Random matrices and history dependent stochastic processes.

Margherita DISERTORI

Bonn University & Hausdorff Center for Mathematics

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 History dependent stochastic processes memory effects, self-learning...
 ex: ants looking for the best route nest-food

• Lattice random Schrödinger operators quantum diffusion for disordered materials

These subjects are connected!

Example: linearly edge-reinforced random walk (ERRW) (Diaconis 1986) discrete time process $(X_n)_{n>0}$, $X_n \in \mathbb{Z}^d$ or $\Lambda \subset \subset \mathbb{Z}^d$

Example: linearly edge-reinforced random walk (ERRW)

(Diaconis 1986)

discrete time process $(X_n)_{n\geq 0}$, $X_n \in \mathbb{Z}^d$ or $\Lambda \subset \subset \mathbb{Z}^d$ Construction: jump only to nearest neighbors

• set
$$X_0 = i_0$$
 starting point
 $\omega_{ij}(0) = a > 0 \ \forall |i - j| = 1$ initial weights
 $\mathbb{P}(X_1 = i_1 | X_0 = i_0) = \frac{a}{2da} = \frac{1}{2d}$
 $\forall |i_0 - i_1| = 1$

Example: linearly edge-reinforced random walk (ERRW)

(Diaconis 1986)

discrete time process $(X_n)_{n\geq 0}$, $X_n \in \mathbb{Z}^d$ or $\Lambda \subset \subset \mathbb{Z}^d$ Construction: jump only to nearest neighbors

• set
$$X_0 = i_0$$
 starting point
 $\omega_{ij}(0) = a > 0 \ \forall |i - j| = 1$ initial weights
 $\mathbb{P}(X_1 = i_1 | X_0 = i_0) = \frac{a}{2da} = \frac{1}{2d}$
 $\forall |i_0 - i_1| = 1$

• update the weights
$$\omega_{ij}(1) = \begin{cases} a+1 & i_0i_1 \\ a & \text{oth.} \end{cases}$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Example: linearly edge-reinforced random walk (ERRW)

(Diaconis 1986)

discrete time process $(X_n)_{n\geq 0}$, $X_n \in \mathbb{Z}^d$ or $\Lambda \subset \subset \mathbb{Z}^d$ Construction: jump only to nearest neighbors

• set
$$X_0 = i_0$$
 starting point
 $\omega_{ij}(0) = a > 0 \ \forall |i - j| = 1$ initial weights
 $\mathbb{P}(X_1 = i_1 | X_0 = i_0) = \frac{a}{2da} = \frac{1}{2d}$
 $\forall |i_0 - i_1| = 1$

• update the weights
$$\omega_{ij}(1) = \begin{cases} a+1 & i_0i_1 \\ a & \text{oth.} \end{cases}$$

Example: linearly edge-reinforced random walk (ERRW)

(Diaconis 1986)

discrete time process $(X_n)_{n\geq 0}$, $X_n \in \mathbb{Z}^d$ or $\Lambda \subset \subset \mathbb{Z}^d$ Construction: jump only to nearest neighbors

• set
$$X_0 = i_0$$
 starting point
 $\omega_{ij}(0) = a > 0 \ \forall |i - j| = 1$ initial weights
 $\mathbb{P}(X_1 = i_1 | X_0 = i_0) = \frac{a}{2da} = \frac{1}{2d}$
 $\forall |i_0 - i_1| = 1$

• update the weights
$$\omega_{ij}(1) = \begin{cases} a+1 & i_0i_1 \\ a & \text{oth.} \end{cases}$$

• set
$$X_0 = i_0, X_1 = i_1,$$

 $\mathbb{P}(X_2 = i_0 | X_0, X_1) = \frac{a+1}{2da+1} > \frac{a}{2da+1}$
 $= \mathbb{P}(X_2 = i_2 | X_0, X_1)$
 $\forall | i_2 - i_1 | = 1, i_2 \neq i_1$

 $\begin{array}{c|c} & q & \\ & \iota_{\underline{L}} & \\ \hline & & & \\ \hline \end{array}$

prefers to come back!

after *n* steps

$$\mathbb{P}(X_{n+1}=j|X_n=i,(X_m)_{m\leq n})=\mathbf{1}_{|i-j|=1}\frac{\omega_{ij}(n)}{\sum_{k,|k-j|=1}\omega_{ik}(n)}$$

