Bogoliubov theory at positive temperatures

M. Napiórkowski¹ R. Reuvers² J. P. Solovej³

¹Faculty of Physics, University of Warsaw

²DAMTP, University of Cambridge

³Department of Mathematics, University of Copenhagen

XIX International Congress on Mathematical Physics Montreal, July 23-28th 2018

1 Introduction and the functional

Introduction

A proof of the existence of a Bose-Einstein Condensation phase transition for a continuous, translation-invariant system in the thermodynamic limit at positive temperature remains an open problem.

Only approximations to the full bosonic many-body problem are considered and analyzed in that context. Here, we reformulate the Bogoliubov approximation for a weakly-interacting translational-invariant Bose gas as a variational model, and show physically relevant properties of this model.

Free energy:

$$\inf_{\omega} \langle H - TS - \mu \mathcal{N} \rangle_{\omega}$$
$$H = \sum_{p} p^2 a_p^{\dagger} a_p + \frac{1}{2L^3} \sum_{p,q,k} \widehat{V}(k) a_{p+k}^{\dagger} a_{q-k}^{\dagger} a_q a_p$$

Our approximation: restrict ω to *Bogoliubov trial states*: quasi-free states with added condensate.

"added condensate": $a_0 \mapsto a_0 + \sqrt{L^3 \rho_0}$ ($\rho_0 > 0 \equiv \mathsf{BEC}$)

"quasi-free states": we can use Wick's rule to split $\langle a_{p+k}^{\dagger}a_{q-k}^{\dagger}a_{q}a_{p}\rangle$ and to determine the expectation values it is enough to know two real (we assume translation invariance) functions:

$$\gamma(p) := \langle a_p^{\dagger} a_p \rangle \ge 0 \text{ and } \alpha(p) := \langle a_p a_{-p} \rangle.$$

Physical interpretation:

- $\blacktriangleright~\gamma(p)$ describes the momentum distribution among the particles in the system
- ▶ p₀ > 0 can be seen as the macroscopic occupation of the zero momentum state (BEC fraction)
- ▶ $\alpha(p)$ describes pairing in the system ($\alpha \neq 0 \Rightarrow$ presence of macroscopic coherence related to superfluidity)

► Grand-canonical free energy functional

$$\mathcal{F}(\gamma, \alpha, \rho_0) = (2\pi)^{-3} \int_{\mathbb{R}^3} p^2 \gamma(p) dp - \mu \rho - TS(\gamma, \alpha) + \frac{\hat{V}(0)}{2} \rho^2 + \frac{1}{2} (2\pi)^{-6} \iint_{\mathbb{R}^3 \times \mathbb{R}^3} \hat{V}(p-q) \left(\alpha(p)\alpha(q) + \gamma(p)\gamma(q)\right) dp dq + \rho_0 (2\pi)^{-3} \int_{\mathbb{R}^3} \hat{V}(p) \left(\gamma(p) + \alpha(p)\right) dp.$$

- ▶ Domain $\mathcal{D} = \{(\gamma, \alpha, \rho_0) | \gamma \in L^1((1+p^2)dp), \gamma \ge 0, \alpha^2 \le \gamma(1+\gamma), \rho_0 \ge 0\}.$ ▶ ρ denotes the density $\rho = \rho_0 + (2\pi)^{-3} \int_{\mathbb{R}^3} \gamma(p)dp =: \rho_0 + \rho_\gamma.$
- \blacktriangleright The entropy functional $S(\gamma,\alpha)$

$$\begin{split} S(\gamma,\alpha) &= (2\pi)^{-3} \int_{\mathbb{R}^3} \left[\left(\beta(p) + \frac{1}{2} \right) \ln \left(\beta(p) + \frac{1}{2} \right) \\ &- \left(\beta(p) - \frac{1}{2} \right) \ln \left(\beta(p) - \frac{1}{2} \right) \right] dp, \qquad \beta := \sqrt{(\frac{1}{2} + \gamma)^2 - \alpha^2}. \end{split}$$

Why should Bogoliubov trial states be any good?

- Bogoliubov's approach yields a quadratic Hamiltonian. Ground and Gibbs states of such Hamiltonians are quasi-free states;
- quasi-free states have already proven to be good trial states for the ground state energy of Bose gases (Lieb-Solovej '01 - '04, Solovej '06, Erdös-Schlein-Yau '08, Giuliani-Seiringer '09, Yau-Yin '09, Boccato-Brennecke-Cenatiempo-Schlein '17 - '18, Brietzke-Solovej '17), and may therefore also be for the free energy.

Canonical free energy functional

$$\mathcal{F}^{\mathrm{can}}(\gamma,\alpha,\rho_0) = (2\pi)^{-3} \int_{\mathbb{R}^3} p^2 \gamma(p) dp - TS(\gamma,\alpha) + \frac{\hat{V}(0)}{2} \rho^2 + \rho_0 (2\pi)^{-3} \int_{\mathbb{R}^3} \hat{V}(p) \left(\gamma(p) + \alpha(p)\right) dp + \frac{1}{2} (2\pi)^{-6} \iint_{\mathbb{R}^3 \times \mathbb{R}^3} \hat{V}(p-q) \left(\alpha(p)\alpha(q) + \gamma(p)\gamma(q)\right) dp dq$$

with $\rho_0 = \rho - \rho_{\gamma}$.

