
Invariant measures for NLS equations

as limit of many-body quantum states

Benjamin Schlein, University of Zurich

ICMP 2018, PDE Session

Montreal, July 25, 2018
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I. Hartree theory

Energy: the Hartree functional is given by

EH(φ) =
∫ [
|∇φ(x)|2 + v(x)|φ(x)|2

]
dx

+
1

2

∫
w(x− y)|φ(x)|2|φ(y)|2 dxdy

and acts on L2(Rd) (we will consider d = 1,2,3).

We assume v is confining and w ∈ L∞(Rd) pointwise non-

negative if d = 1 or of positive type if d = 2,3.

Evolution: the time-dependent Hartree equation is given by

i∂tφt = [−∆ + v(x)]φt + (w ∗ |φt|2)φt
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Invariant measure: formally given by

dµH =
1

Z
e−
[
EH(φ)+κ‖φ‖22

]
dφ

Constructive QFT in ’70s: Nelson, Glimm-Jaffe, Simon, . . .

Recently, problem awoke interest of dispersive pde’s community.

Important application of this line of research is the almost sure

well-posedness for rough initial data.

Results by: Lebowitz-Rose-Speer, Bourgain, Zhidkov, Bourgain-

Bulut, Burq-Tzvetkov, Burq-Thomann-Tzvetkov, Nahmod-Oh-

Rey-Bellet-Sheffield-Staffilani, Oh-Popovnicu, Oh-Quastel, Deng-

Tzvetkov-Visciglia, Oh-Tzvetkov-Wang, Cacciafesta-de Suzzoni,

Genovese-Lucá-Valeri, . . .
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Free functional: let

E0(φ) =
∫ [
|∇φ(x)|2 + v(x)|φ(x)|2 + κ|φ(x)|2

]
dx = 〈φ, hφ〉

with

h = −∆ + v(x) + κ =
∑
n
λn|un〉〈un|

We assume
Trh−1 =

∑
n∈N λ

−1
n <∞ for d = 1

Trh−2 =
∑
n∈N λ

−2
n <∞ for d = 2,3

Free measure: to define dµ0 ∼ exp(−E0(φ))dφ, we expand

φ(x) =
∑
n∈N

ωn√
λn

un(x) ⇒ E0(φ) = 〈φ, hφ〉 =
∑
n∈N
|ωn|2

Hence we define µ0 on CN = {{ωn}n∈N : ωn ∈ C} as product of
iid Gaussian measures with densities

1

π
e−|ωn|

2
dωndω

∗
n
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Expected L2 norm: observe that

Eµ0 ‖φ‖
2
2 = Eµ0

∑
n∈N

|ωn|2

λn
=

∑
n∈N

1

λn
= Trh−1

is finite for d = 1, but it is infinite for d = 2,3.

Hartree invariant measure: for d = 1, we can define

µH =
1

Z
e−Wµ0

with interaction

W (φ) =
1

2

∫
w(x− y)|φ(x)|2|φ(y)|2dxdy ≤

‖w‖∞
2
‖φ‖42

For d = 2,3, on the other hand, W =∞ almost surely.
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Wick ordering: for K > 0 we introduce cutoff fields

φK(x) =
∑
n≤K

ωn√
λn
un(x)

and we define

ρK(x) = Eµ0|φK(x)|2 =
∑
n≤K

λ−1
n |un(x)|2

and the cutoff renormalized interaction

WK =
1

2

∫
w(x− y)

[
|φK(x)|2 − ρK(x)

] [
|φK(y)|2 − ρK(y)

]
dxdy

Lemma: WK is Cauchy sequence in Lp(CN, dµ0) for all p <∞.
We denote by W r its limit (independent of p).