 $\omega_e(n) = a + \#$ crossings of *e* up to time *n*

after *n* steps

$$\mathbb{P}(X_{n+1}=j|X_n=i,(X_m)_{m\leq n})=\mathbf{1}_{|i-j|=1}\frac{\omega_{ij}(n)}{\sum_{k,|k-j|=1}\omega_{ik}(n)}$$

 $\omega_e(n) = a + \#$ crossings of *e* up to time *n*

a reinforcement parameter

the first time e is crossed

$$a \rightarrow a+1$$
 $\gg a$ if $a \ll 1$ strong reinforcement $\simeq a$ if $a \gg 1$ weak reinforcement

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

after *n* steps

$$\mathbb{P}(X_{n+1}=j|X_n=i,(X_m)_{m\leq n})=\mathbf{1}_{|i-j|=1}\frac{\omega_{ij}(n)}{\sum_{k,|k-j|=1}\omega_{ik}(n)}$$

 $\omega_e(n) = a + \#$ crossings of *e* up to time *n*

a reinforcement parameter

the first time e is crossed

$$a \rightarrow a+1$$
 $\gg a$ if $a \ll 1$ strong reinforcement $\simeq a$ if $a \gg 1$ weak reinforcement

Generalizations

- Λ any locally finite graph
- variable initial weights a_e

(Werner 2000, Volkov, Davis)

(Werner 2000, Volkov, Davis)

• continuous time jump process $(Y_t)_{t\geq 0}$, $Y_t\in \mathbb{Z}^d$ or $\Lambda\subset\subset \mathbb{Z}^d$

(Werner 2000, Volkov, Davis)

- continuous time jump process $(Y_t)_{t\geq 0}$, $Y_t\in \mathbb{Z}^d$ or $\Lambda\subset\subset \mathbb{Z}^d$
- conditioned on $(Y_s)_{s \leq t}$ jump from $Y_t = i$ to |j i| = 1 with rate

$$\omega_{jk}(t) = W(1+L_j(t)) \begin{cases} W > 0 & \text{initial weight} \\ L_j(t) & \text{local time at } j \end{cases}$$

(Werner 2000, Volkov, Davis)

- continuous time jump process $(Y_t)_{t\geq 0},\;Y_t\in\mathbb{Z}^d$ or $\Lambda\subset\subset\mathbb{Z}^d$
- conditioned on $(Y_s)_{s \leq t}$ jump from $Y_t = i$ to |j i| = 1 with rate

$$\omega_{jk}(t) = W(1+L_j(t)) \begin{cases} W > 0 & \text{initial weight} \\ L_j(t) & \text{local time at } j \end{cases}$$

• process prefers to come back, W plays the same role as a

(Werner 2000, Volkov, Davis)

- continuous time jump process $(Y_t)_{t\geq 0},\;Y_t\in\mathbb{Z}^d$ or $\Lambda\subset\subset\mathbb{Z}^d$
- conditioned on $(Y_s)_{s \leq t}$ jump from $Y_t = i$ to |j i| = 1 with rate

$$\omega_{jk}(t) = W(1+L_j(t)) \begin{cases} W > 0 & \text{initial weight} \\ L_j(t) & \text{local time at } j \end{cases}$$

- process prefers to come back, W plays the same role as a
- generalization to variable initial rates W_e and **random** initial rates

(Werner 2000, Volkov, Davis)

- continuous time jump process $(Y_t)_{t\geq 0}, \ Y_t\in \mathbb{Z}^d$ or $\Lambda\subset\subset \mathbb{Z}^d$
- conditioned on $(Y_s)_{s \leq t}$ jump from $Y_t = i$ to |j i| = 1 with rate

$$\omega_{jk}(t) = W(1+L_j(t)) \left\{egin{array}{cc} W>0 & ext{initial weight} \ L_j(t) & ext{local time at } j \end{array}
ight.$$

- process prefers to come back, W plays the same role as a
- generalization to variable initial rates W_e and random initial rates

Connections with

• ERRW

[Sabot-Tarrès 2013]

- hitting times for interacting Brownian motions
- nonlinear sigma models and statistical mechanics
- random matrices

[Sabot-Tarrès-Zeng 2015] [Sabot-Zeng 2015]

transience/recurrence for VRJP and ERRW as $\Lambda \to \mathbb{Z}^d$

positive recurrence

• at strong reinforcement: ERRW and VRJP for any $d \ge 1$

[Merkl-Rolles 2009], [D.-Spencer 2010] [Sabot-Tarrès 2013]

[Angel-Crawford-Kozma.Angel 2014]

