Duality for integrable systems associated to quantum toroidal algebras

Evgeny Mukhin

Indiana University Purdue University Indianapolis

XIX International Congress on Mathematical Physics Montreal, July 2018

IUPUI

DEPARTMENT OF MATHEMATICAL

SCIENCES
SCHOOL OF SCIENCE
A Purdue University School
Indianapolis

The transfer matrices

Let U_{q} be your favorite quantum group.
Let $\mathcal{R} \in U_{q} \tilde{\otimes} U_{q}$ be the R-matrix satisfying the Yang-Baxter equation

$$
\mathcal{R}_{12} \mathcal{R}_{13} \mathcal{R}_{23}=\mathcal{R}_{23} \mathcal{R}_{13} \mathcal{R}_{12} .
$$

Let $Q \in U_{q}$ be the twist operator:

$$
\mathcal{R}(Q \otimes Q)=(Q \otimes Q) \mathcal{R}
$$

Let V be an admissible U_{q}-module. Then the trace

$$
T_{V}=\left(\operatorname{Tr}_{V} \otimes 1\right)((Q \otimes 1) \mathcal{R}) \in \tilde{U}_{q}
$$

is called the transfer matrix.
Lemma. For any admissible modules V_{1}, V_{2}, the transfer matrices commute:
$T_{V_{1}} T_{V_{2}}=T_{V_{2}} T_{V_{1}}$.

The XXZ type models

$$
\text { Recall : } \quad T_{V}=\left(\operatorname{Tr}_{\mathrm{V}} \otimes 1\right)((Q \otimes 1) \mathcal{R}) .
$$

Thus, the R matrix gives an embedding of the Grothendick ring of admissible representations to the quantum group:

$$
T: K_{0}\left(\operatorname{Rep} U_{q}\right) \rightarrow \tilde{U}_{q}, \quad V \mapsto T_{V} .
$$

The image $\mathcal{B}_{q}=\operatorname{Im}(T)$ is the commutative algebra of quantum Hamiltonians.
The algebra \mathcal{B}_{q} acts on an appropriate class of representations of U_{q}.
Problem. (XXZ type models) Understand the spectrum of \mathcal{B}_{q}.

The Gaudin type models

The limit $q \rightarrow 1$ gives an algebra of quantum Hamiltonians in the corresponding universal enveloping algebra:

$$
\mathcal{B}=\lim _{q \rightarrow 1} \mathcal{B}_{q} \in \tilde{U}
$$

The limit is not easy. There are alternative constructions (of the same algebra) for affine Lie algebras:

- from the center on the critical level [FFR];
- from Segal-Sugawara vectors in the vacuum modules [M];
- shift of argument method [R].

The algebra \mathcal{B} acts on an appropriate class of representations of U.
Problem. (Gaudin type models) Understand the spectrum of \mathcal{B}.

The Gaudin type models

The limit $q \rightarrow 1$ gives an algebra of quantum Hamiltonians in the corresponding universal enveloping algebra:

$$
\mathcal{B}=\lim _{q \rightarrow 1} \mathcal{B}_{q} \in \tilde{U}
$$

The limit is not easy. There are alternative constructions (of the same algebra) for affine Lie algebras:
B.Feigin, E.Frenkel, and

- from the center on the critica N. Reshetikhin, (94)
- from Segal-Sugawara vector:

- shift of argument method [R].

The algebra \mathcal{B} acts on an appropriate class of representations of U.
Problem. (Gaudin type models) Understand the spectrum of \mathcal{B}.

The Gaudin type models

The limit $q \rightarrow 1$ gives an algebra of quantum Hamiltonians in the corresponding universal enveloping algebra:

$$
\mathcal{B}=\lim _{q \rightarrow 1} \mathcal{B}_{q} \in \tilde{U}
$$

The limit is not easy. There are alternative constructions (of the same algebra) for affine Lie algebras:

- from the center on the critical level [FFR];
- from Segal-Sugawara vectors in the vacuum modules [M];
- shift of argument method [R].

The algebra \mathcal{B} acts on an appropriate class of representations of U.
Problem. (Gaudin type models) Understand the spectrum of \mathcal{B}.

The Gaudin type models

The limit $q \rightarrow 1$ gives an algebra of quantum Hamiltonians in the corresponding universal enveloping algebra:

$$
\mathcal{B}=\lim _{q \rightarrow 1} \mathcal{B}_{q} \in \tilde{U}
$$

The limit is not easy. There are alternative constructions (of the same algebra) for affine Lie algebras:

- from the center on the critical level [FFR];
- from Segal-Sugawara vectors in the vacuum mod A. Molev, (11)
- shift of argument method [R].

The algebra \mathcal{B} acts on an appropriate class of representations of U.
Problem. (Gaudin type models) Understand the spectrum of \mathcal{B}.

The Gaudin type models

The limit $q \rightarrow 1$ gives an algebra of quantum Hamiltonians in the corresponding universal enveloping algebra:

$$
\mathcal{B}=\lim _{q \rightarrow 1} \mathcal{B}_{q} \in \tilde{U}
$$

The limit is not easy. There are alternative constructions (of the same algebra) for affine Lie algebras:

- from the center on the critical level [FFR];
- from Segal-Sugawara vectors in the vacuum modules [M];
- shift of argument method [R].

The algebra \mathcal{B} acts on an appropriate class of representations of U.
Problem. (Gaudin type models) Understand the spectrum of \mathcal{B}.

The Gaudin type models

The limit $q \rightarrow 1$ gives an algebra of quantum Hamiltonians in the corresponding universal enveloping algebra:

$$
\mathcal{B}=\lim _{q \rightarrow 1} \mathcal{B}_{q} \in \tilde{U}
$$

The limit is not easy. There are alternative constructions (of the same algebra) for affine Lie algebras:

- from the center on the critical level [FFR];
- from Segal-Sugawara vectors in the vacuum modules [M];
- shift of argument $m \in L$. Rybnikov, (06)

The algebra \mathcal{B} acts on an appropriate class of representations of U.
Problem. (Gaudin type models) Understand the spectrum of \mathcal{B}.

The Gaudin type models

The limit $q \rightarrow 1$ gives an algebra of quantum Hamiltonians in the corresponding universal enveloping algebra:

$$
\mathcal{B}=\lim _{q \rightarrow 1} \mathcal{B}_{q} \in \tilde{U}
$$

The limit is not easy. There are alternative constructions (of the same algebra) for affine Lie algebras:

- from the center on the critical level [FFR];
- from Segal-Sugawara vectors in the vacuum modules [M];
- shift of argument method [R].

The algebra \mathcal{B} acts on an appropriate class of representations of U.
Problem. (Gaudin type models) Understand the spectrum of \mathcal{B}.

An example

Let $U=\mathfrak{g l}_{n}[t]=\mathfrak{g l}_{n} \otimes \mathbb{C}[t]$.
We use formal series $e_{i j}(x)=\sum_{s=0}^{\infty}\left(e_{i j} \otimes t^{s}\right) x^{-s-1} \in U\left[\left[x^{-1}\right]\right]$.
Let $\bar{Q}=\sum_{i=1}^{n} u_{i} e_{i i}$.
Consider the matrix

$$
E_{n}^{u}=\left(\begin{array}{cclc}
\partial_{x}-u_{1}-e_{11}(x) & -e_{21}(x) & \ldots & -e_{n 1}(x) \\
-e_{12}(x) & \partial_{x}-u_{2}-e_{22}(x) & \ldots & -e_{n 2}(x) \\
\ldots & \ldots & \ldots & \ldots \\
-e_{1 n}(x) & -e_{2 n}(x) & \ldots & \partial_{x}-u_{n}-e_{n n}(x)
\end{array}\right)
$$

Expand the row determinant:

$$
\operatorname{rdet} E_{n}^{u}=\partial_{x}^{n}+B_{1}(x) \partial_{x}^{n-1}+B_{2}(x) \partial_{x}^{n-2}+\cdots+B_{n}(x)
$$

Theorem.([T]) Coefficients of $B_{i}(x)$ commute and generate the algebra \mathcal{B}_{n}^{u} of quantum Hamiltonians in $\mathfrak{g l}_{n}[t]$.