For d = 2,3, we define renormalized Gibbs measure

µrH =
1∫

e−W r(φ)dµ0(φ)
e−W

r
µ0

Note that µrH is invariant with respect to the Hartree flow.
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II. Mean field quantum systems

Hamilton operator: has form

HN =
N∑
j=1

[
−∆xj + v(xj)

]
+

1

N

N∑
i<j

w(xi − xj) on L2
s(RdN)

Ground state: ψN ' φ⊗N0 , where φ0 is minimizer of EH.

Dynamics: governed by the many-body Schrödinger equation

i∂tψN,t = HNψN,t

Convergence to Hartree: if ψN,0 ' φ⊗N , then ψN,t ' φ⊗Nt
where φt solves time-dependent Hartree equation.

Rigorous works: Hepp, Ginibre-Velo, Spohn, Erdős-Yau, Bardos-
Golse-Mauser, Fröhlich-Knowles-Schwarz, Rodnianski-S., Knowles-
Pickl, Fröhlich-Knowles-Pizzo, Grillakis-Machedon-Margetis, T.Chen-
Pavlovic, X.Chen-Holmer, Ammari-Nier, Lewin-Nam-S., . . .
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Question: what corresponds to Hartree invariant measure in
many-body setting?

Thermal equilibrium: at temperature β−1, it is described by

EβA = TrA%β

with density matrix

%β =
1

Zβ
e−βHN , Zβ = Tr e−βHN

Remark 1: if β > 0 fixed, %β still exhibits condensation. At
one-particle level this leads to trivial measure δφ0

.

To recover invariant measure, need to take β = 1/N .

Remark 2: number of particles at many-body level corresponds
to L2-norm at Hartree level.

To recover invariant measure, need fluctuations of number of
particles.
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III. Fock space and grand canonical ensemble

Fock space: we define

F =
⊕
m≥0

L2(Rd)⊗sm =
⊕
m≥0

L2
s(Rmd)

Creation and annihilation operators: for f ∈ L2(Rd), let

(a∗(f)Ψ)(m)(x1, . . . , xm) =
1
√
m

m∑
j=1

f(xj)Ψ(m−1)(x1, . . . , 6 xj, . . . , xm)

(a(f)Ψ)(m)(x1, . . . , xm) =
√
m+ 1

∫
dx f(x)Ψ(m+1)(x, x1, . . . , xm)

They satisfy canonical commutation relations[
a(f), a∗(g)

]
= 〈f, g〉, [a(f), a(g)] =

[
a∗(f), a∗(g)

]
= 0

9



We define operator valued distributions a(x), a∗(x) such that

a∗(f) =
∫
f(x) a∗(x) dx, and a(f) =

∫
f(x) a(x) dx

Number of particles operator: is given by

N =
∫
a∗(x)a(x) dx

Hamilton operator: is defined through

HN =
∫
a∗(x) [−∆x + v(x)] a(x) +

1

2N

∫
w(x− y)a∗(x)a∗(y)a(y)a(x)

Notice that [HN ,N ] = 0 and

HN |Fm =
m∑
j=1

[
−∆xj + v(xj)

]
+

1

N

m∑
i<j

w(xi − xj)
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Grand canonical ensemble: at inverse temperature β = N−1

and chemical potential κ, equilibrium is described by

%N =
1

ZN
e−

1
N (HN+κN ), with ZN = Tr e−

1
N (HN+κN )

Rescaled operators: it is useful to define

aN(x) =
1√
N
a(x), a∗N(x) =

1√
N
a∗(x)

Expressed in terms of the rescaled fields, we find

%N = Z−1
N exp

[
−
∫
a∗N(x)(−∆x + v(x) + κ)aN(x) dx

+
1

2

∫
w(x− y) a∗N(x) a∗N(y) aN(y) aN(x) dxdy

]

Notice that

[aN(x), a∗N(y)] =
1

N
δ(x−y), [aN(x), aN(y)] = [a∗N(x), a∗N(y)] = 0

are almost commuting operators.
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IV. Non-interacting Gibbs states and Wick ordering