• for any reinforcement: ERRW and VRJP in d = 1 and strips

[Merkl-Rolles 2009], [D.-Spencer 2010] [Sabot-Tarrès 2013] [D.-Merkl-Rolles 2014]

recurrence in d = 2

• ERRW for any reinforcement, partial results for VRJP

[Merkl-Rolles 2009], [Sabot-Zeng 2015] [Bauerschmidt-Helmuth-Swan 2018]

transience in $d \ge 3$

at weak reinforcement: ERRW and VRJP

[D.-Spencer-Zirnbauer 2010], [D.-Sabot-Tarrès 2015]

 \Rightarrow phase transition in $d \ge 3$

Random matrices

Random matrices

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- set up: $\Lambda \subset \mathbb{Z}^d$ finite, $H_{\Lambda} \in \mathbb{C}^{\Lambda \times \Lambda}$
 - $H^*_{\Lambda} = H_{\Lambda}$

• H_{Λ} random with some probability $d\mathbb{P}_{\Lambda}(H)$

Question: $\lim_{\Lambda \to \mathbb{Z}^d} d\mathbb{P}_{\Lambda}(H) =$? spectral properties of the limit operator?

Random matrices

- set up: $\Lambda \subset \mathbb{Z}^d$ finite, $H_{\Lambda} \in \mathbb{C}^{\Lambda \times \Lambda}$
 - $H^*_{\Lambda} = H_{\Lambda}$

• H_{Λ} random with some probability $d\mathbb{P}_{\Lambda}(H)$

Question: $\lim_{\Lambda \to \mathbb{Z}^d} d\mathbb{P}_{\Lambda}(H) =$? spectral properties of the limit operator?

• special case: random Schrödinger $H_{\Lambda} = -\Delta_{\Lambda} + \lambda \hat{V}$

[Anderson 1958]

- $-\Delta_{\Lambda}$ lattice Laplacian, $\lambda > 0$ parameter
- $\hat{V} = \operatorname{diag}(\{V_x\}_{x \in \Lambda}), \ V \in \mathbb{R}^{\Lambda}$ random vector $d\mathbb{P}_{\Lambda}(V)$

motivation: quantum mechanics, disordered conductors

random Schrödinger $H_{\Lambda} = -\Delta_{\Lambda} + \lambda \hat{V}$

two limit cases:

- $\lambda = 0 : H = -\Delta : l^2(\mathbb{Z}^d) \to l^2(\mathbb{Z}^d)$ extended states: *H* has only generalized eigenfunctions $\psi_{\lambda(k)}(x) = e^{ik \cdot x} \notin l^2(\mathbb{Z}^d)$ conductor
- $\lambda \gg 1$: $H \simeq \hat{V}$ diagonal matrix \Rightarrow localized eigenfunctions

insulator

random Schrödinger $H_{\Lambda} = -\Delta_{\Lambda} + \lambda \hat{V}$

two limit cases:

- $\lambda = 0 : H = -\Delta : l^2(\mathbb{Z}^d) \to l^2(\mathbb{Z}^d)$ extended states: *H* has only generalized eigenfunctions $\psi_{\lambda(k)}(x) = e^{ik \cdot x} \notin l^2(\mathbb{Z}^d)$ conductor
- $\lambda \gg 1$: $H \simeq \hat{V}$ diagonal matrix \Rightarrow localized eigenfunctions

insulator

results/conjectures in $d \ge 2$

Assume V independent or short range correlated:

• large disorder $\lambda \gg 1$: exponentially localized eigenfunctions $\forall d \geq 2$

[Fröhlich-Spencer 1983], [Aizenman-Molchanov 1993] and many other results later. . .

- d = 2 exponentially localized eigenfunctions $\forall \lambda$ (conjecture)
- $d \ge 3$ phase transition at weak disorder (conjecture)

- $-P = -\Delta 2d$ Id (off-set Laplacian) $P_{ij} = \mathbf{1}_{|i-j|=1}$
- $\beta \in \mathbb{R}^{\Lambda}$ random vector with distribution $\mathbf{1}_{H(\beta)>0} \left(\frac{2}{\pi}\right)^{|\Lambda|/2} e^{W2d|\Lambda|} e^{-\sum_{j\in\Lambda} \beta_j} \frac{1}{\left(\det H_W(\beta)\right)^{\frac{1}{2}}} d\beta_{\Lambda}$

