymptotics of Toeplitz determinants with symbol J and is called Widom's constant in this context

If the direct RHP is solvable, then $\tau[J]$ may also be written as

$$
\tau[J]=\operatorname{det}_{H}(1+K), \quad K=\left(\begin{array}{cc}
0 & a_{+-} \\
a_{-+} & 0
\end{array}\right)
$$

where $a_{ \pm \mp}=\Psi_{ \pm} \Pi_{ \pm} \Psi_{ \pm}^{-1}-\Pi_{ \pm}: H_{\mp} \rightarrow H_{ \pm}$are integral operators

$$
\left(a_{ \pm \mp} f\right)(z)=\frac{1}{2 \pi i} \oint_{\mathcal{C}} a_{ \pm \mp}\left(z, z^{\prime}\right) f\left(z^{\prime}\right) d z^{\prime}
$$

with block integrable kernels

$$
\mathrm{a}_{ \pm \mp}\left(z, z^{\prime}\right)= \pm \frac{\mathbf{1}-\Psi_{ \pm}(z) \Psi_{ \pm}\left(z^{\prime}\right)^{-1}}{z-z^{\prime}}
$$

In applications to Painlevé:

- $\Psi_{ \pm}$(direct factorization) are given and define the jump $J=\Psi_{-}{ }^{-1} \Psi_{+}$
- $\Psi_{ \pm}$are expressed via classical special functions (Gauss, Kummer \& Bessel for PVI, PV, PIII's)
- dual factorization $\left(\bar{\Psi}_{ \pm}\right.$in $\left.J=\bar{\Psi}_{+} \bar{\Psi}_{-}^{-1}\right)$ is the problem to be solved

Differentiation formula

Theorem: Let $(z, t) \mapsto J(z, t)$ be a smooth family of GL (N, \mathbb{C})-loops which depend on an extra parameter t and admit direct \& dual factorization. Then

$$
\partial_{t} \ln \tau[J]=\frac{1}{2 \pi i} \oint_{\mathcal{C}} \operatorname{Tr}\left\{J^{-1} \partial_{t} J\left[\partial_{z} \bar{\Psi}_{-} \bar{\Psi}_{-}^{-1}+\Psi_{+}^{-1} \partial_{z} \Psi_{+}\right]\right\} d z
$$

- proof in [Widom, '74]; rediscovered by [Its, Jin, Korepin, '06]
- related results in the study of dependence of isomonodromic tau functions on monodromy [Bertola, '09]

Corollary: in isomonodromic RHPs,

$$
\text { Widom's constant } \tau[\mathrm{J}] \simeq \text { Jimbo-Miwa-Ueno tau function }
$$

Dual RHP $_{1}$ for $\tilde{\Psi}$

Dual RHP_{1} for $\tilde{\Psi}$

Dual RHP_{2} for $\hat{\psi}$

Dual RHP_{2} for $\hat{\psi}$

Dual RHP_{3} for $\bar{\psi}$

- contour \mathcal{C} (single circle !), smooth jump J : $\mathcal{C} \rightarrow \mathrm{GL}(N, \mathbb{C})$ given by

$$
J(z)=\Psi_{-}(z)^{-1} \Psi_{+}(z)=\bar{\Psi}_{+}(z) \bar{\Psi}_{-}(z)^{-1}
$$

- we are in the previously described setup!

Widom's differentiation formula implies that

$$
\partial_{t} \ln \tau[J]=\underbrace{\frac{\operatorname{Tr} A_{0} A_{t}}{t}+\frac{\operatorname{Tr} A_{t} A_{1}}{t-1}}_{\partial_{t} \ln \tau_{\mathrm{JMU}}(t)}-\frac{\operatorname{Tr} A_{0}^{+} A_{t}^{+}}{t}
$$

so that in turn

$$
\tau_{\mathrm{JMU}}(t)=t^{\frac{1}{2} \operatorname{Tr}\left(\mathfrak{S}^{2}-\Theta_{0}^{2}-\Theta_{t}^{2}\right)} \tau[J]
$$

- Recall that

$$
\begin{gathered}
\tau[J]=\operatorname{det}(\mathbf{1}+K), \quad K=\left(\begin{array}{cc}
0 & a_{+-} \\
a_{-+} & 0
\end{array}\right) \\
a_{ \pm \mp}\left(z, z^{\prime}\right)= \pm \frac{\mathbf{1}-\Psi_{ \pm}(z) \Psi_{ \pm}\left(z^{\prime}\right)^{-1}}{z-z^{\prime}}
\end{gathered}
$$

- $\tau_{\text {JMU }}(t)$ for 4-point system written via auxiliary 3-point solutions
- hypergeometric representations for $N=2 \Longrightarrow$ PVI tau function!

