Random matrices and history dependent stochastic processes.

Margherita DISERTORI

Bonn University \& Hausdorff Center for Mathematics

- History dependent stochastic processes
memory effects, self-learning. . .
ex: ants looking for the best route nest-food
- Lattice random Schrödinger operators
quantum diffusion for disordered materials

These subjects are connected!

History dependent stochastic processes

Example: linearly edge-reinforced random walk (ERRW) (Diaconis 1986)

 discrete time process $\left(X_{n}\right)_{n \geq 0}, X_{n} \in \mathbb{Z}^{d}$ or $\Lambda \subset \subset \mathbb{Z}^{d}$
History dependent stochastic processes

Example: linearly edge-reinforced random walk (ERRW) (Diaconis 1986)

 discrete time process $\left(X_{n}\right)_{n \geq 0}, X_{n} \in \mathbb{Z}^{d}$ or $\Lambda \subset \subset \mathbb{Z}^{d}$Construction: jump only to nearest neighbors

- set $X_{0}=i_{0}$ starting point $\omega_{i j}(0)=a>0 \forall|i-j|=1$ initial weights
$\mathbb{P}\left(X_{1}=i_{1} \mid X_{0}=i_{0}\right)=\frac{a}{2 d a}=\frac{1}{2 d}$
$\forall\left|i_{0}-i_{1}\right|=1$

History dependent stochastic processes

Example: linearly edge-reinforced random walk (ERRW) ${ }_{\text {(Diaconis 1986) }}$

 discrete time process $\left(X_{n}\right)_{n \geq 0}, X_{n} \in \mathbb{Z}^{d}$ or $\Lambda \subset \subset \mathbb{Z}^{d}$Construction: jump only to nearest neighbors

- set $X_{0}=i_{0}$ starting point $\omega_{i j}(0)=a>0 \forall|i-j|=1$ initial weights
$\mathbb{P}\left(X_{1}=i_{1} \mid X_{0}=i_{0}\right)=\frac{a}{2 d a}=\frac{1}{2 d}$
$\forall\left|i_{0}-i_{1}\right|=1$
- update the weights $\omega_{i j}(1)= \begin{cases}a+1 & i_{0} i_{1} \\ a & \text { oth. }\end{cases}$

History dependent stochastic processes

Example: linearly edge-reinforced random walk (ERRW) (Diaconis 1986) discrete time process $\left(X_{n}\right)_{n \geq 0}, X_{n} \in \mathbb{Z}^{d}$ or $\Lambda \subset \subset \mathbb{Z}^{d}$
Construction: jump only to nearest neighbors

- set $X_{0}=i_{0}$ starting point $\omega_{i j}(0)=a>0 \forall|i-j|=1$ initial weights
$\mathbb{P}\left(X_{1}=i_{1} \mid X_{0}=i_{0}\right)=\frac{a}{2 d a}=\frac{1}{2 d}$
$\forall\left|i_{0}-i_{1}\right|=1$
- update the weights $\omega_{i j}(1)= \begin{cases}a+1 & i_{0} i_{1} \\ a & \text { oth. }\end{cases}$
- set $X_{0}=i_{0}, X_{1}=i_{1}$,
$\mathbb{P}\left(X_{2}=i_{0} \mid X_{0}, X_{1}\right)=\frac{a+1}{2 d a+1}>\frac{a}{2 d a+1}$
$=\mathbb{P}\left(X_{2}=i_{2} \mid X_{0}, X_{1}\right)$
$\forall\left|i_{2}-i_{1}\right|=1, i_{2} \neq i_{1}$

History dependent stochastic processes

Example: linearly edge-reinforced random walk (ERRW) (Diaconis 1986) discrete time process $\left(X_{n}\right)_{n \geq 0}, X_{n} \in \mathbb{Z}^{d}$ or $\Lambda \subset \subset \mathbb{Z}^{d}$
Construction: jump only to nearest neighbors