- $-P = -\Delta 2d$ Id (off-set Laplacian) $P_{ij} = \mathbf{1}_{|i-j|=1}$
- $\beta \in \mathbb{R}^{\Lambda}$ random vector with distribution $\mathbf{1}_{H(\beta)>0} \left(\frac{2}{\pi}\right)^{|\Lambda|/2} e^{W2d|\Lambda|} e^{-\sum_{j\in\Lambda} \beta_j} \frac{1}{\left(\det H_W(\beta)\right)^{\frac{1}{2}}} d\beta_{\Lambda}$

features

• $\beta_x > 0 \ \forall x \text{ a.s}$

- $-P = -\Delta 2d$ Id (off-set Laplacian) $P_{ij} = \mathbf{1}_{|i-j|=1}$
- $\beta \in \mathbb{R}^{\Lambda}$ random vector with distribution $\mathbf{1}_{H(\beta)>0} \left(\frac{2}{\pi}\right)^{|\Lambda|/2} e^{W2d|\Lambda|} e^{-\sum_{j\in\Lambda} \beta_j} \frac{1}{\left(\det H_W(\beta)\right)^{\frac{1}{2}}} d\beta_{\Lambda}$

features

- $\beta_x > 0 \ \forall x \text{ a.s}$
- short range correlations! $\mathbb{E}[e^{-\sum_{j}\lambda_{j}\beta_{j}}] = e^{-W\sum_{|i-j|=1}(\sqrt{1+\lambda_{i}}\sqrt{1+\lambda_{j}}-1)}\prod_{j}(\sqrt{1+\lambda_{j}})^{-1}$

- $-P = -\Delta 2d$ Id (off-set Laplacian) $P_{ij} = \mathbf{1}_{|i-j|=1}$
- $\beta \in \mathbb{R}^{\Lambda}$ random vector with distribution $\mathbf{1}_{H(\beta)>0} \left(\frac{2}{\pi}\right)^{|\Lambda|/2} e^{W2d|\Lambda|} e^{-\sum_{j\in\Lambda} \beta_j} \frac{1}{\left(\det H_W(\beta)\right)^{\frac{1}{2}}} d\beta_{\Lambda}$

features

- $\beta_x > 0 \ \forall x \text{ a.s}$
- short range correlations! $\mathbb{E}[e^{-\sum_{j}\lambda_{j}\beta_{j}}] = e^{-W\sum_{|i-j|=1}(\sqrt{1+\lambda_{i}}\sqrt{1+\lambda_{j}}-1)}\prod_{j}(\sqrt{1+\lambda_{j}})^{-1}$

• for wired boundary conditions $\lim_{\Lambda \to \mathbb{Z}^d} d\mathbb{P}_{\Lambda}(\beta)$ exists

- $-P = -\Delta 2d$ Id (off-set Laplacian) $P_{ij} = \mathbf{1}_{|i-j|=1}$
- $\beta \in \mathbb{R}^{\Lambda}$ random vector with distribution $\mathbf{1}_{H(\beta)>0} \left(\frac{2}{\pi}\right)^{|\Lambda|/2} e^{W2d|\Lambda|} e^{-\sum_{j\in\Lambda} \beta_j} \frac{1}{\left(\det H_W(\beta)\right)^{\frac{1}{2}}} d\beta_{\Lambda}$

features

- $\beta_x > 0 \ \forall x \text{ a.s}$
- short range correlations! $\mathbb{E}[e^{-\sum_{j}\lambda_{j}\beta_{j}}] = e^{-W\sum_{|i-j|=1}(\sqrt{1+\lambda_{i}}\sqrt{1+\lambda_{j}}-1)}\prod_{j}(\sqrt{1+\lambda_{j}})^{-1}$
- for wired boundary conditions $\lim_{\Lambda \to \mathbb{Z}^d} d\mathbb{P}_{\Lambda}(\beta)$ exists
- $H_W(\beta) \equiv -\Delta + \lambda \hat{V}$ with $\lambda = \frac{1}{W}$:

$$egin{aligned} \mathcal{H}_W(eta) &= \mathcal{W}(-\Delta + rac{1}{W}\hat{V}), & \mathcal{V}_x &= 2eta_x - 2d\mathcal{W} \ \mathbb{E}[\mathcal{V}_x] &= 2\mathbb{E}[eta_x] - 2d\mathcal{W} &= (2d\mathcal{W}+1) - 2d\mathcal{W} = 1. \end{aligned}$$

