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@ History dependent stochastic processes
memory effects, self-learning. ..
ex: ants looking for the best route nest-food

@ Lattice random Schrodinger operators
quantum diffusion for disordered materials

These subjects are connected!
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prefers to come back!



after n steps

. . wi\n
IED(Xn+1 :J|Xn =1, (Xm)mén) J( )

=1 o
IS e ejim1 wik ()

we(n) = a + #crossings of e up to time n



after n steps

. . wi\n
IED(Xn+1 :J|Xn =1, (Xm)mén) J( )

=1 o
IS e ejim1 wik ()

we(n) = a + #crossings of e up to time n

a reinforcement parameter

the first time e is crossed

> a if a1l strong reinforcement

a—a+1 . .
T ~a ifa>1 weak reinforcement



after n steps

. . wi\n
IED(Xn+1 :J|Xn =1, (Xm)mén) J( )

=1 P
IS e ejim1 wik ()

we(n) = a + #crossings of e up to time n

a reinforcement parameter

the first time e is crossed

> a if a1l strong reinforcement

a—a+1 . .
T ~a ifa>1 weak reinforcement

Generalizations
@ A any locally finite graph

@ variable initial weights ae
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Connections with
e ERRW [Sabot-Tarrs 2013]
@ hitting times for interacting Brownian motions
@ nonlinear sigma models and statistical mechanics

o random matrices [Sabot-Tarrés-Zeng 2015] [Sabot-Zeng 2015]



transience/recurrence for VRIP and ERRW as A — Z9

positive recurrence

@ at strong reinforcement: ERRW and VRJP for any d > 1
[Merkl-Rolles 2009], [D.-Spencer 2010] [Sabot-Tarrés 2013]

[Angel-Crawford-Kozma.Angel 2014]

o for any reinforcement: ERRW and VRIP in d = 1 and strips

[Merkl-Rolles 2009], [D.-Spencer 2010] [Sabot-Tarrés 2013] [D.-Merkl-Rolles 2014]

recurrence in d = 2
@ ERRW for any reinforcement, partial results for vRJP

[Merkl-Rolles 2009], [Sabot-Zeng 2015] [Bauerschmidt-Helmuth-Swan 2018]

transience in d > 3
@ at weak reinforcement: ERRW and VRJP

[D.-Spencer-Zirnbauer 2010], [D.-Sabot-Tarrés 2015]

= phase transition in d > 3
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e set up: A C Z9 finite, Hy, € CMVA
@ Hy = Hj
@ Hp random with some probability dPPA(H)
Question: limp_,74 dPpA(H) =7
spectral properties of the limit operator?

e special case: random Schrodinger Hy = —Ap + AV

[Anderson 1958 |

@ —Ap lattice Laplacian, A > 0 parameter
o V = diag({Vi}xen), V € R random vector dPA(V)

motivation: quantum mechanics, disordered conductors
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eAS>1:H~V diagonal matrix
= localized eigenfunctions insulator
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results/conjectures in d > 2
Assume V independent or short range correlated:

@ large disorder \ > 1 : exponentially localized eigenfunctions
Vd > 2

[Frohlich-Spencer 1983], [Aizenman-Molchanov 1993 | and many other results later. . .
e d = 2 exponentially localized eigenfunctions VA (conjecture)

@ d > 3 phase transition at weak disorder (conjecture)
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A special example of random Schrddinger operator: Hy () := 28 — WP

o —P = —A —2dld (off-set Laplacian) P;j = 1;_j_;
e 3 € R random vector with distribution

IAl/2 S B
Lyg)so (2)" " eW2dlN e ZJEAﬁJi(detH:V(B))% dpa

features
@ B, >0Vxas
@ short range correlations!
Ele” Zj)‘jﬁj] _ e*WZ|;_j\:1(m\/ﬁ>\j*1) Hj(m)—l
e for wired boundary conditions limy_,;4 dPA(3) exists
o Hy(B)=—A+ AV with A\ = W

Hw(B) = W(=A+ V), Vi = 26, — 2dW
E[Vi] = 2E[By] — 2dW = (2dW + 1) — 2dW = 1.
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connection between RS and VRJP

set A C Z finite

e (Z,)o>0 time changed VRIP with jump rate wj(o) = %%’(g)

Z, same recurrence/transience properties as Y;

e Z, is a mixture of Markov jump processes:

u € RN random vector

P{[] = E [P
Al [FA™ L] IP’L;\J(”)[-] MJP with rate w;j(u) = % et~

o for fixed u the generator of the MJP is
(Law ) = 5y xgos (e — F) W et
o Luw = e"Hw(B(u))e ¥ with Be(u) =2, |, oy T

dP(u) — dP(53) coordinate change!



connection between RS and VRJP

additional nice features

° ﬁ = )\ = strong/weak reinforcement = strong/weak disorder

e ground state for Hyy(3) <— recurrence/transience for VRIP

[Sabot-Zeng 2015]

@ [ short range = standard fractional moment methods for RS
a Pply [Collevecchio-Zeng 2018]

@ still a lot to explore!
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