- set $X_{0}=i_{0}$ starting point $\omega_{i j}(0)=a>0 \forall|i-j|=1$ initial weights
$\mathbb{P}\left(X_{1}=i_{1} \mid X_{0}=i_{0}\right)=\frac{a}{2 d a}=\frac{1}{2 d}$
$\forall\left|i_{0}-i_{1}\right|=1$
- update the weights $\omega_{i j}(1)= \begin{cases}a+1 & i_{0} i_{1} \\ a & \text { oth. }\end{cases}$
- set $X_{0}=i_{0}, X_{1}=i_{1}$,
$\mathbb{P}\left(X_{2}=i_{0} \mid X_{0}, X_{1}\right)=\frac{a+1}{2 d a+1}>\frac{a}{2 d a+1}$
$=\mathbb{P}\left(X_{2}=i_{2} \mid X_{0}, X_{1}\right)$
$\forall\left|i_{2}-i_{1}\right|=1, i_{2} \neq i_{1}$
prefers to come back!

after n steps

$$
\mathbb{P}\left(X_{n+1}=j \mid X_{n}=i,\left(X_{m}\right)_{m \leq n}\right)=\mathbf{1}_{|i-j|=1} \frac{\omega_{i j}(n)}{\sum_{k,|k-j|=1} \omega_{i k}(n)}
$$

$$
\omega_{e}(n)=a+\# \text { crossings of } e \text { up to time } n
$$

after n steps

$$
\mathbb{P}\left(X_{n+1}=j \mid X_{n}=i,\left(X_{m}\right)_{m \leq n}\right)=\mathbf{1}_{|i-j|=1} \frac{\omega_{i j}(n)}{\sum_{k,|k-j|=1} \omega_{i k}(n)}
$$

$$
\omega_{e}(n)=a+\# \text { crossings of } e \text { up to time } n
$$

a reinforcement parameter the first time e is crossed

$$
\begin{aligned}
a \rightarrow a+1 & >a \text { if } a \ll 1 \text { strong reinforcement } \\
& \simeq a \text { if } a \gg 1
\end{aligned}
$$

after n steps

$$
\mathbb{P}\left(X_{n+1}=j \mid X_{n}=i,\left(X_{m}\right)_{m \leq n}\right)=\mathbf{1}_{|i-j|=1} \frac{\omega_{i j}(n)}{\sum_{k,|k-j|=1} \omega_{i k}(n)}
$$

$$
\omega_{e}(n)=a+\# \text { crossings of } e \text { up to time } n
$$

a reinforcement parameter the first time e is crossed

$$
\begin{aligned}
a \rightarrow a+1 & \gg a \\
& \simeq a \text { if } a \ll 1 \text { strong reinforcement } \\
& \text { if }
\end{aligned}
$$

Generalizations

- Λ any locally finite graph
- variable initial weights a_{e}

Vertex-reinforced jump process (VRJP)

(Werner 2000, Volkov, Davis)

Vertex-reinforced jump process (VRJP)

(Werner 2000, Volkov, Davis)

- continuous time jump process $\left(Y_{t}\right)_{t \geq 0}, Y_{t} \in \mathbb{Z}^{d}$ or $\Lambda \subset \subset \mathbb{Z}^{d}$

Vertex-reinforced jump process (VRJP)

(Werner 2000, Volkov, Davis)

- continuous time jump process $\left(Y_{t}\right)_{t \geq 0}, Y_{t} \in \mathbb{Z}^{d}$ or $\Lambda \subset \subset \mathbb{Z}^{d}$
- conditioned on $\left(Y_{s}\right)_{s \leq t}$ jump from $Y_{t}=i$ to $|j-i|=1$ with rate

$$
\omega_{j k}(t)=w\left(1+L_{j}(t)\right) \begin{cases}W>0 & \text { initial weight } \\ L_{j}(t) & \text { local time at } j\end{cases}
$$

Vertex-reinforced jump process (VRJP)

(Werner 2000, Volkov, Davis)

- continuous time jump process $\left(Y_{t}\right)_{t \geq 0}, Y_{t} \in \mathbb{Z}^{d}$ or $\Lambda \subset \subset \mathbb{Z}^{d}$
- conditioned on $\left(Y_{s}\right)_{s \leq t}$ jump from $Y_{t}=i$ to $|j-i|=1$ with rate

$$
\omega_{j k}(t)=w\left(1+L_{j}(t)\right) \begin{cases}W>0 & \text { initial weight } \\ L_{j}(t) & \text { local time at } j\end{cases}
$$