Schematically,

Similarly, for a linear system with 2 irregular singularities

Series representations

Given $K \in \mathbb{C}^{\mathfrak{X} \times \mathfrak{X}}$, we can expand Fredholm determinant
$\operatorname{det}(1+K)=\sum_{\mathfrak{Y} \in 2^{\mathfrak{X}}} \operatorname{det} K_{\mathfrak{Y}}=1+\sum_{m \in \mathfrak{X}} K_{m m}+\frac{1}{2!} \sum_{m, n \in \mathfrak{X}}\left|\begin{array}{ll}K_{m m} & K_{m n} \\ K_{n m} & K_{n n}\end{array}\right|+\ldots$

- our case: $K=\left(\begin{array}{cc}0 & a_{+-} \\ a_{-+} & 0\end{array}\right)$
- in the Fourier basis,

$$
\mathrm{a}_{ \pm \mp}\left(z, z^{\prime}\right)=\sum_{p, q \in \mathbb{Z}_{+}^{\prime}} a_{\mp q}^{ \pm p} z^{-\frac{1}{2} \pm p} z^{\prime-\frac{1}{2} \pm q}
$$

with $\mathrm{a}_{\neq q}^{ \pm p} \in \operatorname{Mat}_{N \times N}(\mathbb{C})$.

- multi-indices m, n, \ldots of principal minors $\operatorname{det} K_{\mathfrak{Y}}=\operatorname{det}\left(\begin{array}{cc}0 & a_{h}^{p} \\ a_{p}^{h} & 0\end{array}\right)$ incorporate color indices $\alpha=1, \ldots N$ and (half-)integer Fourier indices
$N=1$ case:

- combinatorial expansion

$$
\operatorname{det}(\mathbf{1}+K)=\sum_{(\mathbf{p}, \mathbf{h})}(-1)^{|\mathrm{p}|} \operatorname{det} \mathrm{a}_{\mathrm{h}}^{\mathrm{p}} \operatorname{det} \mathrm{a}_{\mathrm{p}}^{\mathrm{h}},
$$

with balance condition $|\mathrm{p}|=|\mathrm{h}|$

- A Maya diagram is a map $\mathrm{m}: \mathbb{Z}^{\prime} \rightarrow\{-1,1\}$ subject to the condition $\mathrm{m}(p)= \pm 1$ for all but finitely many $p \in \mathbb{Z}_{ \pm}^{\prime}$ (positions of particles and holes)
- Maya diagram $=$ charged partition/Young diagram
- charge $(m)=\sharp$ (particles) $-\sharp$ (holes)
- for $N=1$ principal minors are labeled by partitions

$\mathbf{Q}=(1,-1)$
- balanced configurations (p, h) are in bijection with N -tuples of Young diagrams of zero total charge
- $\mathbb{M}_{0}^{N} \cong \mathbb{Y}^{N} \times \mathfrak{Q}_{N}$, where \mathfrak{Q}_{N} denotes the A_{N-1} root lattice:

$$
\mathfrak{Q}_{N}:=\left\{\vec{Q} \in \mathbb{Z}^{N} \mid \sum_{\alpha=1}^{N} Q_{\alpha}=0\right\} .
$$

- in the case $N=2$, Widom's constant

$$
\operatorname{det}(\mathbf{1}+K)=\sum_{(\lambda, \mu ; n) \in \mathbb{Y}^{2} \times \mathbb{Z}}(-1)^{|\mathfrak{p}|} \operatorname{det}\left(\mathrm{a}_{+-}\right)_{\lambda, \mu, n} \operatorname{det}\left(\mathrm{a}_{-+}\right)_{\lambda, \mu, n}
$$

Isomonodromic examples

Explicit computation of elementary determinants $\operatorname{det} a_{h}^{p}$, $\operatorname{det} a_{p}^{h}$:

- a variant of Tracy-Widom conditions

$$
\partial_{z} \Psi_{ \pm}(z)=\Psi_{ \pm}(z) A_{ \pm}(z)+z^{-1} \Lambda_{ \pm}(z) \Psi_{ \pm}(z)
$$

with $A_{ \pm}(z)$ rational in z and $\Lambda_{ \pm}(z)$ polynomial in $z^{ \pm 1}$.