An example

Let $U=\mathfrak{g l}_{n}[t]=\mathfrak{g l}_{n} \otimes \mathbb{C}[t]$.
We use formal series $e_{i j}(x)=\sum_{s=0}^{\infty}\left(e_{i j} \otimes t^{s}\right) x^{-s-1} \in U\left[\left[x^{-1}\right]\right]$.
Let $\bar{Q}=\sum_{i=1}^{n} u_{i} e_{i i}$.
Consider the matrix

$$
E_{n}^{u}=\left(\begin{array}{cclc}
\partial_{x}-u_{1}-e_{11}(x) & -e_{21}(x) & \ldots & -e_{n 1}(x) \\
-e_{12}(x) & \partial_{x}-u_{2}-e_{22}(x) & \ldots & -e_{n 2}(x) \\
\ldots & \ldots & \ldots & \ldots \\
-e_{1 n}(x) & -e_{2 n}(x) & \ldots & \partial_{x}-u_{n}-e_{n n}(x)
\end{array}\right)
$$

Expand the row determinant:

$$
\operatorname{rdet} E_{n}^{u}=\partial_{x}^{n}+B_{1}(x) \partial_{x}^{n-1}+B_{2}(x) \partial_{x}^{n-2}+\cdots+B_{n}(x)
$$

Theorem. D. Talalaev, (04) ${ }^{\boldsymbol{c}} B_{i}(x)$ commute and generate the algebra \mathcal{B}_{n}^{u} of quantum I

An example

Let $U=\mathfrak{g l}_{n}[t]=\mathfrak{g l}_{n} \otimes \mathbb{C}[t]$.
We use formal series $e_{i j}(x)=\sum_{s=0}^{\infty}\left(e_{i j} \otimes t^{s}\right) x^{-s-1} \in U\left[\left[x^{-1}\right]\right]$.
Let $\bar{Q}=\sum_{i=1}^{n} u_{i} e_{i i}$.
Consider the matrix

$$
E_{n}^{u}=\left(\begin{array}{cclc}
\partial_{x}-u_{1}-e_{11}(x) & -e_{21}(x) & \ldots & -e_{n 1}(x) \\
-e_{12}(x) & \partial_{x}-u_{2}-e_{22}(x) & \ldots & -e_{n 2}(x) \\
\ldots & \ldots & \ldots & \ldots \\
-e_{1 n}(x) & -e_{2 n}(x) & \ldots & \partial_{x}-u_{n}-e_{n n}(x)
\end{array}\right)
$$

Expand the row determinant:

$$
\operatorname{rdet} E_{n}^{u}=\partial_{x}^{n}+B_{1}(x) \partial_{x}^{n-1}+B_{2}(x) \partial_{x}^{n-2}+\cdots+B_{n}(x)
$$

Theorem.([T]) Coefficients of $B_{i}(x)$ commute and generate the algebra \mathcal{B}_{n}^{u} of quantum Hamiltonians in $\mathfrak{g l}_{n}[t]$.

The classical $\mathfrak{g l}_{m}-\mathfrak{g l}_{n}$ duality

Consider the vector space $V=\mathbb{C}\left[x_{i j}\right]_{i=1, \ldots, m}^{j=1, \ldots, n}$.

The classical $\mathfrak{g l}_{m}-\mathfrak{g l}_{n}$ duality

Consider the vector space $V=\mathbb{C}\left[x_{i j}\right]_{i=1, \ldots, m}^{j=1, \ldots, n}$.

$$
\left(\begin{array}{cccc}
x_{11} & x_{12} & \ldots & x_{1 n} \\
x_{21} & x_{22} & \ldots & x_{2 n} \\
\ldots & \ldots & \ldots & \ldots \\
x_{m 1} & x_{m 2} & \ldots & x_{m n}
\end{array}\right)
$$

The classical $\mathfrak{g l}_{m}-\mathfrak{g l}_{n}$ duality

Consider the vector space $V=\mathbb{C}\left[x_{i j}\right]_{i=1, \ldots, m}^{j=1, \ldots, n}$.

The classical $\mathfrak{g l}_{m}-\mathfrak{g l}_{n}$ duality

Consider the vector space $V=\mathbb{C}\left[x_{i j}\right]_{i=1, \ldots, m}^{j=1, \ldots, n}$.

$$
e_{i j}^{(m)}=\sum_{k=1}^{n} x_{i k} \partial_{j k} \quad\left(\begin{array}{cccc}
x_{11} & x_{12} & \ldots & x_{1 n} \\
x_{21} & x_{22} & \ldots & x_{2 n} \\
\ldots & \ldots & \ldots & \ldots \\
x_{m 1} & x_{m 2} & \ldots & x_{m n}
\end{array}\right) \quad \mathfrak{g l}_{n}
$$

The classical $\mathfrak{g l}_{m}-\mathfrak{g l}_{n}$ duality

Consider the vector space $V=\mathbb{C}\left[x_{i j}\right]_{i=1, \ldots, m}^{j=1, \ldots, n}$.

$$
e_{i j}^{(m)}=\sum_{k=1}^{n} x_{i k} \partial_{j k} \quad\left(\begin{array}{cccc}
x_{11} & x_{12} & \cdots & x_{1 n} \\
x_{21} & x_{22} & \ldots & x_{2 n} \\
\cdots & \cdots & \cdots & \cdots \\
x_{m 1} & x_{m 2} & \cdots & x_{m n}
\end{array}\right) \quad e_{i j}^{(n)}=\sum_{k=1}^{m} x_{k i} \partial_{k j}
$$

Lemma. As a $\mathfrak{g l}_{m}$ module, $V=\bigoplus_{k_{1}, \ldots, k_{n}=0}^{\infty} L_{k_{1} \omega_{1}}^{(m)} \otimes \cdots \otimes L_{k_{n} \omega_{1}}^{(m)}$.

$$
\text { As a } \mathfrak{g l}_{n} \text { module, } V=\bigoplus_{k_{1}, \ldots, k_{m}=0}^{\infty} L_{k_{1} \omega_{1}}^{(n)} \otimes \cdots \otimes L_{k_{m} \omega_{1}}^{(n)} .
$$

Lemma. We have $\left[\mathfrak{g l}_{m}, \mathfrak{g l}_{n}\right]=0$ in $\operatorname{End}(V)$.

The $\mathfrak{g l}_{n}-\mathfrak{g l}_{m}$ duality of Gaudin models

Choose complex evaluation parameters.

$$
e_{i j}^{(m)}=\sum_{k=1}^{n} x_{i k} \partial_{j k} \quad\left(\begin{array}{cccc}
x_{11} & x_{12} & \cdots & x_{1 n} \\
x_{21} & x_{22} & \cdots & x_{2 n} \\
\cdots & \cdots & \cdots & \cdots \\
x_{m 1} & x_{m 2} & \cdots & x_{m n}
\end{array}\right) \quad e_{i j}^{(n)}=\sum_{k=1}^{m} x_{k i} \partial_{k j}
$$

The $\mathfrak{g l}_{n}-\mathfrak{g l}_{m}$ duality of Gaudin models

Choose complex evaluation parameters.

$$
\left.e_{i j}^{z_{1}} \begin{array}{cccc}
z_{1} & z_{2} & \cdots & z_{n} \\
\sum_{k=1}^{n} x_{i k} \partial_{j k} \\
x_{11} & x_{12} & \cdots & x_{1 n} \\
x_{21} & x_{22} & \cdots & x_{2 n} \\
\cdots & \cdots & \cdots & \cdots \\
x_{m 1} & x_{m 2} & \cdots & x_{m n}
\end{array}\right) \quad u_{1} \quad u_{2} \quad u_{m} \quad e_{n}^{(n)}=\sum_{k=1}^{m} x_{k i} \partial_{k j}
$$

The $\mathfrak{g l}_{n}-\mathfrak{g l}_{m}$ duality of Gaudin models

Choose complex evaluation parameters.

	z_{1}	z_{2}	-••	z_{n}		
$\mathfrak{g l} \mathfrak{l}_{m}[t]$	$\left(\begin{array}{l}x_{11} \\ x_{21}\end{array}\right.$	x_{12} x_{22}	\cdots	$x_{1 n}$ $x_{2 n}$	$\begin{aligned} & u_{1} \\ & u_{2} \end{aligned}$	$\mathfrak{g l} \mathfrak{n}_{n}[t]$
$e_{i j}^{(m)}(x)=\sum_{k=1}^{n} \frac{x_{i k} \partial_{j k}}{x-z_{k}}$	$\left(\begin{array}{c}\cdots \\ x_{m 1}\end{array}\right.$	$x_{m 2}$	\cdots	\cdots $x_{m n}$	u_{m}	$e_{i j}^{(n)}(x)=\sum_{k=1}^{m} \frac{x_{k i} \partial_{k j}}{x-u_{k}}$

The $\mathfrak{g l}_{n}-\mathfrak{g l}_{m}$ duality of Gaudin models

Choose complex evaluation parameters.

$$
\left.\begin{array}{c}
z_{1} \\
\mathfrak{g l}_{m}[t] \stackrel{z_{2}}{ } \\
e_{i j}^{(m)}(x)=\sum_{k=1}^{n} \frac{x_{i k} \partial_{j k}}{x-z_{k}}
\end{array} \quad\left(\begin{array}{cccc}
x_{11} & x_{12} & \cdots & z_{n} \\
x_{21} & x_{22} & \cdots & x_{1 n} \\
\cdots & \cdots & \cdots & \cdots \\
x_{m 1} & x_{m 2} & \cdots & x_{m n}
\end{array}\right) \quad u_{1} \quad u_{2} \quad u_{n}[t]\right) \quad e_{i j}^{(n)}(x)=\sum_{k=1}^{m} \frac{x_{k i} \partial_{k j}}{x-u_{k}}
$$

Lemma. As a $\mathfrak{g l}_{m}[t]$ module, $V=\bigoplus_{k_{1}, \ldots, k_{n}=0}^{\infty} L_{k_{1} \omega_{1}}^{(m)}\left(z_{1}\right) \otimes \cdots \otimes L_{k_{n} \omega_{1}}^{(m)}\left(z_{n}\right)$.
As a $\mathfrak{g l}_{n}[t]$ module, $V=\bigoplus_{k_{1}, \ldots, k_{m}=0}^{\infty} L_{k_{1} \omega_{1}}^{(n)}\left(u_{1}\right) \otimes \cdots \otimes L_{k_{m} \omega_{1}}^{(n)}\left(u_{m}\right)$.

