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Introduction and the functional

Introduction

A proof of the existence of a Bose-Einstein Condensation phase transition for a
continuous, translation-invariant system in the thermodynamic limit at positive
temperature remains an open problem.

Only approximations to the full bosonic many-body problem are considered and
analyzed in that context. Here, we reformulate the Bogoliubov approximation for a
weakly-interacting translational-invariant Bose gas as a variational model, and show
physically relevant properties of this model.

Free energy:
inf
ω
〈H − TS − µN〉ω

H =
∑
p

p2a†pap +
1

2L3

∑
p,q,k

V̂ (k)a†p+ka
†
q−kaqap.
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Introduction and the functional

Our approximation: restrict ω to Bogoliubov trial states: quasi-free states with
added condensate.

”added condensate”: a0 7→ a0 +
√
L3ρ0 (ρ0 > 0 ≡ BEC)

”quasi-free states”: we can use Wick’s rule to split 〈a†p+ka
†
q−kaqap〉 and to determine

the expectation values it is enough to know two real (we assume translation
invariance) functions:

γ(p) := 〈a†pap〉 ≥ 0 and α(p) := 〈apa−p〉.

Physical interpretation:

I γ(p) describes the momentum distribution among the particles in the system

I ρ0 > 0 can be seen as the macroscopic occupation of the zero momentum state
(BEC fraction)

I α(p) describes pairing in the system (α 6= 0⇒ presence of macroscopic coherence
related to superfluidity)
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Introduction and the functional

I Grand-canonical free energy functional

F(γ, α, ρ0) = (2π)−3
∫
R3

p2γ(p)dp− µρ− TS(γ, α) +
V̂ (0)

2
ρ2

+
1

2
(2π)−6

∫∫
R3×R3

V̂ (p− q) (α(p)α(q) + γ(p)γ(q)) dpdq

+ ρ0(2π)−3
∫
R3

V̂ (p) (γ(p) + α(p)) dp.

I Domain D = {(γ, α, ρ0)|γ ∈ L1((1 + p2)dp), γ ≥ 0, α2 ≤ γ(1 + γ), ρ0 ≥ 0}.
I ρ denotes the density ρ = ρ0 + (2π)−3

∫
R3 γ(p)dp =: ρ0 + ργ .

I The entropy functional S(γ, α)

S(γ, α) = (2π)−3
∫
R3

[(
β(p) +

1

2

)
ln

(
β(p) +

1

2

)
−
(
β(p)− 1

2

)
ln

(
β(p)− 1

2

)]
dp, β :=

√
(
1

2
+ γ)2 − α2.
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Introduction and the functional

Why should Bogoliubov trial states be any good?

I Bogoliubov’s approach yields a quadratic Hamiltonian. Ground and Gibbs states
of such Hamiltonians are quasi-free states;

I quasi-free states have already proven to be good trial states for the ground state
energy of Bose gases (Lieb–Solovej ’01 - ’04, Solovej ’06, Erdös–Schlein–Yau ’08,
Giuliani–Seiringer ’09, Yau–Yin ’09, Boccato–Brennecke–Cenatiempo–Schlein ’17
- ’18, Brietzke–Solovej ’17), and may therefore also be for the free energy.
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Introduction and the functional

I Canonical free energy functional

Fcan(γ, α, ρ0) = (2π)−3
∫
R3

p2γ(p)dp− TS(γ, α) +
V̂ (0)

2
ρ2

+ ρ0(2π)−3
∫
R3

V̂ (p) (γ(p) + α(p)) dp

+
1

2
(2π)−6

∫∫
R3×R3

V̂ (p− q) (α(p)α(q) + γ(p)γ(q)) dpdq

with ρ0 = ρ− ργ .

I The canonical minimization problem:

F can(T, ρ) = inf{Fcan(γ, α, ρ0 = ρ− ργ)|(γ, α, ρ0 = ρ− ργ) ∈ D}

I strictly speaking: not a canonical formulation. The expectation value of the
number of particles is fixed.
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Introduction and the functional

Some questions of interest:

I existence of minimizers;

I existence of phase transitions, phase diagram;

I if yes, determination of the critical temperature.