Non-interacting Gibbs state: we diagonalize∫
a∗N(x)

[
−∆xj + v(xj) + κ

]
aN(x) dx =

∑
j

λja
∗
N(uj)aN(uj)

which leads to

%
(0)
N =

1

Z
(0)
N

e
−
∑
j λja

∗
N(uj)aN(uj)

Expectation of rescaled number of particles

E(0)
N a∗N(ui)aN(ui) =

Tr a∗N(ui)aN(ui) e
−λia∗N(ui)aN(ui)

Tre−λia
∗
N(ui)aN(ui)

=
1

N

1

eλi/N − 1

Hence

E(0)
N

1

N

∑
i

a∗N(ui)aN(ui) =
1

N

∑
i∈N

1

eλi/N − 1
=

{
O(1), for d = 1
→∞, for d = 2,3
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Interaction: expectation of

WN =
1

2

∫
w(x− y)a∗N(x)a∗N(y)aN(y)aN(x)dxdy

is finite but, for d = 2,3, it diverges, as N →∞.

Wick ordering: replace WN with the Wick ordered interaction

W r
N =

1

2

∫
w(x−y)

[
a∗N(x)aN(x)− ρN(x)

] [
a∗N(y)aN(y)− ρN(y)

]
dxdy

with

ρN(x) = E(0)
N a∗N(x)aN(x) =

1

N

∑
j∈N

|uj(x)|2

eλj/N − 1

We write the resulting grand canonical density matrix

%rN =
1

ZrN
e−H

r
N =

1

ZrN
e−(HN,0+W r

N)

with

HN,0 =
∫
a∗N(x) [−∆x + v(x) + κ] aN(x) dx
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V. Comparison with invariant measure for Hartree

Correlation functions: for k ∈ N, define correlation function

γ
(k)
N as non-negative trace class operator on L2(Rkd) with kernel

γ
(k)
N (x1, . . . , xk; y1, . . . , yk)

= ErN a
∗
N(x1) . . . a∗N(xk)aN(yk) . . . aN(y1)

= Tr a∗N(x1) . . . a∗N(xk)aN(yk) . . . aN(y1) %rN

Joint moments: define γ
(k)
H of invariant measure through

γ
(k)
H (x1, . . . , xk; y1, . . . , yk)

= ErH φ(x1) . . . φ(xk)φ(yk) . . . φ(y1)

=

∫
φ(x1) . . . φ(xk)φ(yk) . . . φ(y1) e−W

r(φ)dµ0(φ)∫
e−W r(φ)dµ0(φ)
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Conjecture: we expect that, for all fixed k ∈ N,

lim
N→∞

∥∥∥∥γ(k)
N − γ(k)

H

∥∥∥∥
HS

= 0

Theorem [Lewin-Nam-Rougerie, 2016]: let d = 1. Then

conjecture holds true, with no need for renormalization.

In [Fröhlich-Knowles-S.-Sohinger, 2017] we give different proof

of this theorem.

Very recently, [Lewin-Nam-Rougerie, 2018] announced proof

of conjecture for d = 2 (renormalization needed).

In most interesting case d = 3, conjecture remains open. We

prove it, but only for slightly modified many-body Gibbs states.
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Modification: for fixed η > 0, we consider

%rN,η =
1

ZrN,η
e−ηHN,0 e−[(1−2η)HN,0+W r

N] e−ηHN,0

We denote by γ
(k)
η,N the correlation functions associated to %rN,η.

Remark: %rN,η is still density matrix of a quantum state.