▶ The canonical minimization problem:

$$F^{\mathrm{can}}(T,\rho) = \inf \{ \mathcal{F}^{\mathrm{can}}(\gamma, \alpha, \rho_0 = \rho - \rho_\gamma) | (\gamma, \alpha, \rho_0 = \rho - \rho_\gamma) \in \mathcal{D} \}$$

strictly speaking: not a canonical formulation. The expectation value of the number of particles is fixed.

Some questions of interest:

- existence of minimizers;
- existence of phase transitions, phase diagram;
- ▶ if yes, determination of the critical temperature.

Remarks:

- bosonic counterpart of the BCS functional (Hainzl-Hamza-Seiringer-Solovej '08, Hainzl-Seiringer '12, Frank-Hainzl-Seiringer-Solovej '12,...);
- functional first appeared in a paper by Critchley-Solomon '76 but has never been analyzed!
- first rigorous (starting from many-body) results concerning the free energy by Seiringer '08, Yin '10 in 3D, recently Deuchert-Mayer-Seiringer '18 in 2D;
- recently Deuchert-Seiringer-Yngvason '18 proved BEC for a trapped system at positive T

Existence of minimizers

Theorem

There exists a minimizer for the both the canonical and grand-canonical Bogoliubov free energy functional.

Obstacles:

- ▶ no a priori bound on $\gamma(p)$ (for fermions $\gamma(p) \leq 1$)
- a minimizing sequence could convergence to a measure which could have a singular part that represents the condensate
- \blacktriangleright this scenario already included in the construction of the functional through the parameter ρ_0

Phase diagram

Equivalence of BEC and superfluidity

Let (γ, α, ρ_0) be a minimizing triple for the functional. Then $\rho_0 = 0 \iff \alpha \equiv 0$.

Existence of phase transition

Given $\mu > 0$ ($\rho > 0$) there exist temperatures $0 < T_1 < T_2$ such that a minimizing triple (γ, α, ρ_0) satisfies

•
$$\rho_0 = 0$$
 for $T \ge T_2$;
• $\rho_0 > 0$ for $0 \le T \le T_1$.
 $\gamma > 0, \alpha = 0, \rho_0 = 0$
 $\gamma > 0, \alpha \neq 0, \rho$

Marcin Napiórkowski Bogoliubov functional

Critical temperature in the dilute limit

The dilute limit:

$$\rho^{1/3}a \ll 1$$

where \boldsymbol{a} is the scattering length of the potential.

 \boldsymbol{a} describes the effective range of the two-body interaction:

$$8\pi a = \int Vw$$

where

$$-\Delta w + \frac{1}{2}Vw = 0, \qquad w(\infty) = 1$$

Thus

 $a \ll \rho^{-1/3}$

means range of interaction is much smaller than the mean inter-particle distance.

Expectation for low temperatures $T < D\rho^{2/3}$

dilute gas \Rightarrow weakly interacting \Rightarrow critical temperature close to the critical temperature of the *free Bose gas*

Theorem

$$T_{\rm c} = T_{\rm fc}(1 + h(\nu)(\rho^{1/3}a) + o(\rho^{1/3}a)),$$

where
$$\nu = \widehat{V}(0)/a$$
 and $h(8\pi) = 1.49$

This confirms the general prediction that

$$\frac{\Delta T_{\rm c}}{T_{\rm fc}} \approx c \rho^{1/3} a$$

with c>0. Here $\Delta T_{\rm c}=T_{\rm c}-T_{\rm fc}$, with $T_{\rm c}$ being the critical temperature in the interacting model and $T_{\rm fc}=c_0\rho^{2/3}.$ Numerical simulations: $c\sim1.32.$

Main steps of the proof:

comparison with the non-interacting case, a priori estimates on the critical density
 in the critical region: introduction of an approximating, simplified functional that can be solved explicitly:

$$\inf_{\substack{(\gamma, \alpha, \rho_0)\\ \rho_0 + \rho_\gamma = \rho}} \mathcal{F}^{\operatorname{can}} \approx \inf_{\substack{0 \le \rho_0 \le \rho}} \inf_{\substack{(\gamma, \alpha)\\ \rho_\gamma = \rho - \rho_0}} \mathcal{F}^{\operatorname{sim}}$$

Remark:

▶ a parallel computation in 2D yields the (B)KT transition temperature:

$$T_{\rm c} = 4\pi \rho \left(\frac{1}{\ln(\xi/4\pi b)} + o(1/\ln^2 b) \right)$$

with $\xi = 14.4$ and $b = 1/|\ln(\rho a^2)| \ll 1$.

- within this model we interpret this as the transition temperature from a quasicondensate without superfluidity to superfluid quasicondensate
 - rigourous upper bounds on T_c in 2D and 3D by Seiringer-Ueltschi '09

Conclusions:

- variational model of interacting Bose gas at positive temperatures;
- can be treated rigorously;
- in the dilute limit leads to physically relevant results (in particular, critical temperature estimates)

Outlook:

- superfluidity (Landau criterion,....);
- waiting for experiments!

<u>Literature</u>: existence and phase diagram \rightarrow ARMA 2018; dilute limit and critical temperature \rightarrow CMP 2018; 2D critical temperature \rightarrow EPL 2018

Thank you for your attention!