The $\mathfrak{g l}_{n}-\mathfrak{g l}_{m}$ duality of Gaudin models

Choose complex evaluation parameters.

$$
\left.\begin{array}{c}
z_{1} \\
\mathfrak{g l}_{m}[t] \stackrel{z_{2}}{ } \\
e_{i j}^{(m)}(x)=\sum_{k=1}^{n} \frac{x_{i k} \partial_{j k}}{x-z_{k}}
\end{array} \quad\left(\begin{array}{cccc}
x_{11} & x_{12} & \cdots & z_{n} \\
x_{21} & x_{22} & \cdots & x_{2 n} \\
\cdots & \cdots & \cdots & \cdots \\
x_{m 1} & x_{m 2} & \cdots & x_{m n}
\end{array}\right) \quad u_{1} \quad u_{2} \quad u_{m} \quad \mathfrak{g l}_{n}[t]\right) \quad e_{i j}^{(n)}(x)=\sum_{k=1}^{m} \frac{x_{k i} \partial_{k j}}{x-u_{k}}
$$

Lemma. As a $\mathfrak{g l}_{m}[t]$ module, $V=\bigoplus_{k_{1}, \ldots, k_{n}=0}^{\infty} L_{k_{1} \omega_{1}}^{(m)}\left(z_{1}\right) \otimes \cdots \otimes L_{k_{n} \omega_{1}}^{(m)}\left(z_{n}\right)$.
As a $\mathfrak{g l}_{n}[t]$ module, $V=\bigoplus_{k_{1}, \ldots, k_{m}=0}^{\infty} L_{k_{1} \omega_{1}}^{(n)}\left(u_{1}\right) \otimes \cdots \otimes L_{k_{m} \omega_{1}}^{(n)}\left(u_{m}\right)$.
Theorem.([MTV]) The algebras of quantum Hamiltonians in $\operatorname{End}(V)$ coincide: $\mathcal{B}_{m}^{u}=\mathcal{B}_{n}^{z}$.

The $\mathfrak{g l}_{n}-\mathfrak{g l}_{m}$ duality of Gaudin models

Choose complex evaluation parameters.

$$
\left.\begin{array}{c}
z_{1} \\
\mathfrak{g l}_{m}[t] \stackrel{z_{2}}{ } \\
e_{i j}^{(m)}(x)=\sum_{k=1}^{n} \frac{x_{i k} \partial_{j k}}{x-z_{k}}
\end{array} \quad\left(\begin{array}{cccc}
x_{11} & x_{12} & \cdots & z_{n} \\
x_{21} & x_{22} & \cdots & x_{2 n} \\
\cdots & \cdots & \cdots & \cdots \\
x_{m 1} & x_{m 2} & \cdots & x_{m n}
\end{array}\right) \quad u_{1} \quad u_{2} \quad u_{m} \quad \mathfrak{g l}_{n}[t]\right) \quad e_{i j}^{(n)}(x)=\sum_{k=1}^{m} \frac{x_{k i} \partial_{k j}}{x-u_{k}}
$$

Lemma. As a $\mathfrak{g l}_{m}[t]$ module, $V=\bigoplus_{k_{1}, \ldots, k_{n}=0}^{\infty} L_{k_{1} \omega_{1}}^{(m)}\left(z_{1}\right) \otimes \cdots \otimes L_{k_{n} \omega_{1}}^{(m)}\left(z_{n}\right)$.
As a $\mathfrak{g l}_{n}[t]$ module, $V=\bigoplus_{k_{1}, \ldots, k_{m}=0}^{\infty} L_{k_{1} \omega_{1}}^{(n)}\left(u_{1}\right) \otimes \cdots \otimes L_{k_{m} \omega_{1}}^{(n)}\left(u_{m}\right)$.
E.M., V. Tarasov, and

Theorem. A. Varchenko, (06)
quantum Hamiltonians in $\operatorname{End}(V)$ coincide: $\mathcal{B}_{m}^{u}=\mathcal{B}_{n}^{z}$.

The $\mathfrak{g l}_{n}-\mathfrak{g l}_{m}$ duality of Gaudin models

Choose complex evaluation parameters.

$$
\left.\begin{array}{c}
z_{1} \\
\mathfrak{g l}_{m}[t] \stackrel{z_{2}}{ } \\
e_{i j}^{(m)}(x)=\sum_{k=1}^{n} \frac{x_{i k} \partial_{j k}}{x-z_{k}}
\end{array} \quad\left(\begin{array}{cccc}
x_{11} & x_{12} & \cdots & z_{n} \\
x_{21} & x_{22} & \cdots & x_{2 n} \\
\cdots & \cdots & \cdots & \cdots \\
x_{m 1} & x_{m 2} & \cdots & x_{m n}
\end{array}\right) \quad u_{1} \quad u_{2} \quad u_{m} \quad \mathfrak{g l}_{n}[t]\right) \quad e_{i j}^{(n)}(x)=\sum_{k=1}^{m} \frac{x_{k i} \partial_{k j}}{x-u_{k}}
$$

Lemma. As a $\mathfrak{g l}_{m}[t]$ module, $V=\bigoplus_{k_{1}, \ldots, k_{n}=0}^{\infty} L_{k_{1} \omega_{1}}^{(m)}\left(z_{1}\right) \otimes \cdots \otimes L_{k_{n} \omega_{1}}^{(m)}\left(z_{n}\right)$.
As a $\mathfrak{g l}_{n}[t]$ module, $V=\bigoplus_{k_{1}, \ldots, k_{m}=0}^{\infty} L_{k_{1} \omega_{1}}^{(n)}\left(u_{1}\right) \otimes \cdots \otimes L_{k_{m} \omega_{1}}^{(n)}\left(u_{m}\right)$.
Theorem.([MTV]) The algebras of quantum Hamiltonians in $\operatorname{End}(V)$ coincide: $\mathcal{B}_{m}^{u}=\mathcal{B}_{n}^{z}$.

The correspondence of quantum Hamiltonians

Corollary. Eigenvectors of \mathcal{B}_{m}^{u} and of \mathcal{B}_{n}^{z} coincide.

The correspondence of quantum Hamiltonians

Corollary. Eigenvectors of \mathcal{B}_{m}^{u} and of \mathcal{B}_{n}^{z} coincide.
Write: $\prod_{i=1}^{n}\left(x-z_{i}\right) \operatorname{rdet} E_{m}^{u}=\sum_{i=1}^{n} \sum_{j=1}^{m} A_{i j}^{(m)} x^{i} \partial^{j}$, where $A_{i j}^{(m)} \in \operatorname{End}(V)$.
Write: $\prod_{j=1}^{m}\left(x-u_{i}\right) \operatorname{rdet} E_{n}^{z}=\sum_{j=1}^{m} \sum_{i=1}^{n} A_{j i}^{(n)} x^{j} \partial^{i}$, where $A_{i j}^{(n)} \in \operatorname{End}(V)$.

The correspondence of quantum Hamiltonians

$$
e_{i j}^{(m)}(x)=\sum_{k=1}^{n} \frac{x_{i k} \partial_{j k}}{x-z_{k}} \quad\left(\begin{array}{cccc}
z_{1} & z_{2} & \cdots & z_{n} \\
x_{11} & x_{12} & \cdots & x_{1 n} \\
x_{21} & x_{22} & \cdots & x_{2 n} \\
\cdots & \cdots & \cdots & \cdots \\
x_{m 1} & x_{m 2} & \cdots & x_{m n}
\end{array}\right) \quad u_{1} \quad u_{2} \quad u_{m} \quad \mathfrak{g l}_{n}[t]
$$

Corollary. Eigenvectors of \mathcal{B}_{m}^{u} and of \mathcal{B}_{n}^{z} coincide.
Write: $\prod_{i=1}^{n}\left(x-z_{i}\right) \operatorname{rdet} E_{m}^{u}=\sum_{i=1}^{n} \sum_{j=1}^{m} A_{i j}^{(m)} x^{i} \partial^{j}$, where $A_{i j}^{(m)} \in \operatorname{End}(V)$.
Write: $\prod_{j=1}^{m}\left(x-u_{i}\right) \operatorname{rdet} E_{n}^{z}=\sum_{j=1}^{m} \sum_{i=1}^{n} A_{j i}^{(n)} x^{j} \partial^{i}$, where $A_{i j}^{(n)} \in \operatorname{End}(V)$.
Theorem. ([MTV]) We have $A_{i j}^{(m)}=A_{j i}^{(n)}$.