- acting with $\mathcal{L}_{0}=z \partial_{z}+z^{\prime} \partial_{z^{\prime}}+1$ e.g. on

$$
\frac{1-\Psi_{+}(z) \Psi_{+}\left(z^{\prime}\right)^{-1}}{z-z^{\prime}}=\sum_{p, q \in \mathbb{Z}_{+}^{\prime}} a_{-q}^{p} z^{-\frac{1}{2}+p} z^{\prime-\frac{1}{2}+q}
$$

yields a system of linear matrix equations on Fourier modes $\mathrm{a}_{-}{ }_{q}^{p}$ thanks to the fact that $\mathcal{L}_{0} \frac{1}{z-z^{\prime}}=0$.

- PVI, V , III semisimple cases $(N=2) \Longrightarrow$ Cauchy determinants

$$
\operatorname{det} \frac{f_{p, \alpha} g_{q, \beta}}{p+q+\sigma_{\alpha}+\sigma_{\beta}}
$$

Conclusions

Arbitrary RHPs:

1. A tau function (= Widom's constant) can be assigned to "any" RHP.
2. Given the direct factorization of the jump matrix, $\tau[J]$ may be written as a Fredholm determinant with a block integrable kernel.
3. Principal minor expansion of this determinant in the Fourier basis leads to combinatorial series over tuples of partitions.
4. Results can be generalized to many-oval contour (e.g. Garnier system)

Isomonodromic RHPs:

1. In RHPs of isomonodromic origin, $\tau[J] \simeq \tau_{\text {JMU }}$, thanks to Widom's differentiation formula
2. Integral kernels and coefficients of combinatorial series can be computed explicitly when auxiliary solutions from the direct factorization have hypergeometric representations; in particular, for PVI, PV and PIIIs.

Conclusions

Arbitrary RHPs:

1. A tau function (= Widom's constant) can be assigned to "any" RHP.
2. Given the direct factorization of the jump matrix, $\tau[J]$ may be written as a Fredholm determinant with a block integrable kernel.
3. Principal minor expansion of this determinant in the Fourier basis leads to combinatorial series over tuples of partitions.
4. Results can be generalized to many-oval contour (e.g. Garnier system)

Isomonodromic RHPs:

1. In RHPs of isomonodromic origin, $\tau[J] \simeq \tau_{\text {JMU }}$, thanks to Widom's differentiation formula
2. Integral kernels and coefficients of combinatorial series can be computed explicitly when auxiliary solutions from the direct factorization have hypergeometric representations; in particular, for PVI, PV and PIIIs.

Integrable kernel for $N=2$:

$$
\begin{aligned}
& a_{+-}\left(z, z^{\prime}\right)=\frac{\left(1-z^{\prime}\right)^{2 \theta_{\mathbf{1}}}\left(\begin{array}{cc}
K_{++}(z) & K_{+-}(z) \\
K_{-+}(z) & K_{--}(z)
\end{array}\right)\left(\begin{array}{cc}
K_{--}\left(z^{\prime}\right) & -K_{+-}\left(z^{\prime}\right) \\
-K_{-+}\left(z^{\prime}\right) & K_{++}\left(z^{\prime}\right)
\end{array}\right)-\mathbf{1}}{z-z^{\prime}}, \\
& a_{-+}\left(z, z^{\prime}\right)=\frac{1-\left(1-\frac{t}{z^{\prime}}\right)^{2 \theta_{t}}\left(\begin{array}{cc}
\bar{K}_{++}(z) & \bar{K}_{+-}(z) \\
\bar{K}_{-+}(z) & \bar{K}_{--}(z)
\end{array}\right)\left(\begin{array}{cc}
\bar{K}_{--}\left(z^{\prime}\right) & -\bar{K}_{+-}\left(z^{\prime}\right) \\
-\bar{K}_{-+}\left(z^{\prime}\right) & \bar{K}_{++}\left(z^{\prime}\right)
\end{array}\right)}{z-z^{\prime}}
\end{aligned}
$$

