Entanglement in non-local games

William Slofstra

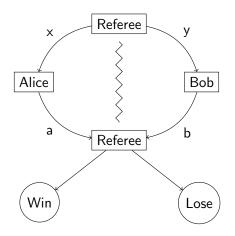
IQC, University of Waterloo

July 24th, 2018

William Slofstra

Entanglement in non-local games

Non-local games (aka Bell scenarios)



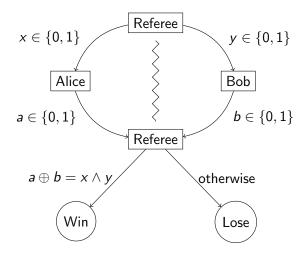
Win/lose based on outputs a, band inputs x, y

Alice and Bob must cooperate to win

Winning conditions known in advance

Complication: players cannot communicate while the game is in progress

Example: the CHSH game



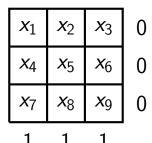
Compare with: $A_0B_0 + A_0B_1$ $+ A_1B_0 - A_1B_1$

Best classical strategy has winning probability 3/4

Best entangled strategy has winning probability ≈ 0.85 .

▶ ∢ ⊒ ▶

Example: Mermin-Peres magic square game



Alice receives either a row or column Returns binary assignment to variables in that row or column

Bob receives a variable x_i , $1 \le i \le 9$ Returns a binary assignment to that variable

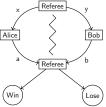
Players win if Alice's output sums to either 0 (row) or 1 (column), and Alice and Bob's output is consistent.

Best classical strategy has winning probability 26/27

Best entangled strategy has winning probability 1

Non-local games more formally

A non-local game \mathcal{G} consists of:Finite input sets: \mathcal{I}_X , \mathcal{I}_Y Finite output sets: \mathcal{O}_X , \mathcal{O}_Y A prob. distribution π on $\mathcal{I}_X \times \mathcal{I}_Y$



A function $V : \mathcal{O}_X \times \mathcal{O}_Y \times \mathcal{I}_X \times \mathcal{I}_Y \rightarrow \{0, 1\}$ (1 =win, 0=lose)

 $\omega^{c}(\mathcal{G}):=$ the optimal winning probability with a classical strategy $\omega^{q}(\mathcal{G}):=$ the optimal winning probability with a quantum strategy If $\omega^{c}(\mathcal{G}) < \omega^{q}(\mathcal{G})$, then can think of \mathcal{G} as a distributed computational task with quantum advantage

Entanglement requirements

We'd like a resource theory for non-local games

How much "entanglement" $E(\mathcal{G}, \epsilon)$ is required to attain $\omega^q(\mathcal{G}) - \epsilon$?

Possible resources: local Hilbert space dimension (Schmidt rank), von Neumann entropy, "non-locality"

Examples: E(CHSH, 0) = 2, E(MSQ, 0) = 4.

Both games are rigid, meaning that there is $\epsilon_0 > 0$ such that $E(\mathcal{G}, \epsilon) = E(\mathcal{G}, \epsilon_0)$ for all $\epsilon < \epsilon_0$.

Can we find a game \mathcal{G} and an $\epsilon \geq 0$ such that $E(\mathcal{G}, \epsilon) \geq d$?

How many questions n or answers m does G need to have to get dimension d?

Some examples (not a complete list):

- Brunner et. al., 2008: original question
- Junge-Palazuelos, 2011: m = n to get d = √n / log(n) with multiplicative gap O(d)
- Ostrev-Vidick, 2016: m = 2, $\epsilon = O(1/n^{5/2})$ to get $d = 2^{\Omega(\sqrt{n})}$
- Natarajan-Vidick, 2017: $m = \text{constant}, \epsilon = \text{constant}, d = \Omega(n)$

Key idea of Ostrev-Vidick: Game for which near-optimal strategies can be turned into approximate representations of Clifford algebra

$$\mathbb{C}\langle X_1,\ldots,X_n:X_i^2=1,X_iX_j=-X_jX_i,i\neq j\rangle.$$

Approximate representations have dimension $2^{\Omega(n)}$

More recently, we have started to find games \mathcal{G} where $E(\mathcal{G}, \epsilon) \to +\infty$ as $\epsilon \to 0$.

How fast can we make $E(\mathcal{G}, \epsilon)$ grow?

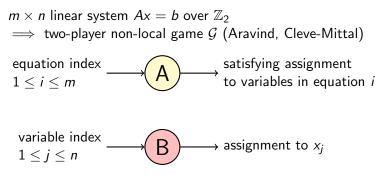
More recently, we have started to find games \mathcal{G} where $E(\mathcal{G}, \epsilon) \rightarrow +\infty$ as $\epsilon \rightarrow 0$.

How fast can we make $E(\mathcal{G}, \epsilon)$ grow?

- S-Vidick (2017): two-player game \mathcal{G} such that $\Omega(1/\epsilon^{1/6}) \leq E(\mathcal{G}, \epsilon) \leq O(1/\epsilon^{1/2}).$
- Ji-Leung-Vidick (2018): three-player game \mathcal{G} such that $2^{\Omega(1/\epsilon^c)} \leq E(\mathcal{G}, \epsilon) \leq 2^{O(1/\epsilon)}$.
- S (2018): two-player game G such that Hilbert space dimension required to get ω^q(G) ≥ 1 − ε is 2^{Ω(1/ε^c)}.
- Fitzsimons-Ji-Vidick-Yuen (2018): 15-player game G such that E(G, ε) ≥ 2^{O(1/ε^c)}.

