Topological invariants in disordered topological insulators

Subtitle: Spectral localizer of an index pairing

Hermann Schulz-Baldes, Erlangen

collaborators:

Terry Loring (Alberquerque) Edgar Lozano (UNAM Cuernavaca, numerics)

ICMP, Montreal, July, 2018

Plan of the talk

- Winding number as prototype of an odd index pairing
- Construction of associated spectral localizer
- Main result: invariant as half-signature of spectral localizer
- Proof via spectral flow
- Even dimensional case
- Proof via fuzzy spheres
- Numerical results

Winding number as odd index pairing

For differentiable map

$$k \in \mathbb{R}/(2\pi\mathbb{Z}) = \mathbb{T}^1 \ \mapsto \ A(k) \in \mathbb{C}^{N \times N}$$

of invertible matrices, set

Wind(A) =
$$\frac{1}{2\pi i} \int_{\mathbb{T}^1} dk \operatorname{Tr}(A(k)^{-1}\partial_k A(k)) \in \mathbb{Z}$$

View A as multiplication operator on $L^2(\mathbb{T}^1)$

Theorem (Fritz Noether 1921, Gohberg-Krein 1960)

Let Π be Hardy projection onto $H^2 \subset L^2(\mathbb{T}^1)$ Then $\Pi A \Pi + (\mathbf{1} - \Pi)$ is Fredholm and:

Wind(A) = Ind($\Pi A \Pi + (\mathbf{1} - \Pi)$)

Winding number in Fourier space

After Fourier $\mathcal{F} : L^2(\mathbb{T}^1) \to \ell^2(\mathbb{Z})$: convolution operator ADifferentiability of $A \cong$ bounded non-commutative derivative

$$\nabla A = i[D, A]$$

where D is unbounded position (dual Dirac) operator $D|n\rangle = n|n\rangle$

Theorem

Let $\Pi = (D > 0)$ be Hardy projection. Then $Wind(A) = Ind(\Pi A \Pi + (\mathbf{1} - \Pi))$

Physics: invariant for 1*d* disordered chiral topological insulators

Mathematically: canonical odd index paring of invertible A on \mathcal{H} with an odd Fredholm module specified by a Dirac operator D with compact resolvent and bounded commutator [D, A]

New numerical technique: spectral localizer

For tuning parameter $\kappa > 0$ introduce spectral localizer:

$$L_{\kappa} = \begin{pmatrix} \kappa D & A \\ A^* & -\kappa D \end{pmatrix}$$

 $A_{
ho}$ restriction of A (Dirichlet b.c.) to range of $\chi(|D| \leq
ho)$

$$\mathcal{L}_{\kappa,
ho} \;=\; egin{pmatrix} \kappa \, D_
ho & \mathcal{A}_
ho \ \mathcal{A}_
ho^* & -\kappa \, D_
ho \end{pmatrix}$$

Clearly selfadjoint matrix:

$$(L_{\kappa,\rho})^* = L_{\kappa,\rho}$$

Fact 1: $L_{\kappa,\rho}$ is gapped, namely $0 \not\in L_{\kappa,\rho}$

Fact 2: $L_{\kappa,\rho}$ has spectral asymmetry measured by signature **Fact 3:** signature linked to topological invariant

Theorem (with Loring 2017)

Given $D = D^*$ with compact resolvent and invertible A with invertibility gap $g = ||A^{-1}||^{-1}$. Provided that

$$\|[D,A]\| \leq \frac{g^3}{12 \|A\| \kappa} \qquad (*)$$

and

$$\frac{2g}{\kappa} \leq \rho \tag{**}$$

the matrix $L_{\kappa,\rho}$ is invertible and with $\Pi = \chi(D \ge 0)$

$$\frac{1}{2}\operatorname{Sig}(L_{\kappa,\rho}) = \operatorname{Ind}(\Pi A \Pi + (\mathbf{1} - \Pi))$$

How to use: form (*) infer κ , then ρ from (**)

If A unitary, $g = \|A\| = 1$ and $\kappa = (12\|[D,A]\|)^{-1}$ and $ho = rac{2}{\kappa}$

Hence small matrix of size \leq 100 sufficient! Great for numerics!