connection between RS and VRJP

set $\Lambda \subset \mathbb{Z}^d$ finite

connection between RS and $\ensuremath{\mathsf{VRJP}}$

set $\Lambda \subset \mathbb{Z}^d$ finite

• $(Z_{\sigma})_{\sigma \geq 0}$ time changed VRJP with jump rate $\omega_{ij}(\sigma) = \frac{W}{2} \frac{\sqrt{1+T_j(\sigma)}}{\sqrt{1+T_i(\sigma)}}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 Z_{σ} same recurrence/transience properties as Y_t

connection between RS and VRJP

set $\Lambda \subset \mathbb{Z}^d$ finite

• $(Z_{\sigma})_{\sigma \geq 0}$ time changed VRJP with jump rate $\omega_{ij}(\sigma) = \frac{W}{2} \frac{\sqrt{1+T_i(\sigma)}}{\sqrt{1+T_i(\sigma)}}$

 Z_{σ} same recurrence/transience properties as Y_t

• Z_{σ} is a mixture of Markov jump processes:

$$\mathbb{P}^{Z}_{\Lambda}[\cdot] = \mathbb{E}_{u}[\mathbb{P}^{\omega(u)}_{\Lambda}[\cdot]] \qquad \begin{array}{l} u \in \mathbb{R}^{\Lambda} \text{ random vector} \\ \mathbb{P}^{\omega(u)}_{\Lambda}[\cdot] \text{ MJP with rate } \omega_{ij}(u) = \frac{W}{2}e^{u_{j}-u_{i}} \end{array}$$

connection between RS and VRJP

set $\Lambda \subset \mathbb{Z}^d$ finite

• $(Z_{\sigma})_{\sigma \geq 0}$ time changed VRJP with jump rate $\omega_{ij}(\sigma) = \frac{W}{2} \frac{\sqrt{1+T_j(\sigma)}}{\sqrt{1+T_j(\sigma)}}$

 Z_{σ} same recurrence/transience properties as Y_t

• Z_{σ} is a mixture of Markov jump processes:

 $\mathbb{P}^{Z}_{\Lambda}[\cdot] = \mathbb{E}_{u}[\mathbb{P}^{\omega(u)}_{\Lambda}[\cdot]] \qquad \begin{array}{l} u \in \mathbb{R}^{\Lambda} \text{ random vector} \\ \mathbb{P}^{\omega(u)}_{\Lambda}[\cdot] \text{ MJP with rate } \omega_{ij}(u) = \frac{W}{2}e^{u_{j}-u_{i}} \end{array}$

• for fixed *u* the generator of the MJP is

$$(\mathcal{L}_{u,W}f)(x) = \sum_{y,|y-x|=1} (f_x - f_y) W e^{u_y - u_x}$$

connection between RS and VRJP

set $\Lambda \subset \mathbb{Z}^d$ finite

• $(Z_{\sigma})_{\sigma \geq 0}$ time changed VRJP with jump rate $\omega_{ij}(\sigma) = \frac{W}{2} \frac{\sqrt{1+T_j(\sigma)}}{\sqrt{1+T_j(\sigma)}}$

 Z_{σ} same recurrence/transience properties as Y_t

• Z_{σ} is a mixture of Markov jump processes:

 $\mathbb{P}^{Z}_{\Lambda}[\cdot] = \mathbb{E}_{u}[\mathbb{P}^{\omega(u)}_{\Lambda}[\cdot]] \qquad \begin{array}{l} u \in \mathbb{R}^{\Lambda} \text{ random vector} \\ \mathbb{P}^{\omega(u)}_{\Lambda}[\cdot] \text{ MJP with rate } \omega_{ij}(u) = \frac{W}{2}e^{u_{j}-u_{i}} \end{array}$

• for fixed *u* the generator of the MJP is

$$(\mathcal{L}_{u,W}f)(x) = \sum_{y,|y-x|=1} (f_x - f_y) W e^{u_y - u_x}$$

• $\mathcal{L}_{u,W} = e^{\hat{u}} H_W(\beta(u)) e^{-\hat{u}}$ with $\beta_x(u) = \sum_{y,|y-x|=1} \frac{W}{2} e^{u_y - u_x}$

 $d\mathbb{P}(u) \rightarrow d\mathbb{P}(\beta)$ coordinate change!

additional nice features

- $\frac{1}{W} = \lambda \Rightarrow \text{strong/weak reinforcement} \equiv \text{strong/weak disorder}$
- ground state for $H_W(\beta) \longleftrightarrow$ recurrence/transience for VRJP [Sabot-Zeng 2015]
- β short range \Rightarrow standard fractional moment methods for RS apply [Collevecchio-Zeng 2018]

still a lot to explore!

THANK YOU