- process prefers to come back, W plays the same role as a

Vertex-reinforced jump process (VRJP)

- continuous time jump process $\left(Y_{t}\right)_{t \geq 0}, Y_{t} \in \mathbb{Z}^{d}$ or $\Lambda \subset \subset \mathbb{Z}^{d}$
- conditioned on $\left(Y_{s}\right)_{s \leq t}$ jump from $Y_{t}=i$ to $|j-i|=1$ with rate

$$
\omega_{j k}(t)=w\left(1+L_{j}(t)\right) \begin{cases}w>0 & \text { initial weight } \\ L_{j}(t) & \text { local time at } j\end{cases}
$$

- process prefers to come back, W plays the same role as a
- generalization to variable initial rates W_{e} and random initial rates

Vertex-reinforced jump process (VRJP)

(Werner 2000, Volkov, Davis)

- continuous time jump process $\left(Y_{t}\right)_{t \geq 0}, Y_{t} \in \mathbb{Z}^{d}$ or $\Lambda \subset \subset \mathbb{Z}^{d}$
- conditioned on $\left(Y_{s}\right)_{s \leq t}$ jump from $Y_{t}=i$ to $|j-i|=1$ with rate

$$
\omega_{j k}(t)=w\left(1+L_{j}(t)\right) \begin{cases}W>0 & \text { initial weight } \\ L_{j}(t) & \text { local time at } j\end{cases}
$$

- process prefers to come back, W plays the same role as a
- generalization to variable initial rates W_{e} and random initial rates

Connections with

- ERRW
[Sabot-Tarrès 2013]
- hitting times for interacting Brownian motions
- nonlinear sigma models and statistical mechanics
- random matrices
transience/recurrence for VRJP and ERRW as $\Lambda \rightarrow \mathbb{Z}^{d}$
positive recurrence
- at strong reinforcement: ERRW and VRJP for any $d \geq 1$
[Merkl-Rolles 2009], [D.-Spencer 2010] [Sabot-Tarrès 2013]
[Angel-Crawford-Kozma.Angel 2014]
- for any reinforcement: ERRW and VRJP in $d=1$ and strips
[Merkl-Rolles 2009], [D.-Spencer 2010] [Sabot-Tarrès 2013] [D.-Merkl-Rolles 2014]
recurrence in $d=2$
- ERRW for any reinforcement, partial results for VRJP
[Merkl-Rolles 2009], [Sabot-Zeng 2015] [Bauerschmidt-Helmuth-Swan 2018]
transience in $d \geq 3$
- at weak reinforcement: ERRW and VRJP
[D.-Spencer-Zirnbauer 2010], [D.-Sabot-Tarrès 2015]
\Rightarrow phase transition in $d \geq 3$

Random matrices

Random matrices

- set up: $\Lambda \subset \mathbb{Z}^{d}$ finite, $H_{\Lambda} \in \mathbb{C}^{\Lambda \times \Lambda}$
- $H_{\Lambda}^{*}=H_{\Lambda}$
- H_{Λ} random with some probability $d \mathbb{P}_{\wedge}(H)$

Question: $\lim _{\Lambda \rightarrow \mathbb{Z}^{d}} d \mathbb{P}_{\Lambda}(H)=$?
spectral properties of the limit operator?

Random matrices

- set up: $\Lambda \subset \mathbb{Z}^{d}$ finite, $H_{\Lambda} \in \mathbb{C}^{\Lambda \times \Lambda}$
- $H_{\Lambda}^{*}=H_{\Lambda}$
- H_{\wedge} random with some probability $d \mathbb{P}_{\wedge}(H)$

Question: $\lim _{\Lambda \rightarrow \mathbb{Z}^{d}} d \mathbb{P}_{\Lambda}(H)=$?
spectral properties of the limit operator?