with

$$
\begin{aligned}
& K_{ \pm \pm}(z)={ }_{2} F_{1}\left[\begin{array}{c}
\theta_{1}+\theta_{\infty} \pm \sigma, \theta_{1}-\theta_{\infty} \pm \sigma \\
\pm 2 \sigma
\end{array} ; z\right] \\
& K_{ \pm \mp}(z)= \pm \frac{\theta_{\infty}^{2}-\left(\theta_{1} \pm \sigma\right)^{2}}{2 \sigma(1 \pm 2 \sigma)} z_{2} F_{1}\left[\begin{array}{c}
1+\theta_{1}+\theta_{\infty} \pm \sigma, 1+\theta_{1}-\theta_{\infty} \pm \sigma \\
2 \pm 2 \sigma
\end{array} ; z\right]
\end{aligned}
$$

$$
\bar{K}_{ \pm \pm}(z)={ }_{2} F_{1}\left[\begin{array}{c}
\theta_{t}+\theta_{0} \mp \sigma, \theta_{t}-\theta_{0} \mp \sigma ; \frac{t}{z} \\
\mp 2 \sigma
\end{array}\right],
$$

$$
\bar{K}_{ \pm \mp}(z)=\mp t^{\mp 2 \sigma} e^{\mp i \eta} \frac{\theta_{0}^{2}-\left(\theta_{t} \mp \sigma\right)^{2}}{2 \sigma(1 \mp 2 \sigma)} \frac{t}{z}{ }_{2} F_{1}\left[\begin{array}{c}
1+\theta_{t}+\theta_{0} \mp \sigma, 1+\theta_{t}-\theta_{0} \mp \sigma \\
2 \mp 2 \sigma
\end{array} ; \frac{t}{z}\right] .
$$

Theorem [Gavrylenko, OL, '16]

The series expansion of Painlevé VI tau function around $t=0$ is given by

$$
\tau(t)=\sum_{n \in \mathbb{Z}} e^{i n \eta} \mathcal{B}(\vec{\theta}, \sigma+n ; t),
$$

where the function $\mathcal{B}(\vec{\theta}, \sigma ; t)$ is explicitly given by

$$
\begin{aligned}
\mathcal{B}(\vec{\theta}, \sigma ; t) & =N_{\theta_{\infty}, \sigma}^{\theta_{1}} N_{\sigma, \theta_{0}}^{\theta_{t}} \sigma^{\sigma^{2}-\theta_{0}^{2}-\theta_{t}^{2}}(1-t)^{2 \theta_{t} \theta_{1}} \sum_{\lambda, \mu \in \mathbb{Y}} \mathcal{B}_{\lambda, \mu}(\vec{\theta}, \sigma) t^{|\lambda|+|\mu|}, \\
\mathcal{B}_{\lambda, \mu}(\boldsymbol{\theta}, \sigma) & =\prod_{(i, j) \in \lambda} \frac{\left(\left(\theta_{t}+\sigma+i-j\right)^{2}-\theta_{0}^{2}\right)\left(\left(\theta_{1}+\sigma+i-j\right)^{2}-\theta_{\infty}^{2}\right)}{h_{\lambda}^{2}(i, j)\left(\lambda_{j}^{\prime}-i+\mu_{i}-j+1+2 \sigma\right)^{2}} \times \\
& \times \prod_{(i, j) \in \mu} \frac{\left(\left(\theta_{t}-\sigma+i-j\right)^{2}-\theta_{0}^{2}\right)\left(\left(\theta_{1}-\sigma+i-j\right)^{2}-\theta_{\infty}^{2}\right)}{h_{\mu}^{2}(i, j)\left(\mu_{j}^{\prime}-i+\lambda_{i}-j+1-2 \sigma\right)^{2}}, \\
N_{\theta_{3}, \theta_{1}}^{\theta_{2}} & =\frac{\prod_{\epsilon= \pm} G\left(1+\theta_{3}+\epsilon\left(\theta_{1}+\theta_{2}\right)\right) G\left(1-\theta_{3}+\epsilon\left(\theta_{1}-\theta_{2}\right)\right)}{G\left(1-2 \theta_{1}\right) G\left(1-2 \theta_{2}\right) G\left(1+2 \theta_{3}\right)} .
\end{aligned}
$$