Why it can work:

Proposition

If (*) and (**) hold,
$$L^2_{\kappa,
ho} \geq rac{g^2}{2}$$

Proof:

$$\mathcal{L}^2_{\kappa,
ho} \;=\; egin{pmatrix} \mathcal{A}_
ho \mathcal{A}^*_
ho & 0 \ 0 & \mathcal{A}^*_
ho \mathcal{A}_
ho \end{pmatrix} + \kappa^2 egin{pmatrix} D^2_
ho & 0 \ 0 & D^2_
ho \end{pmatrix} + \kappa egin{pmatrix} 0 & [D_
ho,\mathcal{A}_
ho] \ [D_
ho,\mathcal{A}_
ho]^* & 0 \end{pmatrix}$$

Last term is a perturbation controlled by (*)

First two terms positive (indeed: close to origin and away from it) Now $A^*A \ge g^2$, but $(A^*A)_\rho \ne A^*_\rho A_\rho$

This issue can be dealt with by tapering argument:

Proposition (Bratelli-Robinson)

For $f : \mathbb{R} \to \mathbb{R}$ with Fourier transform defined without $\sqrt{2\pi}$,

$$\|[f(D), A]\| \leq \|\widehat{f'}\|_1 \|[D, A]\|$$

Lemma

$$\exists$$
 even function $f_{\rho} : \mathbb{R} \to [0,1]$ with $f_{\rho}(x) = 0$ for $|x| \ge \rho$
and $f_{\rho}(x) = 1$ for $|x| \le \frac{\rho}{2}$ such that $\|\widehat{f'_{\rho}}\|_1 = \frac{8}{\rho}$

With this,
$$f = f_{\rho}(D) = f_{\rho}(|D|)$$
 and $\mathbf{1}_{\rho} = \chi(|D| \le \rho)$:

$$\begin{aligned} A^*_{\rho}A_{\rho} &= \mathbf{1}_{\rho}A^*\mathbf{1}_{\rho}A\mathbf{1}_{\rho} \geq \mathbf{1}_{\rho}A^*f^2A\mathbf{1}_{\rho} \\ &= \mathbf{1}_{\rho}fA^*Af\mathbf{1}_{\rho} + \mathbf{1}_{\rho}\big([A^*,f]fA + fA^*[f,A]\big)\mathbf{1}_{\rho} \\ &\geq g^2f^2 + \mathbf{1}_{\rho}\big([A^*,f]fA + fA^*[f,A]\big)\mathbf{1}_{\rho} \end{aligned}$$

So indeed $A_{\rho}^*A_{\rho}$ positive close to origin Then one can conclude... but a bit tedious

Proof by spectral flow

Use Phillips' result for phase $U = A|A|^{-1}$ and properties of SF: Ind $(\Pi A \Pi + \mathbf{1} - \Pi) = SF(U^*DU, D)$

$$= \operatorname{SF}(\kappa U^* DU, \kappa D)$$

$$= \operatorname{SF}\left(\begin{pmatrix} U & 0 \\ 0 & 1 \end{pmatrix}^* \begin{pmatrix} \kappa D & 0 \\ 0 & -\kappa D \end{pmatrix} \begin{pmatrix} U & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} \kappa D & 0 \\ 0 & -\kappa D \end{pmatrix} \right)$$

$$= \operatorname{SF}\left(\begin{pmatrix} U & 0 \\ 0 & 1 \end{pmatrix}^* \begin{pmatrix} \kappa D & 1 \\ 1 & -\kappa D \end{pmatrix} \begin{pmatrix} U & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} \kappa D & 0 \\ 0 & -\kappa D \end{pmatrix} \right)$$

$$= \operatorname{SF}\left(\begin{pmatrix} \kappa U^* DU & U \\ U^* & -\kappa D \end{pmatrix}, \begin{pmatrix} \kappa D & 0 \\ 0 & -\kappa D \end{pmatrix} \right)$$

$$= \operatorname{SF}\left(\begin{pmatrix} \kappa D & U \\ U^* & -\kappa D \end{pmatrix}, \begin{pmatrix} \kappa D & 0 \\ 0 & -\kappa D \end{pmatrix} \right)$$

Now localize and use $SF = \frac{1}{2}Sig$ on paths of selfadjoint matrices \Box

Even pairings (in even dimension)