Remarks:

I bosonic counterpart of the BCS functional (Hainzl–Hamza–Seiringer–Solovej ’08,
Hainzl–Seiringer ’12, Frank–Hainzl–Seiringer–Solovej ’12,...);

I functional first appeared in a paper by Critchley-Solomon ’76 but has never been
analyzed!

I first rigorous (starting from many-body) results concerning the free energy by
Seiringer ’08, Yin ’10 in 3D, recently Deuchert–Mayer–Seiringer ’18 in 2D;

I recently Deuchert–Seiringer-Yngvason ’18 proved BEC for a trapped system at
positive T
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Existence of minimizers

Theorem

There exists a minimizer for the both the canonical and grand-canonical Bogoliubov
free energy functional.

Obstacles:

I no a priori bound on γ(p) (for fermions γ(p) ≤ 1)

I a minimizing sequence could convergence to a measure which could have a
singular part that represents the condensate

I this scenario already included in the construction of the functional through the
parameter ρ0
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Phase diagram

Phase diagram

Equivalence of BEC and superfluidity
Let (γ, α, ρ0) be a minimizing triple for the functional. Then ρ0 = 0⇐⇒ α ≡ 0.

Existence of phase transition
Given µ > 0 (ρ > 0) there exist temperatures 0 < T1 < T2 such that a minimizing
triple (γ, α, ρ0) satisfies

1 ρ0 = 0 for T ≥ T2;
2 ρ0 > 0 for 0 ≤ T ≤ T1.
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Critical temperature in the dilute limit

Critical temperature in the dilute limit

The dilute limit:
ρ1/3a� 1

where a is the scattering length of the potential.

a describes the effective range of the two-body interaction:

8πa =

∫
V w

where

−∆w +
1

2
V w = 0, w(∞) = 1

Thus
a� ρ−1/3

means range of interaction is much smaller than the mean inter-particle distance.
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Critical temperature in the dilute limit

Expectation for low temperatures T < Dρ2/3

dilute gas ⇒ weakly interacting ⇒ critical temperature close to the critical
temperature of the free Bose gas

Theorem

Tc = Tfc(1 + h(ν)(ρ1/3a) + o(ρ1/3a)),

where ν = V̂ (0)/a and h(8π) = 1.49.

This confirms the general prediction that

∆Tc
Tfc
≈ cρ1/3a

with c > 0. Here ∆Tc = Tc − Tfc, with Tc being the critical temperature in the
interacting model and Tfc = c0ρ

2/3.
Numerical simulations: c ∼ 1.32.
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Critical temperature in the dilute limit

Main steps of the proof:

I comparison with the non-interacting case, a priori estimates on the critical density

I in the critical region: introduction of an approximating, simplified functional that
can be solved explicitly:

inf
(γ, α, ρ0)
ρ0 + ργ = ρ

Fcan ≈ inf
0≤ρ0≤ρ

inf
(γ, α)

ργ = ρ− ρ0

F sim

Remark:

I a parallel computation in 2D yields the (B)KT transition temperature:

Tc = 4πρ

(
1

ln(ξ/4πb)
+ o(1/ ln2 b)

)
with ξ = 14.4 and b = 1/| ln(ρa2)| � 1.

I within this model we interpret this as the transition temperature from a
quasicondensate without superfluidity to superfluid quasicondensate

I rigourous upper bounds on Tc in 2D and 3D by Seiringer-Ueltschi ’09
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Conclusions:

I variational model of interacting Bose gas at positive temperatures;

I can be treated rigorously;

I in the dilute limit leads to physically relevant results (in particular, critical
temperature estimates)

Outlook:

I superfluidity (Landau criterion,....);

I waiting for experiments!

Literature: existence and phase diagram → ARMA 2018;
dilute limit and critical temperature → CMP 2018;

2D critical temperature → EPL 2018
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Thank you for your attention!
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