The correspondence of quantum Hamiltonians

$$
\mathfrak{g l}_{m}[t] \xrightarrow{(m)}(x)=\sum_{k=1}^{n} \frac{x_{i k} \partial_{j k}}{x-z_{k}} \quad\left(\begin{array}{cccc}
x_{11} & x_{12} & \ldots & x_{1 n} \\
x_{21} & x_{22} & \ldots & x_{2 n} \\
\ldots & \ldots & \ldots & \ldots \\
x_{m 1} & x_{m 2} & \ldots & x_{m n}
\end{array}\right) \quad u_{1} \quad u_{2} \quad u_{m} \quad \mathfrak{g l}_{n}[t]
$$

Corollary. Eigenvectors of \mathcal{B}_{m}^{u} and of \mathcal{B}_{n}^{z} coincide.
Write: $\prod_{i=1}^{n}\left(x-z_{i}\right) \operatorname{rdet} E_{m}^{u}=\sum_{i=1}^{n} \sum_{j=1}^{m} A_{i j}^{(m)} x^{i} \partial^{j}$, where $A_{i j}^{(m)} \in \operatorname{End}(V)$.
Write: $\prod_{j=1}^{m}\left(x-u_{i}\right) \operatorname{rdet} E_{n}^{z}=\sum_{j=1}^{m} \sum_{i=1}^{n} A_{j i}^{(n)} x^{j} \partial^{i}$, where $A_{i j}^{(n)} \in \operatorname{End}(V)$.
Theorem. ([MTV]) We have $A_{i j}^{(m)}=A_{j i}^{(n)}$.
The correspondence of solutions $\mathfrak{g l}_{m}$ and $\mathfrak{g l}_{n}$ Bethe ansatz equations is described in [MTV1].

The correspondence of quantum Hamiltonians

$$
\mathfrak{g l}_{m}[t]>\ln _{i j}^{(m)}(x)=\sum_{k=1}^{n} \frac{x_{i k} \partial_{j k}}{x-z_{k}} \quad\left(\begin{array}{cccc}
x_{11} & x_{12} & \ldots & x_{1 n} \\
x_{21} & x_{22} & \ldots & x_{2 n} \\
\ldots & \ldots & \ldots & \ldots \\
x_{m 1} & x_{m 2} & \ldots & x_{m n}
\end{array}\right) \quad u_{1} \quad u_{2} \quad u_{m} \quad \mathfrak{g l}_{n}[t]
$$

Corollary. Eigenvectors of \mathcal{B}_{m}^{u} and of \mathcal{B}_{n}^{z} coincide.
Write: $\prod_{i=1}^{n}\left(x-z_{i}\right) \operatorname{rdet} E_{m}^{u}=\sum_{i=1}^{n} \sum_{j=1}^{m} A_{i j}^{(m)} x^{i} \partial^{j}$, where $A_{i j}^{(m)} \in \operatorname{End}(V)$.
Write: $\prod_{j=1}^{m}\left(x-u_{i}\right) \operatorname{rdet} E_{n}^{z}=\sum_{j=1}^{m} \sum_{i=1}^{n} A_{j i}^{(n)} x^{j} \partial^{i}$, where $A_{i j}^{(n)} \in \operatorname{End}(V)$.
Theorem. ([MTV]) We have $A_{i j}^{(m)}=A_{j i}^{(n)}$.
 described A. Varchenko, (05)

The correspondence of quantum Hamiltonians

$$
\mathfrak{g l}_{m}[t] \xrightarrow{(m)}(x)=\sum_{k=1}^{n} \frac{x_{i k} \partial_{j k}}{x-z_{k}} \quad\left(\begin{array}{cccc}
x_{11} & x_{12} & \ldots & x_{1 n} \\
x_{21} & x_{22} & \ldots & x_{2 n} \\
\ldots & \ldots & \ldots & \ldots \\
x_{m 1} & x_{m 2} & \ldots & x_{m n}
\end{array}\right) \quad u_{1} \quad u_{2} \quad u_{m} \quad \mathfrak{g l}_{n}[t]
$$

Corollary. Eigenvectors of \mathcal{B}_{m}^{u} and of \mathcal{B}_{n}^{z} coincide.
Write: $\prod_{i=1}^{n}\left(x-z_{i}\right) \operatorname{rdet} E_{m}^{u}=\sum_{i=1}^{n} \sum_{j=1}^{m} A_{i j}^{(m)} x^{i} \partial^{j}$, where $A_{i j}^{(m)} \in \operatorname{End}(V)$.
Write: $\prod_{j=1}^{m}\left(x-u_{i}\right) \operatorname{rdet} E_{n}^{z}=\sum_{j=1}^{m} \sum_{i=1}^{n} A_{j i}^{(n)} x^{j} \partial^{i}$, where $A_{i j}^{(n)} \in \operatorname{End}(V)$.
Theorem. ([MTV]) We have $A_{i j}^{(m)}=A_{j i}^{(n)}$.
The correspondence of solutions $\mathfrak{g l}_{m}$ and $\mathfrak{g l}_{n}$ Bethe ansatz equations is described in [MTV1].

Quantum toroidal algebras

Let $\mathcal{E}_{m}\left(q_{1}, q\right)$ be the quantum toroidal algebra associated to $\mathfrak{g l}_{m}$, [GKV].

- The algebra $\mathcal{E}_{m}\left(q_{1}, q\right)$ is an affinization of $U_{q} \widehat{\mathfrak{g}}_{m}$.
- The algebra $\mathcal{E}_{m}\left(q_{1}, q\right)$ has generators $E_{i}(z), F_{i}(z), K_{i}^{ \pm}(z), i=0, \ldots, m-1$, central element q^{c} and degree operator q^{d}.
- For any $j, E_{i}(z), F_{i}(z), K_{i}^{ \pm}(z)(i \neq j), K_{j}^{ \pm}(z), q^{c}, q^{d}$, generate a subalgebra canonically isomorphic to $U_{q} \widehat{\mathfrak{g}}_{m}$ in Drinfeld new realization. The one for $j=0$ is called the vertical subalgebra.
- The zero modes $E_{i, 0}, F_{i, 0}, K_{i, 0}^{ \pm}$generate a subalgebra canonically isomorphic to level zero $U_{q} \widehat{\mathfrak{g l}}_{m}$ in Drinfeld-Jimbo realization. It is called the horizontal subalgebra.
Introduce the twist operator $Q=p_{0}^{d} \prod_{i=1}^{m-1} p_{i}^{-\Lambda_{i}}$.
Let \widehat{B}_{m}^{p} be the corresponding algebra of quantum Hamiltonians.

Quantum toroidal algebras

Let $\mathcal{E}_{m}\left(q_{1}, q\right)$ be the quantum toroidal algebra as؛ V . Ginzburg, M. Kapranov,

- The algebra $\mathcal{E}_{m}\left(q_{1}, q\right)$ is an affinization of U_{q} and E. Vasserot, (95)
- The algebra $\mathcal{E}_{m}\left(q_{1}, q\right)$ has generators $E_{i}(z), F i(z), \kappa_{i}^{-}(z), i=0, \ldots, m-1$, central element q^{c} and degree operator q^{d}.
- For any $j, E_{i}(z), F_{i}(z), K_{i}^{ \pm}(z)(i \neq j), K_{j}^{ \pm}(z), q^{c}, q^{d}$, generate a subalgebra canonically isomorphic to $U_{q} \widehat{\mathfrak{g}}_{m}$ in Drinfeld new realization. The one for $j=0$ is called the vertical subalgebra.
- The zero modes $E_{i, 0}, F_{i, 0}, K_{i, 0}^{ \pm}$generate a subalgebra canonically isomorphic to level zero $U_{q} \widehat{\mathfrak{g l}}_{m}$ in Drinfeld-Jimbo realization. It is called the horizontal subalgebra.
Introduce the twist operator $Q=p_{0}^{d} \prod_{i=1}^{m-1} p_{i}^{-\Lambda_{i}}$.
Let \widehat{B}_{m}^{p} be the corresponding algebra of quantum Hamiltonians.

Quantum toroidal algebras

Let $\mathcal{E}_{m}\left(q_{1}, q\right)$ be the quantum toroidal algebra associated to $\mathfrak{g l}_{m}$, [GKV].

- The algebra $\mathcal{E}_{m}\left(q_{1}, q\right)$ is an affinization of $U_{q} \widehat{\mathfrak{g}}_{m}$.
- The algebra $\mathcal{E}_{m}\left(q_{1}, q\right)$ has generators $E_{i}(z), F_{i}(z), K_{i}^{ \pm}(z), i=0, \ldots, m-1$, central element q^{c} and degree operator q^{d}.
- For any $j, E_{i}(z), F_{i}(z), K_{i}^{ \pm}(z)(i \neq j), K_{j}^{ \pm}(z), q^{c}, q^{d}$, generate a subalgebra canonically isomorphic to $U_{q} \widehat{\mathfrak{g}}_{m}$ in Drinfeld new realization. The one for $j=0$ is called the vertical subalgebra.
- The zero modes $E_{i, 0}, F_{i, 0}, K_{i, 0}^{ \pm}$generate a subalgebra canonically isomorphic to level zero $U_{q} \widehat{\mathfrak{g l}}_{m}$ in Drinfeld-Jimbo realization. It is called the horizontal subalgebra.
Introduce the twist operator $Q=p_{0}^{d} \prod_{i=1}^{m-1} p_{i}^{-\Lambda_{i}}$.
Let \widehat{B}_{m}^{p} be the corresponding algebra of quantum Hamiltonians.