Consider gapped Hamiltonian H on \mathcal{H} specifying $P = \chi(H \le 0)$ Dirac operator D on $\mathcal{H} \oplus \mathcal{H}$ is odd w.r.t. grading $\Gamma = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ Thus $D = -\Gamma D\Gamma = \begin{pmatrix} 0 & D' \\ (D')^* & 0 \end{pmatrix}$ and Dirac phase $F = D'|D'|^{-1}$ Fredholm operator $PFP + (\mathbf{1} - P)$ has index = Chern number Spectral localizer

$$L_{\kappa} = \begin{pmatrix} H & \kappa D' \\ \kappa (D')^* & -H \end{pmatrix} = H \otimes \Gamma + \kappa D$$

Theorem (with Loring 2018)

Suppose $\|[H, D']\| < \infty$ and D' normal, and κ , ρ with (*) and (**) $\operatorname{Ind}(PFP + (\mathbf{1} - P)) = \frac{1}{2}\operatorname{Sig}(L_{\kappa,\rho})$

Elements of proof

Definition

A fuzzy sphere (X_1, X_2, X_3) of width $\delta < 1$ in C^* -algebra \mathcal{K} is a collection of three self-adjoints in \mathcal{K}^+ with spectrum in [-1, 1] and $\|\mathbf{1} - (X_1^2 + X_2^2 + X_3^2)\| < \delta \qquad \|[X_j, X_i]\| < \delta$

Proposition

If $\delta \leq \frac{1}{4}$, one gets class $[L]_0 \in K_0(\mathcal{K})$ by self-adjoint invertible

$$L = \sum_{j=1,2,3} X_j \otimes \sigma_j \in M_2(\mathcal{K}^+)$$

Reason: *L* invertible and thus has positive spectral projection **Remark:** odd-dimensional spheres give elements in $K_1(\mathcal{K})$

Proposition

$$L_{\kappa,
ho}$$
 homotopic to $L = \sum_{j=1,2,3} X_j \otimes \sigma_j$ in invertibles

Construction of that particular fuzzy sphere:

Smooth tapering $f_{\rho} : \mathbb{R} \to [0, 1]$ with $\operatorname{supp}(f_{\rho}) \subset [-\rho, \rho]$ as above Define $F_{\rho} : \mathbb{R} \to [0, 1]$ by

$$F_{
ho}(x)^4 + f_{
ho}(x)^4 = 1$$

If $D' = D_1 + iD_2$ with $D_j^* = D_j$, and R = |D|, set

$$X_{1} = F_{\rho}(R) R^{-\frac{1}{2}} D_{1,\rho} R^{-\frac{1}{2}} F_{\rho}(R)$$

$$X_{2} = F_{\rho}(R) R^{-\frac{1}{2}} D_{2,\rho} R^{-\frac{1}{2}} F_{\rho}(R)$$

$$X_{3} = f_{\rho}(R) H_{\rho} f_{\rho}(R)$$

Theorem

$$\operatorname{Ind} \left[\pi (P F P + \mathbf{1} - P) \right]_{1} = [L_{\kappa,\rho}]_{0}$$

Proof:

General tool:

Image of K-theoretic index map can be written as fuzzy sphere

$$\operatorname{Ind}[\pi(A)]_1 = \left[\sum_{j=1,2,3} Y_j \otimes \sigma_j\right]_0$$

(by choosing an almost unitary lift A) Formulas for Y_1, Y_2, Y_3 are explicit (but long) General tool for $P F P + \mathbf{1} - P$ provides fuzzy sphere (Y_1, Y_2, Y_3) **Final step:** find classical degree 1 map $M : \mathbb{S}^2 \to \mathbb{S}^2$ such that

$$M(Y_1, Y_2, Y_3) \sim (X_1, X_2, X_3)$$

Numerics for toy model: p + ip superconductor

Hamiltonian on $\ell^2(\mathbb{Z}^2,\mathbb{C}^2)$ depending on μ and δ

$$H = \begin{pmatrix} S_1 + S_1^* + S_2 + S_2^* - \mu & \delta(S_1 - S_1^* + i(S_2 - S_2^*)) \\ \delta(S_1 - S_1^* + i(S_2 - S_2^*))^* & -(S_1 + S_1^* + S_2 + S_2^* - \mu) \end{pmatrix} + \lambda V_{\text{dis}}$$

and disorder strength $\boldsymbol{\lambda}$ and i.i.d. uniformly distributed entries in

$$V_{\rm dis} = \sum_{n \in \mathbb{Z}^2} \begin{pmatrix} v_{n,0} & 0 \\ 0 & v_{n,1} \end{pmatrix} |n\rangle \langle n|$$

