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History dependent stochastic processes
memory effects, self-learning. . .

ex: ants looking for the best route nest-food

Lattice random Schrödinger operators
quantum diffusion for disordered materials

These subjects are connected!



History dependent stochastic processes

Example: linearly edge-reinforced random walk (ERRW )
(Diaconis 1986)

discrete time process (Xn)n≥0, Xn ∈ Zd or Λ ⊂⊂ Zd

Construction: jump only to nearest neighbors

• set X0 = i0 starting point
ωij(0) = a > 0 ∀|i − j | = 1 initial weights
P(X1 = i1|X0 = i0) = a

2da = 1
2d

∀|i0 − i1| = 1

• update the weights ωij(1) =

{
a+1 i0i1
a oth.

• set X0 = i0,X1 = i1,
P(X2 = i0|X0,X1) = a+1

2da+1 >
a

2da+1
= P(X2 = i2|X0,X1)

∀|i2 − i1| = 1, i2 6= i1

prefers to come back!
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after n steps

P(Xn+1 = j |Xn = i , (Xm)m≤n) = 1|i−j |=1
ωij(n)∑

k,|k−j |=1 ωik(n)

ωe(n) = a + #crossings of e up to time n

a reinforcement parameter

the first time e is crossed

a→ a + 1
� a if a� 1 strong reinforcement
' a if a� 1 weak reinforcement

Generalizations

Λ any locally finite graph

variable initial weights ae
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Vertex-reinforced jump process (VRJP )
(Werner 2000, Volkov, Davis)

• continuous time jump process (Yt)t≥0, Yt ∈ Zd or Λ ⊂⊂ Zd

• conditioned on (Ys)s≤t jump from Yt = i to |j − i | = 1 with rate

ωjk(t) = W (1+Lj (t))

{
W>0 initial weight
Lj (t) local time at j

• process prefers to come back, W plays the same role as a
• generalization to variable initial rates We and

random initial rates

Connections with

ERRW [Sabot-Tarrès 2013]

hitting times for interacting Brownian motions

nonlinear sigma models and statistical mechanics

random matrices [Sabot-Tarrès-Zeng 2015] [Sabot-Zeng 2015]
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transience/recurrence for VRJP and ERRW as Λ→ Zd

positive recurrence

at strong reinforcement: ERRW and VRJP for any d ≥ 1
[Merkl-Rolles 2009], [D.-Spencer 2010] [Sabot-Tarrès 2013]

[Angel-Crawford-Kozma.Angel 2014]

for any reinforcement: ERRW and VRJP in d = 1 and strips
[Merkl-Rolles 2009], [D.-Spencer 2010] [Sabot-Tarrès 2013] [D.-Merkl-Rolles 2014]

recurrence in d = 2

ERRW for any reinforcement, partial results for VRJP

[Merkl-Rolles 2009], [Sabot-Zeng 2015] [Bauerschmidt-Helmuth-Swan 2018]

transience in d ≥ 3

at weak reinforcement: ERRW and VRJP

[D.-Spencer-Zirnbauer 2010], [D.-Sabot-Tarrès 2015]

⇒ phase transition in d ≥ 3



Random matrices

• set up: Λ ⊂ Zd finite, HΛ ∈ CΛ×Λ

H∗Λ = HΛ

HΛ random with some probability dPΛ(H)

Question: limΛ→Zd dPΛ(H) =?
spectral properties of the limit operator?

• special case: random Schrödinger HΛ = −∆Λ + λV̂
[Anderson 1958 ]

−∆Λ lattice Laplacian, λ > 0 parameter

V̂ = diag({Vx}x∈Λ), V ∈ RΛ random vector dPΛ(V )

motivation: quantum mechanics, disordered conductors
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random Schrödinger HΛ = −∆Λ + λV̂

two limit cases:

λ = 0 : H = −∆ : l2(Zd)→ l2(Zd)
extended states: H has only generalized eigenfunctions
ψλ(k)(x) = e ik·x 6∈ l2(Zd) conductor

λ� 1 : H ' V̂ diagonal matrix
⇒ localized eigenfunctions insulator

results/conjectures in d ≥ 2

Assume V independent or short range correlated:

large disorder λ� 1 : exponentially localized eigenfunctions
∀d ≥ 2

[Fröhlich-Spencer 1983], [Aizenman-Molchanov 1993 ] and many other results later. . .

d = 2 exponentially localized eigenfunctions ∀λ (conjecture)

d ≥ 3 phase transition at weak disorder (conjecture)



random Schrödinger HΛ = −∆Λ + λV̂

two limit cases:

λ = 0 : H = −∆ : l2(Zd)→ l2(Zd)
extended states: H has only generalized eigenfunctions
ψλ(k)(x) = e ik·x 6∈ l2(Zd) conductor

λ� 1 : H ' V̂ diagonal matrix
⇒ localized eigenfunctions insulator

results/conjectures in d ≥ 2

Assume V independent or short range correlated:

large disorder λ� 1 : exponentially localized eigenfunctions
∀d ≥ 2

[Fröhlich-Spencer 1983], [Aizenman-Molchanov 1993 ] and many other results later. . .

d = 2 exponentially localized eigenfunctions ∀λ (conjecture)

d ≥ 3 phase transition at weak disorder (conjecture)



A special example of random Schrödinger operator: HW (β) := 2β̂ −WP

−P = −∆− 2dId (off-set Laplacian) Pij = 1|i−j |=1

β ∈ RΛ random vector with distribution

1H(β)>0

(
2
π

)|Λ|/2
eW 2d |Λ|e−

∑
j∈Λ βj 1

(detHW (β))
1
2
dβΛ

features

βx > 0 ∀x a.s

short range correlations!

E[e−
∑

j λjβj ] = e−W
∑
|i−j|=1(

√
1+λi
√

1+λj−1)∏
j(
√

1 + λj)
−1

for wired boundary conditions limΛ→Zd dPΛ(β) exists

HW (β) ≡ −∆ + λV̂ with λ = 1
W :

HW (β) = W (−∆ + 1
W V̂ ), Vx = 2βx − 2dW

E[Vx ] = 2E[βx ]− 2dW = (2dW + 1)− 2dW = 1.
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connection between RS and VRJP

set Λ ⊂ Zd finite

• (Zσ)σ≥0 time changed VRJP with jump rate ωij(σ) = W
2

√
1+Tj (σ)√
1+Ti (σ)

Zσ same recurrence/transience properties as Yt

• Zσ is a mixture of Markov jump processes:

PZ
Λ [·] = Eu[Pω(u)

Λ [·] ]
u ∈ RΛ random vector

Pω(u)
Λ [·] MJP with rate ωij(u) = W

2 euj−ui

• for fixed u the generator of the MJP is

(Lu,W f )(x) =
∑

y ,|y−x |=1(fx − fy )W euy−ux

• Lu,W = e ûHW (β(u))e−û with βx(u) =
∑

y ,|y−x |=1
W
2 euy−ux

dP(u)→ dP(β) coordinate change!
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connection between RS and VRJP

additional nice features
1
W = λ⇒ strong/weak reinforcement ≡ strong/weak disorder

ground state for HW (β)←→ recurrence/transience for VRJP

[Sabot-Zeng 2015]

β short range ⇒ standard fractional moment methods for RS
apply [Collevecchio-Zeng 2018]

still a lot to explore!



THANK YOU