- special case: random Schrödinger $H_{\Lambda}=-\Delta_{\Lambda}+\lambda \hat{V}$
- $-\Delta_{\Lambda}$ lattice Laplacian, $\lambda>0$ parameter
- $\hat{V}=\operatorname{diag}\left(\left\{V_{x}\right\}_{x \in \Lambda}\right), V \in \mathbb{R}^{\wedge}$ random vector $d \mathbb{P}_{\Lambda}(V)$
motivation: quantum mechanics, disordered conductors

random Schrödinger $H_{\Lambda}=-\Delta_{\Lambda}+\lambda \hat{V}$

two limit cases:

- $\lambda=0: H=-\Delta: I^{2}\left(\mathbb{Z}^{d}\right) \rightarrow I^{2}\left(\mathbb{Z}^{d}\right)$
extended states: H has only generalized eigenfunctions

$$
\psi_{\lambda(k)}(x)=e^{i k \cdot x} \notin I^{2}\left(\mathbb{Z}^{d}\right)
$$

conductor

- $\lambda \gg 1: H \simeq \hat{V}$ diagonal matrix
\Rightarrow localized eigenfunctions

$$
\text { random Schrödinger } H_{\Lambda}=-\Delta_{\Lambda}+\lambda \hat{V}
$$

two limit cases:

- $\lambda=0: H=-\Delta: I^{2}\left(\mathbb{Z}^{d}\right) \rightarrow I^{2}\left(\mathbb{Z}^{d}\right)$
extended states: H has only generalized eigenfunctions $\psi_{\lambda(k)}(x)=e^{i k \cdot x} \notin I^{2}\left(\mathbb{Z}^{d}\right)$
conductor
- $\lambda \gg 1: H \simeq \hat{V}$ diagonal matrix
\Rightarrow localized eigenfunctions
insulator
results/conjectures in $d \geq 2$
Assume V independent or short range correlated:
- large disorder $\lambda \gg 1$: exponentially localized eigenfunctions $\forall d \geq 2$
[Fröhlich-Spencer 1983], [Aizenman-Molchanov 1993] and many other results later
- $d=2$ exponentially localized eigenfunctions $\forall \lambda$ (conjecture)
- $d \geq 3$ phase transition at weak disorder (conjecture)

A special example of random Schrödinger operator: $H_{W}(\beta):=2 \hat{\beta}-W P$

- $-P=-\Delta-2 d$ Id (off-set Laplacian) $P_{i j}=\mathbf{1}_{|i-j|=1}$
- $\beta \in \mathbb{R}^{\wedge}$ random vector with distribution

$$
\mathbf{1}_{H(\beta)>0}\left(\frac{2}{\pi}\right)^{|\Lambda| / 2} e^{W 2 d|\Lambda|} e^{-\sum_{j \in \Lambda} \beta_{j}} \frac{1}{\left(\operatorname{det} H_{W}(\beta)\right)^{\frac{1}{2}}} d \beta_{\Lambda}
$$

A special example of random Schrödinger operator: $H_{W}(\beta):=2 \hat{\beta}-W P$

- $-P=-\Delta-2 d$ Id (off-set Laplacian) $P_{i j}=\mathbf{1}_{|i-j|=1}$
- $\beta \in \mathbb{R}^{\wedge}$ random vector with distribution

$$
\mathbf{1}_{H(\beta)>0}\left(\frac{2}{\pi}\right)^{|\Lambda| / 2} e^{W 2 d|\Lambda|} e^{-\sum_{j \in \Lambda} \beta_{j}} \frac{1}{\left(\operatorname{det} H_{W}(\beta)\right)^{\frac{1}{2}}} d \beta_{\Lambda}
$$

features

- $\beta_{x}>0 \forall x$ a.s

A special example of random Schrödinger operator: $H_{W}(\beta):=2 \hat{\beta}-W P$

- $-P=-\Delta-2 d$ Id (off-set Laplacian) $P_{i j}=\mathbf{1}_{|i-j|=1}$
- $\beta \in \mathbb{R}^{\wedge}$ random vector with distribution

$$
\mathbf{1}_{H(\beta)>0}\left(\frac{2}{\pi}\right)^{|\Lambda| / 2} e^{W 2 d|\Lambda|} e^{-\sum_{j \in \Lambda} \beta_{j}} \frac{1}{\left(\operatorname{det} H_{W}(\beta)\right)^{\frac{1}{2}}} d \beta_{\Lambda}
$$

features

- $\beta_{x}>0 \forall x$ a.s
- short range correlations!