Build even spectral localizer from $D = X_1\sigma_1 + X_2\sigma_2 = -\sigma_3 D\sigma_3$:

$$L_{\kappa,\rho} = \begin{pmatrix} H_{\rho} & \kappa (X_1 + iX_2)_{\rho} \\ \kappa (X_1 - iX_2)_{\rho} & -H_{\rho} \end{pmatrix}$$

Calculation of signature by block Chualesky algorithm

Low-lying spectrum of spectral localizer

Energy Levels of the Spectral Localizer with disorder $\delta{=}{-}0.35,\,\mu{=}0.25,\,\kappa{=}0.1,\,\rho{=}15$

Half-signature and gaps for p + ip superconductor

Resumé = Plan of the talk

- Winding number as prototype of an odd index pairing
- Construction of associated spectral localizer
- Main result: invariant as half-signature of spectral localizer
- Proof via spectral flow
- Extension to general odd pairings
- Even dimensional case
- Proof via fuzzy spheres
- Numerical results
- Implementation of symmetries: e.g. $\operatorname{sgn}(\operatorname{Pf}(L_{\kappa,\rho})) \in \mathbb{Z}_2$

Implementation of real symmetries

If A, H have real symmetry (like PHS or TRS), often $Sig(L_{\kappa,\rho}) = 0$ But

$$\operatorname{sgn}(\operatorname{\mathsf{det}}({\mathcal{L}}_{\kappa,
ho}))\in {\mathbb{Z}}_2 \qquad,\qquad \operatorname{sgn}(\operatorname{Pf}({\mathcal{L}}_{\kappa,
ho}))\in {\mathbb{Z}}_2$$

Not general case (paper) but example: Class CII has odd PHS

$$S^*\overline{A}S = A$$
 , $\overline{S} = S$, $S^2 = -1$

where overline is a real structure on complex Hilbert space and in d = 3 Dirac $D = X_1\sigma_1 + X_2\sigma_2 + X_3\sigma_3$ has odd PHS

$$\Sigma^* \overline{D} \Sigma = -D$$
 , $\Sigma = i\sigma_2$

Hence with $R = \Sigma \otimes S$

$$R^* \overline{L_\kappa} R = -L_\kappa \qquad , \qquad R^2 = \mathbf{1}$$

Thus $\operatorname{sgn}(\operatorname{Pf}(L_{\kappa,\rho})) \in \mathbb{Z}_2$

Theorem (General tool)

 $0 \rightarrow \mathcal{K} \hookrightarrow \mathcal{B} \xrightarrow{\pi} \mathcal{Q} \rightarrow 0$ short exact sequence with \mathcal{Q} unital $A \in \mathcal{B}$ contraction with $\pi(A) \in \mathcal{Q}$ invertible, so $[\pi(A)]_1 \in K_1(\mathcal{Q})$ Assume $A = A_1 + i A_2$ almost normal, namely $\|[A_1, A_2]\| < \epsilon$ Choose smooth $\psi : [0, 1] \rightarrow [0, 1]$ and $\phi : [0, 1] \rightarrow [-1, 1]$ such that

$$\phi(1) = 1 = -\phi(0)$$
 , $x^2 \psi(x)^4 + \phi(x)^2 = 1$

like $\phi(x) = 2x^2 - 1$ and $\psi(x) = 2^{\frac{1}{2}}(1 - x^2)^{\frac{1}{4}}$. Set $B = (A_1^2 + A_2^2)^{\frac{1}{2}}$,

$$Y_1 = \psi(B)A_1\psi(B)$$
 , $Y_2 = -\psi(B)A_2\psi(B)$, $Y_3 = \phi(B)$

Then (Y_1, Y_2, Y_3) fuzzy sphere in \mathcal{K} giving K-theoretic index map:

$$\operatorname{Ind}[\pi(A)]_1 = \left[\sum_{j=1,2,3} Y_j \otimes \sigma_j\right]_0$$