Theorem [Fröhlich-Knowles-S.-Sohinger, 2017]: let

d = 2,3,

h = −∆ + v(x) + κ

with Trh−2 < ∞, w ∈ L∞(Rd) positive definite. Then, for all

fixed η > 0 and k ∈ N, we have

lim
N→∞

∥∥∥∥γ(k)
N,η − γ

(k)
H

∥∥∥∥
HS

= 0
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VI. Time dependent correlations (for d = 1)

Observables: for ξ ∈ L(L2(Rk)), we define random variable

Θ(ξ) =
∫
dx1 . . . dxkdy1 . . . dyk ξ(x1, . . . , xk; y1, . . . , yk)

× φ(x1) . . . φ(xk)φ(yk) . . . φ(y1)

and quantum observable (on F)

ΘN(ξ) =
∫
dx1 . . . dxkdy1 . . . dyk ξ(x1, . . . , xk; y1, . . . , yk)

× a∗N(x1) . . . a∗N(xk)aN(yk) . . . aN(y1)

Dynamics: let St be nonlinear Hartree flow. We define

Ψt [Θ(ξ)] =
∫
dx1 . . . dxkdy1 . . . dyk ξ(x1, . . . , xk; y1, . . . , yk)

× Stφ(x1) . . . Stφ(xk)Stφ(yk) . . . Stφ(y1)

and quantum evolution

Ψt
N [ΘN(ξ)] =

∫
dx1 . . . dxkdy1 . . . dyk ξ(x1, . . . , xk; y1, . . . , yk)

× e−iHN ta∗N(x1) . . . a∗N(xk)aN(yk) . . . aN(y1)eiHN t
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Theorem [Fröhlich-Knowles-S.-Sohinger, 2018]: Let w ∈
L∞(R), non-negative. Given k ∈ N, ξj ∈ L(L2(Rpj)) and times tj,

for j = 1, . . . , k, we have

ENΨt1
N [ΘN(ξ1)] . . .Ψ

tk
N [ΘN(ξk)]

→ EH Ψt1 [Θ(ξ1)] . . .Ψtk [Θ(ξk)]

as N →∞.

Remark: taking k = 1 and using invariance of quantum state,

Theorem implies in particular invariance of nonlinear Gibbs

measure w.r.t. the Hartree flow.
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VII. Some ideas from the proof

Duhamel expansion: start from

e−[(1−2η)HN,0+W r
N]

= e
−(1−2η)

[
HN,0+ 1

1−2ηW
r
N

]
= e−(1−2η)HN,0 +

1

1− 2η

∫ 1−2η

0
dt e−(1−2η−t)HN,0 W r

Ne
−t
[
HN,0+ 1

1−2ηW
r
N

]

Iterating, we find

e−ηHN,0e−(1−2η)HNe−ηHN,0

= e−HN,0 +
n−1∑
m=1

1

(1− 2η)m

∫ 1−η

η
dt1· · ·

∫ tm−1

η
dtm

× e−(1−t1)HN,0 W r
Ne
−(t1−t2)HN,0W r

N . . .W
r
N e
−tmHN,0

+
1

(1− 2η)n

∫ 1−η

η
dt1· · ·

∫ tn−1

η
dtn

× e−(1−t1)HN,0 W r
N . . .W

r
Ne
−(tn−η)

[
HN,0+ 1

1−2ηW
r
N

]
e−ηHN,0
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Evolved fields operator: remark that

etH0,Na∗N(f)e−tH0,N = a∗N(e−th/Nf)

Fully expanded terms: need to compute free expectations!

Wick theorem: we have

E(0)
N a

]1
N(f1) . . . a]2mN (f2m)

=
∑
π

E(0)
N

[
a
]i1
N (fi1)a

]`1
N (f`1)

]
. . .E(0)

N

[
a
]im
N (fim)a

]`m
N (f`m)

]

Non-vanishing expectations: are only

E(0)
N,κ

[
a∗N(x)aN(y)

]
=

1

N

1

eh/N − 1
(x; y)

E(0)
N

[
aN(x)a∗N(y)

]
=

1

N

1

eh/N − 1
(x; y) +

1

N
δ(x− y)
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Diagrammatic expansion: recall that

W r
N =

1

2

∫
w(x−y)

[
a∗N(x)aN(x)− ρN(x)

] [
a∗N(y)aN(y)− ρN(y)

]
dxdy

Pairings are encoded in Feynman diagrams

Bound: using diagrammatic representation and assumption

Trh−2 <∞,
we conclude that each pairing is bounded, uniformly in N .