$$
\mathbb{E}\left[e^{-\sum_{j} \lambda_{j} \beta_{j}}\right]=e^{-W \sum_{|i-j|=1}\left(\sqrt{1+\lambda_{i}} \sqrt{1+\lambda_{j}}-1\right)} \prod_{j}\left(\sqrt{1+\lambda_{j}}\right)^{-1}
$$

A special example of random Schrödinger operator: $H_{W}(\beta):=2 \hat{\beta}-W P$

- $-P=-\Delta-2 d$ Id (off-set Laplacian) $P_{i j}=\mathbf{1}_{|i-j|=1}$
- $\beta \in \mathbb{R}^{\wedge}$ random vector with distribution

$$
\mathbf{1}_{H(\beta)>0}\left(\frac{2}{\pi}\right)^{|\Lambda| / 2} e^{W 2 d|\Lambda|} e^{-\sum_{j \in \Lambda} \beta_{j}} \frac{1}{\left(\operatorname{det} H_{W}(\beta)\right)^{\frac{1}{2}}} d \beta_{\Lambda}
$$

features

- $\beta_{x}>0 \forall x$ a.s
- short range correlations!

$$
\mathbb{E}\left[e^{-\sum_{j} \lambda_{j} \beta_{j}}\right]=e^{-W \sum_{|i-j|=1}\left(\sqrt{1+\lambda_{i}} \sqrt{1+\lambda_{j}}-1\right)} \prod_{j}\left(\sqrt{1+\lambda_{j}}\right)^{-1}
$$

- for wired boundary conditions $\lim _{\Lambda \rightarrow \mathbb{Z}^{d}} d \mathbb{P}_{\Lambda}(\beta)$ exists

A special example of random Schrödinger operator: $H_{W}(\beta):=2 \hat{\beta}-W P$

- $-P=-\Delta-2 d$ Id (off-set Laplacian) $P_{i j}=\mathbf{1}_{|i-j|=1}$
- $\beta \in \mathbb{R}^{\wedge}$ random vector with distribution

$$
\mathbf{1}_{H(\beta)>0}\left(\frac{2}{\pi}\right)^{|\Lambda| / 2} e^{W 2 d|\Lambda|} e^{-\sum_{j \in \Lambda} \beta_{j}} \frac{1}{\left(\operatorname{det} H_{W}(\beta)\right)^{\frac{1}{2}}} d \beta_{\Lambda}
$$

features

- $\beta_{x}>0 \forall x$ a.s
- short range correlations!

$$
\mathbb{E}\left[e^{-\sum_{j} \lambda_{j} \beta_{j}}\right]=e^{-W \sum_{|i-j|=1}\left(\sqrt{1+\lambda_{i}} \sqrt{1+\lambda_{j}}-1\right)} \prod_{j}\left(\sqrt{1+\lambda_{j}}\right)^{-1}
$$

- for wired boundary conditions $\lim _{\Lambda \rightarrow \mathbb{Z}^{d}} d \mathbb{P}_{\Lambda}(\beta)$ exists
- $H_{W}(\beta) \equiv-\Delta+\lambda \hat{V}$ with $\lambda=\frac{1}{W}$:

$$
\begin{aligned}
H_{W}(\beta) & =W\left(-\Delta+\frac{1}{W} \hat{V}\right), \quad V_{x}=2 \beta_{x}-2 d W \\
\mathbb{E}\left[V_{x}\right] & =2 \mathbb{E}\left[\beta_{x}\right]-2 d W=(2 d W+1)-2 d W=1
\end{aligned}
$$

connection between RS and VRJP
set $\Lambda \subset \mathbb{Z}^{d}$ finite

connection between RS and VRJP

set $\Lambda \subset \mathbb{Z}^{d}$ finite

- $\left(Z_{\sigma}\right)_{\sigma \geq 0}$ time changed VRJP with jump rate $\omega_{i j}(\sigma)=\frac{W}{2} \frac{\sqrt{1+T_{j}(\sigma)}}{\sqrt{1+T_{i}(\sigma)}}$
Z_{σ} same recurrence/transience properties as Y_{t}