(目) ト イ ヨ ト イ ヨ ト -

Linear system non-local games



Inputs chosen at random

Players win if Alice's output is consistent with Bob's output

Ex: Magic square is a linear system non-local game

Quantum solutions of linear systems

Non-local game G for Ax = b has perfect classical strategy if and only if Ax = b has a solution

Theorem (Cleve-Mittal, Cleve-Liu-S)

G has a perfect quantum strategy if and only if Ax = b has a finite-dimensional quantum solution

Quantum solutions of linear systems

Non-local game G for Ax = b has perfect classical strategy if and only if Ax = b has a solution

Theorem (Cleve-Mittal, Cleve-Liu-S)

G has a perfect quantum strategy if and only if Ax = b has a finite-dimensional quantum solution

Quantum solution:

Collection of unitaries $X_1, \ldots, X_n \in \mathcal{U}(\mathcal{H})$ such that

1.
$$X_j^2 = 1$$
 for all j ,
2. $\prod_{j=1}^n X_j^{A_{ij}} = (-1)^{b_i}$ for all $i = 1, ..., n$,

3. $X_j X_k = X_k X_j$ if $A_{ij}, A_{ik} \neq 0$ for some *i*.

Quantum solutions of linear systems

Non-local game G for Ax = b has perfect classical strategy if and only if Ax = b has a solution

Theorem (Cleve-Mittal, Cleve-Liu-S)

G has a perfect quantum strategy if and only if Ax = b has a finite-dimensional quantum solution if and only if $J \neq 1$ in the group $\Gamma(A, b)$

Solution group of
$$Ax = b$$

 $\Gamma(A, b) = \langle x_1, \dots, x_n, J : x_j^2 = 1 = [x_j, J] = J^2$ for all j
 $\prod_j x_j^{A_{ij}} = J^{b_i}, i = 1, \dots, m$
 $[x_j, x_k] = 1$ if $A_{ij}, A_{ik} \neq 0$, some $i \rangle$

Approximate representations

An ϵ -approximate representation of a finitely-presented group $\langle S : R \rangle$ is a homomorphism ϕ : Free $(S) \rightarrow \mathcal{U}(\mathbb{C}^n)$ such that

$$\|\phi(r) - 1\|_f \le \epsilon$$

for all $r \in R$.

Theorem (S-Vidick, Ozawa) Let Γ be a solution group of a linear system game \mathcal{G} . d-dimensional ϵ -representations \longleftrightarrow $O(\operatorname{poly}(\epsilon))$ -perfect strategies for \mathcal{G} in $\mathbb{C}^d \otimes \mathbb{C}^d$

Hyperlinear profile hlp(w, δ, ϵ): smallest dimension d such that there is a d-dimensional ϵ -representation ϕ with $\|\phi(w) - 1\|_f \ge \delta$. Conclusion: $E(\mathcal{G}, \epsilon) \simeq hlp(J, 2, \epsilon^c)$

Constructing interesting solution groups

How to find solution groups Γ where hlp $(J, 2, \epsilon)$ grows fast?

Theorem (S)

Every finitely-presented group embeds in a solution group.

If $x \in G \subseteq H$, then $hlp_G(x, \delta, \epsilon) \leq hlp_H(x, \delta, \epsilon)$ So for lower bounds on $E(\mathcal{G}, \epsilon)$, we just need to find groups with fast-growing hyperlinear profile

- S-Vidick: there is a group G and $w \in G$ with $hlp(w, 2, \epsilon) \ge 1/\epsilon^{2/3}$.
- S: there is a group G and w ∈ G with hlp(w, 2, ε) ≥ 2^{Ω(1/ε^c)}. Proof uses stability of approximate representations of Clifford algebra plus quantitative version of Higman's embedding theorem due to Birget, Ol'shanskii, Rips, Sapir

Upper bounds

Big question: is $E(\mathcal{G}, \epsilon)$ always finite for $\epsilon > 0$? Equivalent to Connes embedding problem (Fritz, JNPPSW, Ozawa)

If so, $E(\mathcal{G}, \epsilon)$ has a computable upper bound (and so does MIP^*).

- Ji-Leung-Vidick (2018): three-player game G such that $2^{\Theta(1/\epsilon^c)}) \leq E(G, \epsilon) \leq 2^{O(1/\epsilon)}$.
- S (2018): two-player game G such that Hilbert space dimension required to get ω^q(G) ≥ 1 − ε is 2^{Θ(1/ε^c)}.
- Fitzsimons-Ji-Vidick-Yuen (2018): 15-player game G such that E(G, ε) ≥ 2^{O(1/ε^c)}.

Can we beat $E(\mathcal{G}, \epsilon) \geq 2^{1/\epsilon^{c}}$?

Upper bounds

Big question: is $E(\mathcal{G}, \epsilon)$ always finite for $\epsilon > 0$? Equivalent to Connes embedding problem (Fritz, JNPPSW, Ozawa)

If so, $E(\mathcal{G}, \epsilon)$ has a computable upper bound (and so does MIP^*).

- Ji-Leung-Vidick (2018): three-player game G such that $2^{\Theta(1/\epsilon^c)}) \leq E(G, \epsilon) \leq 2^{O(1/\epsilon)}$.
- S (2018): two-player game G such that Hilbert space dimension required to get ω^q(G) ≥ 1 − ε is 2^{Θ(1/ε^c)}.
- Fitzsimons-Ji-Vidick-Yuen (2018): 15-player game G such that E(G, ε) ≥ 2^{O(1/ε^c)}.

Can we beat $E(\mathcal{G},\epsilon) \geq 2^{1/\epsilon^{c}}$?

The end!