The Fock module

The quantum toroidal algebra $\mathcal{E}_{m}\left(q_{1}, q\right)$ has a family of Fock representations $\mathcal{F}_{i}(z, t, k)$.

- The Fock module restricted to vertical $U_{q} \widehat{\mathfrak{g}}_{m}$ is the integrable module of level $c=1$ with highest weight Λ_{i}.
- The degree of the highest vector is t.
- The central element $q^{\sum_{i=0}^{m-1} \epsilon_{i}}$ acts by q^{k}.
- The Fock module has a realization by vertex operators, [S].
- The Fock module has a realization by Macdonald type operators, [FJMM]. The quantum Hamiltonian corresponding to module $\mathcal{F}_{i}(z, t, k)$ is computed explicitly. The coefficient I_{s} of z^{s} is given by an $m k$-fold integral.
Example. For $m=1, I_{1}=\int_{|x|=1} F(x) \prod_{s=0}^{\infty} \bar{K}^{+}\left(p^{-s} x\right) d x / x$
(in the region $\left|q_{1}\right|<1<\left|q_{1} q^{2}\right|$ and by analytic continuation everywhere else).

The Fock module

The quantum toroidal algebra $\mathcal{E}_{m}\left(q_{1}, q\right)$ has a family of Fock representations $\mathcal{F}_{i}(z, t, k)$.

- The Fock module restricted to vertical $U_{q} \widehat{\mathfrak{g}}_{m}$ is the integrable module of level $c=1$ with highest weight Λ_{i}.
- The degree of the highest vector is t.
- The central element $q^{\sum_{i=0}^{m-1} \epsilon_{i}}$ acts by q^{k}.
- The Fock module has a realization by vertex o Y. Saito, (98)
- The Fock module has a realization by Macdona $[F J M M$].

The quantum Hamiltonian corresponding to module $\mathcal{F}_{i}(z, t, k)$ is computed explicitly. The coefficient I_{s} of z^{s} is given by an $m k$-fold integral.
Example. For $m=1, I_{1}=\int_{|x|=1} F(x) \prod_{s=0}^{\infty} \bar{K}^{+}\left(p^{-s} x\right) d x / x$
(in the region $\left|q_{1}\right|<1<\left|q_{1} q^{2}\right|$ and by analytic continuation everywhere else).

The Fock module

The quantum toroidal algebra $\mathcal{E}_{m}\left(q_{1}, q\right)$ has a family of Fock representations $\mathcal{F}_{i}(z, t, k)$.

- The Fock module restricted to vertical $U_{q} \widehat{\mathfrak{g}}_{m}$ is the integrable module of level $c=1$ with highest weight Λ_{i}.
- The degree of the highest vector is t.
- The central element $q^{\sum_{i=0}^{m-1} \epsilon_{i}}$ acts by q^{k}.
- The Fock module has a realization by vertex operators, [S].
- The Fock module has a realization by Macdonald type operators, [FJMM]. The quantum Hamiltonian corresponding to module $\mathcal{F}_{i}(z, t, k)$ is computed explicitly. The coefficient I_{s} of z^{s} is given by an $m k$-fold integral.
Example. For $m=1, I_{1}=\int_{|x|=1} F(x) \prod_{s=0}^{\infty} \bar{K}^{+}\left(p^{-s} x\right) d x / x$
(in the region $\left|q_{1}\right|<1<\left|q_{1} q^{2}\right|$ and by analytic continuation everywhere else).

The Fock module

The quantum toroidal algebra $\mathcal{E}_{m}\left(q_{1}, q\right)$ has a family of Fock representations $\mathcal{F}_{i}(z, t, k)$.

- The Fock module restricted to vertical $U_{q} \widehat{\mathfrak{g}}_{m}$ is the integrable module of level $c=1$ with highest weight Λ_{i}.
- The degree of the highest vector is t.
- The central element $q^{\sum_{i=0}^{m-1} \epsilon_{i}}$ acts by q^{k}.
- The Fock module has a realization by vertex operators. IS1.
- The Fock module has a realization by Macdonald

Example. For $m=1, I_{1}=\int_{|x|=1} F(x) \prod_{s=0}^{\infty} \bar{K}^{+}\left(p^{-s} x\right) d x / x$
(in the region $\left|q_{1}\right|<1<\left|q_{1} q^{2}\right|$ and by analytic continuation everywhere else).

The Fock module

The quantum toroidal algebra $\mathcal{E}_{m}\left(q_{1}, q\right)$ has a family of Fock representations $\mathcal{F}_{i}(z, t, k)$.

- The Fock module restricted to vertical $U_{q} \widehat{\mathfrak{g}}_{m}$ is the integrable module of level $c=1$ with highest weight Λ_{i}.
- The degree of the highest vector is t.
- The central element $q^{\sum_{i=0}^{m-1} \epsilon_{i}}$ acts by q^{k}.
- The Fock module has a realization by vertex operators, [S].
- The Fock module has a realization by Macdonald type operators, [FJMM]. The quantum Hamiltonian corresponding to module $\mathcal{F}_{i}(z, t, k)$ is computed explicitly. The coefficient I_{s} of z^{s} is given by an $m k$-fold integral.
Example. For $m=1, I_{1}=\int_{|x|=1} F(x) \prod_{s=0}^{\infty} \bar{K}^{+}\left(p^{-s} x\right) d x / x$
(in the region $\left|q_{1}\right|<1<\left|q_{1} q^{2}\right|$ and by analytic continuation everywhere else).

The $U_{q} \widehat{\mathfrak{g}}_{m}-U_{q} \widehat{\mathfrak{g}}_{n}$ duality

Let $H_{i j}(x)$ be free bosons: $H_{i j}(x) H_{k l}(y) \sim \delta_{i k} \delta_{j l} /(x-y)^{2}$. Consider the vector space $V=\mathbb{C}\left[H_{i j}^{+}(x)\right]_{i=1, \ldots, m}^{j=1, \ldots, n} \otimes \mathbb{C}\left(\mathbb{Z}^{m n}\right)$.

The $U_{q} \widehat{\mathfrak{g}}_{m}-U_{q} \widehat{\mathfrak{g}}_{n}$ duality

Let $H_{i j}(x)$ be free bosons: $H_{i j}(x) H_{k l}(y) \sim \delta_{i k} \delta_{j l} /(x-y)^{2}$. Consider the vector space $V=\mathbb{C}\left[H_{i j}^{+}(x)\right]_{i=1, \ldots, m}^{j=1, \ldots, n} \otimes \mathbb{C}\left(\mathbb{Z}^{m n}\right)$. Then one can define [JF], [FJM]:

$$
U_{q} \widehat{\mathfrak{g}}_{m} \hookrightarrow\left(\begin{array}{cccc}
H_{11}^{+}(x) & H_{12}^{+}(x) & \ldots & H_{1 n}^{+}(x) \\
H_{21}^{+}(x) & H_{22}^{+}(x) & \ldots & H_{2 n}^{+}(x) \\
\ldots & \ldots & \ldots & \ldots \\
H_{m 1}^{+}(x) & H_{m 2}^{+}(x) & \ldots & H_{m n}^{+}(x)
\end{array}\right)
$$

The $U_{q} \widehat{\mathfrak{g}}_{m}-U_{q} \widehat{\mathfrak{g}}_{n}$ duality

Let $H_{i j}(x)$ be free bosons: $H_{i j}(x) H_{k l}(y) \sim \delta_{i k} \delta_{j l} /(x-y)^{2}$. Consider th~. . $\ddot{\sim}$ Then one

The $U_{q} \widehat{\mathfrak{g}}_{m}-U_{q} \widehat{\mathfrak{g}}_{n}$ duality

Let $H_{i j}(x)$ be free bosons: $H_{i j}(x) H_{k l}(y) \sim \delta_{i k} \delta_{j l} /(x-y)^{2}$. Consider the vector space $V=\mathbb{C}\left[H_{i j}^{+}(x)\right]_{i=1, \ldots, m}^{j=1, \ldots, n} \otimes \mathbb{C}\left(\mathbb{Z}^{m n}\right)$. Then one can define [JF], [FJM]:

$$
U_{q} \widehat{\mathfrak{g}}_{m} \curvearrowright\left(\begin{array}{cccc}
H_{11}^{+}(x) & H_{12}^{+}(x) & \ldots & H_{1 n}^{+}(x) \\
H_{21}^{+}(x) & H_{22}^{+}(x) & \ldots & H_{2 n}^{+}(x) \\
\ldots & \ldots & \ldots & \ldots \\
H_{m 1}^{+}(x) & H_{m 2}^{+}(x) & \ldots & H_{m n}^{+}(x)
\end{array}\right) \quad \sim U_{q} \widehat{\mathfrak{g} l}_{n}
$$