connection between RS and VRJP

set $\Lambda \subset \mathbb{Z}^{d}$ finite

- $\left(Z_{\sigma}\right)_{\sigma \geq 0}$ time changed VRJP with jump rate $\omega_{i j}(\sigma)=\frac{W}{2} \frac{\sqrt{1+T_{j}(\sigma)}}{\sqrt{1+T_{i}(\sigma)}}$
Z_{σ} same recurrence/transience properties as Y_{t}
- Z_{σ} is a mixture of Markov jump processes:
$\mathbb{P}_{\Lambda}^{Z}[\cdot]=\mathbb{E}_{u}\left[\mathbb{P}_{\Lambda}^{\omega(u)}[\cdot]\right]$
$u \in \mathbb{R}^{\wedge}$ random vector
$\mathbb{P}_{\Lambda}^{\omega(u)}[\cdot]$ MJP with rate $\omega_{i j}(u)=\frac{W}{2} e^{u_{j}-u_{i}}$

connection between RS and VRJP

set $\Lambda \subset \mathbb{Z}^{d}$ finite

- $\left(Z_{\sigma}\right)_{\sigma \geq 0}$ time changed VRJP with jump rate $\omega_{i j}(\sigma)=\frac{W}{2} \frac{\sqrt{1+T_{j}(\sigma)}}{\sqrt{1+T_{i}(\sigma)}}$
Z_{σ} same recurrence/transience properties as Y_{t}
- Z_{σ} is a mixture of Markov jump processes:
$\mathbb{P}_{\Lambda}^{Z}[\cdot]=\mathbb{E}_{u}\left[\mathbb{P}_{\Lambda}^{\omega(u)}[\cdot]\right]$

$$
\begin{aligned}
& u \in \mathbb{R}^{\wedge} \text { random vector } \\
& \mathbb{P}_{\Lambda}^{\omega(u)}[\cdot] \text { MJP with rate } \omega_{i j}(u)=\frac{w}{2} e^{u_{j}-u_{i}}
\end{aligned}
$$

- for fixed u the generator of the MJP is

$$
\left(\mathcal{L}_{u, W} f\right)(x)=\sum_{y,|y-x|=1}\left(f_{x}-f_{y}\right) W e^{u_{y}-u_{x}}
$$

set $\Lambda \subset \mathbb{Z}^{d}$ finite

- $\left(Z_{\sigma}\right)_{\sigma \geq 0}$ time changed VRJP with jump rate $\omega_{i j}(\sigma)=\frac{W}{2} \frac{\sqrt{1+T_{j}(\sigma)}}{\sqrt{1+T_{i}(\sigma)}}$
Z_{σ} same recurrence/transience properties as Y_{t}
- Z_{σ} is a mixture of Markov jump processes:
$\mathbb{P}_{\Lambda}^{Z}[\cdot]=\mathbb{E}_{u}\left[\mathbb{P}_{\Lambda}^{\omega(u)}[\cdot]\right] \quad u \in \mathbb{R}^{\Lambda}$ random vector

$$
\mathbb{P}_{\Lambda}^{\omega(u)}[\cdot] \text { MJP with rate } \omega_{i j}(u)=\frac{W}{2} e^{u_{j}-u_{i}}
$$

- for fixed u the generator of the MJP is

$$
\left(\mathcal{L}_{u, W} f\right)(x)=\sum_{y,|y-x|=1}\left(f_{x}-f_{y}\right) W e^{u_{y}-u_{x}}
$$

- $\mathcal{L}_{u, W}=e^{\hat{u}} H_{W}(\beta(u)) e^{-\hat{u}}$ with $\beta_{x}(u)=\sum_{y,|y-x|=1} \frac{W}{2} e^{u_{y}-u_{x}}$ $d \mathbb{P}(u) \rightarrow d \mathbb{P}(\beta)$ coordinate change!

connection between RS and VRJP

additional nice features

- $\frac{1}{W}=\lambda \Rightarrow$ strong/weak reinforcement \equiv strong/weak disorder
- ground state for $H_{W}(\beta) \longleftrightarrow$ recurrence/transience for VRJP
[Sabot-Zeng 2015]
- β short range \Rightarrow standard fractional moment methods for RS apply
[Collevecchio-Zeng 2018]
- still a lot to explore!

THANK YOU