Convergence: as N → ∞, each pairing tends to corresponding
term in expansion of Hartree invariant measure.
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Error term: use Cauchy-Schwarz to get rid of interacting term.

Here, for d = 2,3, we need modification to avoid interacting
exponential carrying full time.

Final obstacle: number of pairing ∼ (2n)!, time integral ∼ 1/n!

Hence, series does not converge!

Borel resummation: given formal power series representation

A(z) =
∑
m≥0

amz
m

of analytic A, define

B(z) =
∑
m≥0

am

m!
zm

Formally, we can then reconstruct A through

A(z) =
∫ ∞

0
e−tB(tz)dt
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Theorem [Sokal, 1980]: Let A(z) and (AN(z))N∈N be analytic

on ball

CR =
{
z ∈ C : (Re z −R)2 + Im2z ≤ R2

}

for some R > 0. For n ∈ N suppose

A(z) =
n−1∑
m=0

amz
m +Rn(z), AN(z) =

n−1∑
m=0

am,Nz
m +Rn,N(z)

with

|am|+ sup
N
|am,N | ≤ Cmm!, |Rm(z)|+ sup

N
|Rm,N(z)| ≤ Cm|z|mm!

for all m ∈ N, z ∈ CR.

Suppose moreover that, for all m ∈ N: limN→∞ am,N = am.

Then AN(z)→ A(z) for all z ∈ CR.
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VIII. Appendix: the counterterm problem

Wick-ordering of many-body Hamiltonian: given

HN =
∫
a∗N(x) [−∆x + v(x) + κ] aN(x) dx

+
1

2

∫
w(x− y)a∗N(x)aN(x)a∗N(y)aN(y) dxdy

we rewrite it as

HN =
∫
a∗N(x) [−∆x + v(x) + (w ∗ ρN)(x) + κ] aN(x) dx− 〈w ∗ ρN , ρN〉

+
1

2

∫
w(x− y)

[
a∗N(x)aN(x)− ρN(x)

] [
a∗N(y)aN(y)− ρN(x)

]
dxdy

Subtracting constant and shifting chemical potential, we obtain

H̃N =
∫
a∗N(x) [−∆x + v(x) + (w ∗ (ρN − ρ̄N))(x) + κ] aN(x)dx

+
1

2

∫
w(x− y)

[
a∗N(x)aN(x)− ρN(x)

] [
a∗N(y)aN(y)− ρN(x)

]
dxdy

with ρ̄N = E(0)
−∆+κ a

∗
N(x)aN(x) independent of x.
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Fix point problem: theorem can be applied to H̃N if we find

ṽ = v + (w ∗ (ρN − ρ̄N)) s.t. ρN(x) = E(0)
−∆+ṽ+κ

a∗N(x)aN(x)

Theorem [Fröhlich-Knowles-S.-Sohinger, 2017]: Let v ≥ 0
such that v(x+ y) ≤ Cv(x)v(y) and

Tr (−∆ + v + κ)−2 <∞.

Then for every N ∈ N there exists ṽN solving the counterterm
problem. Furthermore there is a limiting potential ṽ such that

lim
N→∞

∥∥∥(−∆ + ṽN + κ)−1 − (−∆ + ṽ + κ)−1
∥∥∥

HS
= 0

Hence, after a change of the chemical potential, modified
many-body quantum Gibbs state associated with HN is s.t.

lim
N→∞

∥∥∥∥γ(k)
N,η − γ

(k)
H

∥∥∥∥
HS

= 0

where γ
(k)
H are moments of Hartree invariant measure with

external potential ṽ.
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