The $U_{q} \widehat{\mathfrak{g}}_{m}-U_{q} \widehat{\mathfrak{g}}_{n}$ duality

Let $H_{i j}(x)$ be free bosons: $H_{i j}(x) H_{k l}(y) \sim \delta_{i k} \delta_{j l} /(x-y)^{2}$.
Consider the vector space $V=\mathbb{C}\left[H_{i j}^{+}(x)\right]_{i=1, \ldots, m}^{j=1, \ldots, n} \otimes \mathbb{C}\left(\mathbb{Z}^{m n}\right)$. Then one can define [JF], [FJM]:

$$
\sum_{k=1}^{U_{q} \widehat{\mathfrak{g}}_{n}} \exp (\ldots)
$$

 Here $r(k)=\operatorname{res} k(\bmod m), m l(k)=k-r(k), 2 t(k)=r(k)(l(k)+1)+(m-r(k)) l(k)^{2}$, $L_{\Lambda_{r}}^{(m)}(t, k)$ is the integrable module of level 1 with degree of the highest vector t and central element $q^{\sum_{i=0}^{m-1} \epsilon_{i}}$ acting by q^{k}.

The $U_{q} \widehat{\mathfrak{g}}_{m}-U_{q} \widehat{\mathfrak{g}}_{n}$ duality

Let $H_{i j}(x)$ be free bosons: $H_{i j}(x) H_{k l}(y) \sim \delta_{i k} \delta_{j l} /(x-y)^{2}$.
Consider the vector space $V=\mathbb{C}\left[H_{i j}^{+}(x)\right]_{i=1, \ldots, m}^{j=1, \ldots, n} \otimes \mathbb{C}\left(\mathbb{Z}^{m n}\right)$. Then one can define [JF], [FJM]:

 Here $r(k)=\operatorname{res} k(\bmod m), m l(k)=k-r(k), 2 t(k)=r(k)(l(k)+1)+(m-r(k)) l(k)^{2}$, $L_{\Lambda_{r}}^{(m)}(t, k)$ is the integrable module of level 1 with degree of the highest vector t and central element $q^{\sum_{i=0}^{m-1} \epsilon_{i}}$ acting by q^{k}.

Lemma. ([FJM]) We have $\left[U_{q} \widehat{\mathfrak{g l}}_{m}, U_{q} \widehat{\mathfrak{g}}_{n}\right]=0$ in $\operatorname{End}(V)$.

The duality of integrable systems

Choose evaluation parameters

$$
U_{q} \widehat{\mathfrak{g l}}_{m} \frown\left(\begin{array}{cccc}
H_{11}^{+}(x) & H_{12}^{+}(x) & \ldots & H_{1 n}^{+}(x) \\
H_{21}^{+}(x) & H_{22}^{+}(x) & \ldots & H_{2 n}^{+}(x) \\
\ldots & \ldots & \ldots & \ldots \\
H_{m 1}^{+}(x) & H_{m 2}^{+}(x) & \ldots & H_{m n}^{+}(x)
\end{array}\right) \longleftarrow U_{q} \widehat{\mathfrak{g l}}_{n}
$$

The duality of integrable systems

Choose evaluation parameters

The duality of integrable systems

Choose evaluation parameters, choose q_{1}, q_{1}^{\vee}.

The duality of integrable systems

Choose evaluation parameters, choose q_{1}, q_{1}^{\vee}. Then one can define:

	z_{1}	z_{2}	z_{n}	$\begin{aligned} & u_{1} \curvearrowleft \mathcal{E}_{n}\left(q_{1}^{\vee}, q\right) \\ & u_{2} \\ & \ldots \\ & u_{m} \end{aligned}$	
$\mathcal{E}_{m}\left(q_{1}, q\right) \longrightarrow$	$\left(\begin{array}{c}H_{11}^{+}(x) \\ H_{2+}^{+}(x)\end{array}\right.$	$H_{12}^{+}(x)$ $H_{22}^{+}(x)$	$H_{1 n}^{+}(x)$ $H_{2}^{+}(x)$		
	$H_{21}^{+}(x)$	$H_{22}^{+}(x)$	$H_{2 n}^{+}(x)$		
	\ldots $H_{m 1}^{+}(x)$	$H_{m 2}^{+}(x)$			

The duality of integrable systems

Choose evaluation parameters, choose q_{1}, q_{1}^{\vee}. Then one can define:
\(\mathcal{E}_{m}\left(q_{1}, q\right) \leftharpoonup\left(\begin{array}{cccc}z_{1} \& z_{2} \& ··· \& z_{n}

H_{11}^{+}(x) \& H_{12}^{+}(x) \& ··· \& H_{1 n}^{+}(x)

H_{21}^{+}(x) \& H_{22}^{+}(x) \& ··· \& H_{2 n}^{+}(x)

··· \& ··· \& ··· \& ···

H_{m 1}^{+}(x) \& H_{m 2}^{+}(x) \& ··· \& H_{m n}^{+}(x)\end{array}\right)\)| |
| :---: |
| u_{1} |
| u_{2} |
| \ldots |
| u_{m} |

Lemma. As an $\mathcal{E}_{m}\left(q_{1}, q\right)$ module,

$$
\begin{aligned}
& V=\bigoplus_{k_{1}, \ldots, k_{n}=0}^{\infty} \mathcal{F}_{r\left(k_{1}\right)}^{(m)}\left(u_{1}\left(k_{1}\right), t\left(k_{1}\right), k_{1}\right) \otimes \cdots \otimes \mathcal{F}_{r\left(k_{n}\right)}^{(m)}\left(u_{n}\left(k_{n}\right), t\left(k_{n}\right), k_{n}\right) . \\
& \text { Here } u(k)=(-1)^{m}\left(q_{1} q\right)^{-k-m / 2} q u .
\end{aligned}
$$

The duality of integrable systems

Choose evaluation parameters, choose q_{1}, q_{1}^{\vee}. Then one can define:

Lemma. As an $\mathcal{E}_{m}\left(q_{1}, q\right)$ module,
$V=\bigoplus_{k_{1}, \ldots, k_{n}=0}^{\infty} \mathcal{F}_{r\left(k_{1}\right)}^{(m)}\left(u_{1}\left(k_{1}\right), t\left(k_{1}\right), k_{1}\right) \otimes \cdots \otimes \mathcal{F}_{r\left(k_{n}\right)}^{(m)}\left(u_{n}\left(k_{n}\right), t\left(k_{n}\right), k_{n}\right)$.
Here $u(k)=(-1)^{m}\left(q_{1} q\right)^{-k-m / 2} q u$.
Theorem. ([FJM]) We have $\left[\widehat{\mathcal{B}}_{m}^{p}, \widehat{\mathcal{B}}_{n}^{p^{\vee}}\right]=0$ in $\operatorname{End}(V)$ provided

$$
p_{i}=u_{i+1} / u_{i}, \quad p_{i}^{\vee}=z_{i+1} / z_{i}, \quad p_{0}=\left(q_{1}^{\vee}\right)^{n}, \quad p_{0}^{\vee}=q_{1}^{m}
$$

Conformal limit

Let $m=1, n=2$. We have $\mathcal{E}_{1}\left(q_{1}, q\right)$ and $\mathcal{E}_{2}\left(q_{1}^{\vee}, q\right)$ acting on a two boson space. Set $q=1-\epsilon / 2+o(\epsilon)$, and then

$$
\begin{aligned}
& q_{1}=1+(1-r) \epsilon+o(\epsilon), \quad z_{1} / z_{2}=1-\kappa \epsilon+o(\epsilon), \quad p_{0}=e^{\tau}(1+o(\epsilon)), \\
& q_{1}^{\vee}=e^{-\tau}(1+\epsilon+o(\epsilon)), \quad \quad p_{0}^{\vee}=1+r \epsilon+o(\epsilon), \quad p_{1}^{\vee}=1-\kappa \epsilon / 2+o(\epsilon) .
\end{aligned}
$$

The limit $\epsilon \rightarrow 0$ is called Intermediate Long Wave limit.
Further limit $\tau \rightarrow 0$ is called conformal limit.
In the conformal limit:

- one of the two bosons commutes with all operators in the theory and can be factored out;
- the current $F(x)$ of $\mathcal{E}_{1}\left(q_{1}, q\right)$ is identified to the Virasoro current $T(z)$;
- the remaining boson is identified with Virasoro Verma module of central charge $c=1-6(1-\beta)^{2} / \beta$ and highest weight $h=\left(\kappa^{2}-1\right)(1-\beta)^{2} /(4 \beta)$, where $\beta=(r-1) / r$.

Spectrum of local integrals of motion

The Virasoro algebra has an algebra of quantum Hamiltonians called local integrals of motion, [FF] also known as quantum KdV flows.
The first non-trivial local integral of motion is $I_{2}=\int: T(x)^{2}: d x / x$.
Theorem. ([FKSW], [FJM1]) The conformal limit of $\widehat{\mathcal{B}}_{1}^{p}$ coincides with the algebra of local integrals of motion.

It is known that spectrum of $\widehat{\mathcal{B}}_{1}^{p}$ is given by Bethe ansatz [FJMM1], [FJMM2]. This gives the conjecture of [L]:

Theorem. ([FJM1]) The spectrum of local integral of motion is described by the solutions of Bethe ansatz equation:

$$
\frac{t_{i}}{t_{i}-1} \frac{t_{i}-\kappa}{t_{i}-\kappa-1} \prod_{j=1}^{N} \frac{t_{i}-t_{j}-1}{t_{i}-t_{j}+1} \frac{t_{i}-t_{j}+r}{t_{i}-t_{j}-r} \frac{t_{i}-t_{j}-r+1}{t_{i}-t_{j}+r-1}=-1
$$

This is double Yangian (XXX type) Bethe ansatz equation associated to $\mathfrak{g l}_{1}$. This description is different from the one suggested in [BLZ].

Spectrum of local integrals of motion

The Virasoro algebra has an alqebra of quantum Hamiltonians called local integrals of motion B. Feigin and E. Frenkel (93) 'dV flows.
The first non-trivial
Theorem. ([FKSW], [FJM1]) The conformal limit of $\widehat{\mathcal{B}}_{1}^{p}$ coincides with the algebra of local integrals of motion.

It is known that spectrum of $\widehat{\mathcal{B}}_{1}^{p}$ is given by Bethe ansatz [FJMM1], [FJMM2]. This gives the conjecture of [L]:
Theorem. ([FJM1]) The spectrum of local integral of motion is described by the solutions of Bethe ansatz equation:

$$
\frac{t_{i}}{t_{i}-1} \frac{t_{i}-\kappa}{t_{i}-\kappa-1} \prod_{j=1}^{N} \frac{t_{i}-t_{j}-1}{t_{i}-t_{j}+1} \frac{t_{i}-t_{j}+r}{t_{i}-t_{j}-r} \frac{t_{i}-t_{j}-r+1}{t_{i}-t_{j}+r-1}=-1
$$

This is double Yangian (XXX type) Bethe ansatz equation associated to $\mathfrak{g l}_{1}$. This description is different from the one suggested in [BLZ].

Spectrum of local integrals of motion

The Virasoro algebra has an algebra of quantum Hamiltonians called local integrals of motion, [FF] also known as quantum KdV flows.
The first non-trivial local integral of motion is $I_{2}=\int: T(x)^{2}: d x / x$.
Theorem. ([FKSW], [FJM1]) The conformal limit of $\widehat{\mathcal{B}}_{1}^{p}$ coincides with the algebra of local integrals of motion.

It is known that spectrum of $\widehat{\mathcal{B}}_{1}^{p}$ is given by Bethe ansatz [FJMM1], [FJMM2]. This gives the conjecture of [L]:

Theorem. ([FJM1]) The spectrum of local integral of motion is described by the solutions of Bethe ansatz equation:

$$
\frac{t_{i}}{t_{i}-1} \frac{t_{i}-\kappa}{t_{i}-\kappa-1} \prod_{j=1}^{N} \frac{t_{i}-t_{j}-1}{t_{i}-t_{j}+1} \frac{t_{i}-t_{j}+r}{t_{i}-t_{j}-r} \frac{t_{i}-t_{j}-r+1}{t_{i}-t_{j}+r-1}=-1
$$

This is double Yangian (XXX type) Bethe ansatz equation associated to $\mathfrak{g l}_{1}$. This description is different from the one suggested in [BLZ].

Spectrum of local integrals of motion

The Virasoro algebra has an algebra of quantum Hamiltonians called local integrals of motion, [FF] also known as quantum KdV flows.
The first non-trivial local intearal of motion is $I_{2}=\int: T(x)^{2}: d x / x$.
B. Feigin, T. Kojima, J. Shiraishi, Theol and H. Watanabe (07) nal limit of $\widehat{\mathcal{B}}_{1}^{p}$ coincides with the algeb B. Feigin, M. Jimbo, and E.M. (17)
 This gives the conjecture of [L]:

Theorem. ([FJM1]) The spectrum of local integral of motion is described by the solutions of Bethe ansatz equation:

$$
\frac{t_{i}}{t_{i}-1} \frac{t_{i}-\kappa}{t_{i}-\kappa-1} \prod_{j=1}^{N} \frac{t_{i}-t_{j}-1}{t_{i}-t_{j}+1} \frac{t_{i}-t_{j}+r}{t_{i}-t_{j}-r} \frac{t_{i}-t_{j}-r+1}{t_{i}-t_{j}+r-1}=-1
$$

This is double Yangian (XXX type) Bethe ansatz equation associated to $\mathfrak{g l}_{1}$. This description is different from the one suggested in [BLZ].

Spectrum of local integrals of motion

The Virasoro algebra has an algebra of quantum Hamiltonians called local integrals of motion, [FF] also known as quantum KdV flows.
The first non-trivial local integral of motion is $I_{2}=\int: T(x)^{2}: d x / x$.
Theorem. ([FKSW], [FJM1]) The conformal limit of $\widehat{\mathcal{B}}_{1}^{p}$ coincides with the algebra of local integrals of motion.

It is known that spectrum of $\widehat{\mathcal{B}}_{1}^{p}$ is given by Bethe ansatz [FJMM1], [FJMM2]. This gives the conjecture of [L]:

Theorem. ([FJM1]) The spectrum of local integral of motion is described by the solutions of Bethe ansatz equation:

$$
\frac{t_{i}}{t_{i}-1} \frac{t_{i}-\kappa}{t_{i}-\kappa-1} \prod_{j=1}^{N} \frac{t_{i}-t_{j}-1}{t_{i}-t_{j}+1} \frac{t_{i}-t_{j}+r}{t_{i}-t_{j}-r} \frac{t_{i}-t_{j}-r+1}{t_{i}-t_{j}+r-1}=-1
$$

This is double Yangian (XXX type) Bethe ansatz equation associated to $\mathfrak{g l}_{1}$. This description is different from the one suggested in [BLZ].

Spectrum of local integrals of motion

The Virasoro algebra has an algebra of quantum Hamiltonians called local integrals of motion, [FF] also known as quantum KdV flows.
The first non-trivial local integral of motion is $I_{2}=\int: T(x)^{2}: d x / x$.
Theorem. ([FKSW], [FJM1]) The conformal limit of $\widehat{\mathcal{B}}_{1}^{p}$ coincides with the algebra of local integrals of motion.

It is known that spectrum of $\widehat{\mathcal{B}}_{1}^{p}$
B. Feigin, M. Jimbo, T. Miwa, and E.M. $(15,16)$ This gives the conjecture of [L]:

Theorem. ([FJM1]) The spectrum of local integral of motion is described by the solutions of Bethe ansatz equation:

$$
\frac{t_{i}}{t_{i}-1} \frac{t_{i}-\kappa}{t_{i}-\kappa-1} \prod_{j=1}^{N} \frac{t_{i}-t_{j}-1}{t_{i}-t_{j}+1} \frac{t_{i}-t_{j}+r}{t_{i}-t_{j}-r} \frac{t_{i}-t_{j}-r+1}{t_{i}-t_{j}+r-1}=-1
$$

This is double Yangian (XXX type) Bethe ansatz equation associated to $\mathfrak{g l}_{1}$. This description is different from the one suggested in [BLZ].

Spectrum of local integrals of motion

The Virasoro algebra has an algebra of quantum Hamiltonians called local integrals of motion, [FF] also known as quantum KdV flows.
The first non-trivial local integral of motion is $I_{2}=\int: T(x)^{2}: d x / x$.
Theorem. ([FKSW], [FJM1]) The conformal limit of $\widehat{\mathcal{B}}_{1}^{p}$ coincides with the algebra of local integrals of motion.

It is known that spectrum of $\widehat{\mathcal{B}}_{1}^{p}$ is given by Bethe ansatz [FJMM1], [FJMM2]. This gives the conjecture of [L]:

Theorem. ([FJM1]) The spectrum of local integral of motion is described by the solutions of Bethe ansatz equation:

$$
\frac{t_{i}}{t_{i}-1} \frac{t_{i}-\kappa}{t_{i}-\kappa-1} \prod_{j=1}^{N} \frac{t_{i}-t_{j}-1}{t_{i}-t_{j}+1} \frac{t_{i}-t_{j}+r}{t_{i}-t_{j}-r} \frac{t_{i}-t_{j}-r+1}{t_{i}-t_{j}+r-1}=-1
$$

This is double Yangian (XXX type) Bethe ansatz equation associated to $\mathfrak{g l}_{1}$. This description is different from the one suggested in [BLZ].

Spectrum of local integrals of motion

The Virasoro algebra has an algebra of quantum Hamiltonians called local integrals of motion, [FF] also known as quantum KdV flows.
The first non-trivial local integral of motion is $I_{2}=\int: T(x)^{2}: d x / x$.
Theorem. ([FKSW], [FJM1]) The conformal limit of $\widehat{\mathcal{B}}_{1}^{p}$ coincides with the algebra of local integrals of motion.

It is known that spectrum of $\widehat{\mathcal{R}}^{p}$ is civen hv Bethe ansatz [FJMM1], [FJMM2]. This gives the conjecture A. Litvinov (13)
Theorem. ([FJM1]) The speciruili ul iucan integral of motion is described by the solutions of Bethe ansatz equation:

$$
\frac{t_{i}}{t_{i}-1} \frac{t_{i}-\kappa}{t_{i}-\kappa-1} \prod_{j=1}^{N} \frac{t_{i}-t_{j}-1}{t_{i}-t_{j}+1} \frac{t_{i}-t_{j}+r}{t_{i}-t_{j}-r} \frac{t_{i}-t_{j}-r+1}{t_{i}-t_{j}+r-1}=-1
$$

This is double Yangian (XXX type) Bethe ansatz equation associated to $\mathfrak{g l}_{1}$. This description is different from the one suggested in [BLZ].

Spectrum of local integrals of motion

The Virasoro algebra has an algebra of quantum Hamiltonians called local integrals of motion, [FF] also known as quantum KdV flows.
The first non-trivial local integral of motion is $I_{2}=\int: T(x)^{2}: d x / x$.
Theorem. ([FKSW], [FJM1]) The conformal limit of $\widehat{\mathcal{B}}_{1}^{p}$ coincides with the algebra of local integrals of motion.

It is known that spectrum of $\widehat{\mathcal{B}}_{1}^{p}$ is given by Bethe ansatz [FJMM1], [FJMM2]. This gives the conjecture of [L]:

Theorem. ([FJM1]) The spectrum of local integral of motion is described by the solutions of Bethe ansatz equation:

$$
\frac{t_{i}}{t_{i}-1} \frac{t_{i}-\kappa}{t_{i}-\kappa-1} \prod_{j=1}^{N} \frac{t_{i}-t_{j}-1}{t_{i}-t_{j}+1} \frac{t_{i}-t_{j}+r}{t_{i}-t_{j}-r} \frac{t_{i}-t_{j}-r+1}{t_{i}-t_{j}+r-1}=-1
$$

This is double Yangian (XXX type) Bethe ansatz equation associated to $\mathfrak{g l}_{1}$. This description is different from the one suggested in [BLZ].

Spectrum of local integrals of motion

The Virasoro algebra has an algebra of quantum Hamiltonians called local integrals of motion, [FF] also known as quantum KdV flows.
The first non-trivial local integral of motion is $I_{2}=\int: T(x)^{2}: d x / x$.
Theorem. ([FKSW], [FJM1]) The conformal limit of $\widehat{\mathcal{B}}_{1}^{p}$ coincides with the algebra of local integrals of motion.

It is known that spectrum of $\widehat{\mathcal{B}}_{1}^{p}$ is given by Bethe ansatz [FJMM1], [FJMM2]. This gives the conjecture of [L]:

Theorem. ([FJM1]) The spectrum of local integral of motion is described by the solutions of Bethe ansatz equation:

$$
\frac{t_{i}}{t_{i}-1} \frac{t_{i}-\kappa}{t_{i}-\kappa-1} \prod_{j=1}^{N} \frac{t_{i}-t_{j}-1}{t_{i}-t_{j}+1} \frac{t_{i}-t_{j}+r}{t_{i}-t_{j}-r} \frac{t_{i}-t_{j}-r+1}{t_{i}-t_{j}+r-1}=-1
$$

This is double Yangian (XXX type) Bethe an؟ V. Bazhanov, S. Lukyanov, This description is different from the one sug and A. Zamolodchikov (01)

Spectrum of local integrals of motion

The Virasoro algebra has an algebra of quantum Hamiltonians called local integrals of motion, [FF] also known as quantum KdV flows.
The first non-trivial local integral of motion is $I_{2}=\int: T(x)^{2}: d x / x$.
Theorem. ([FKSW], [FJM1]) The conformal limit of $\widehat{\mathcal{B}}_{1}^{p}$ coincides with the algebra of local integrals of motion.

It is known that spectrum of $\widehat{\mathcal{B}}_{1}^{p}$ is given by Bethe ansatz [FJMM1], [FJMM2]. This gives the conjecture of [L]:

Theorem. ([FJM1]) The spectrum of local integral of motion is described by the solutions of Bethe ansatz equation:

$$
\frac{t_{i}}{t_{i}-1} \frac{t_{i}-\kappa}{t_{i}-\kappa-1} \prod_{j=1}^{N} \frac{t_{i}-t_{j}-1}{t_{i}-t_{j}+1} \frac{t_{i}-t_{j}+r}{t_{i}-t_{j}-r} \frac{t_{i}-t_{j}-r+1}{t_{i}-t_{j}+r-1}=-1
$$

This is double Yangian (XXX type) Bethe ansatz equation associated to $\mathfrak{g l}_{1}$. This description is different from the one suggested in [BLZ].

Spectrum of non-local integrals of motion

One can also define non-local integrals of motion, [BLZ1]. The non-local integrals of motion are given by integrals of products of vertex operators.

Conjecture. ([FKSW], [FJM1]) The conformal limit of $\widehat{\mathcal{B}}_{2}^{p}$ coincides with the algebra of non-local integrals of motion.
The spectrum of $\widehat{\mathcal{B}}_{2}^{p^{\vee}}$ is also given by Bethe ansatz.
Conjecture. ([FJM2]) The spectrum of non-local integrals of motion is described by the solutions of Bethe ansatz equation:

$$
\begin{array}{r}
\frac{1}{s_{i}-1}+\frac{r-\kappa-2}{s_{i}}-\sum_{k=1, k \neq i}^{N} \frac{2}{s_{i}-s_{k}}+\sum_{k=1}^{N} \frac{2}{s_{i}-t_{k}}=0, \\
\frac{\kappa-1}{t_{j}}-\sum_{k=1, k \neq j}^{N} \frac{2}{t_{j}-t_{k}}+\sum_{k=1}^{N} \frac{2}{t_{j}-s_{k}}=0 .
\end{array}
$$

These Bethe ansatz equation are Gaudin Bethe ansatz equation associated to affine $\mathfrak{s l}_{2}$.

Spectrum of non-local integrals of motion

One can also define non-local integral V. Bazhanov, S. Lukyanov, integrals of motion are given by integr: and A. Zamolodchikov (96) irs.

Conjecture. ([FKSW], [FJM1]) The corliunllan IIIIII UI D_{2} culllulues with the algebra of non-local integrals of motion.
The spectrum of $\widehat{\mathcal{B}}_{2}^{p^{\vee}}$ is also given by Bethe ansatz.
Conjecture. ([FJM2]) The spectrum of non-local integrals of motion is described by the solutions of Bethe ansatz equation:

$$
\begin{array}{r}
\frac{1}{s_{i}-1}+\frac{r-\kappa-2}{s_{i}}-\sum_{k=1, k \neq i}^{N} \frac{2}{s_{i}-s_{k}}+\sum_{k=1}^{N} \frac{2}{s_{i}-t_{k}}=0, \\
\frac{\kappa-1}{t_{j}}-\sum_{k=1, k \neq j}^{N} \frac{2}{t_{j}-t_{k}}+\sum_{k=1}^{N} \frac{2}{t_{j}-s_{k}}=0 .
\end{array}
$$

These Bethe ansatz equation are Gaudin Bethe ansatz equation associated to affine $\mathfrak{s l}_{2}$.

Spectrum of non-local integrals of motion

One can also define non-local integrals of motion, [BLZ1]. The non-local integrals of motion are given by integrals of products of vertex operators.

Conjecture. ([FKSW], [FJM1]) The conformal limit of $\widehat{\mathcal{B}}_{2}^{p}$ coincides with the algebra of non-local integrals of motion.
The spectrum of $\widehat{\mathcal{B}}_{2}^{p^{\vee}}$ is also given by Bethe ansatz.
Conjecture. ([FJM2]) The spectrum of non-local integrals of motion is described by the solutions of Bethe ansatz equation:

$$
\begin{array}{r}
\frac{1}{s_{i}-1}+\frac{r-\kappa-2}{s_{i}}-\sum_{k=1, k \neq i}^{N} \frac{2}{s_{i}-s_{k}}+\sum_{k=1}^{N} \frac{2}{s_{i}-t_{k}}=0, \\
\frac{\kappa-1}{t_{j}}-\sum_{k=1, k \neq j}^{N} \frac{2}{t_{j}-t_{k}}+\sum_{k=1}^{N} \frac{2}{t_{j}-s_{k}}=0 .
\end{array}
$$

These Bethe ansatz equation are Gaudin Bethe ansatz equation associated to affine $\mathfrak{s l}_{2}$.

Questions?

Thank you!

