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Quantum relative entropies

For classical states (i.e., prob. distributions) P and Q on X

D(P‖Q) :=
∑
x∈X

P(x) log
P(x)

Q(x)

For quantum states ρ and σ on Cd , multiple choices:

1 Matrix logarithm [Umegaki, 1962]

D(ρ‖σ) := tr[ρ log ρ]− tr[ρ log σ]

2 Matrix logarithm in a different way [Belavkin, Stasewski, 1982]

DBS (ρ‖σ) := tr
[
ρ log

(
ρ1/2σ−1ρ1/2

)]
3 Optimize over all measurements [Donald, 1986]

DM(ρ‖σ) := sup
{Mx}x∈X PSD,

∑
x Mx=id

∑
x∈X

tr[Mxρ] log
tr[Mxρ]

tr[Mxσ]

Most common is Umegaki’s: hypothesis testing interpretation [Hiai, Petz, 1991, The Proper Formula

for Relative Entropy and its Asymptotics in Quantum Probability]

... but others can also be useful too.
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Quantum relative entropies

DM(ρ‖σ) ≤ D(ρ‖σ) ≤ DBS (ρ‖σ)

Most important property: Joint convexity

D((1− t)ρ0 + tρ1‖(1− t)σ0 + tσ1) ≤ (1− t)D(ρ0‖σ0) + tD(ρ1‖σ1)

Classical relative entropy D(P‖Q): simple application of convexity of x 7→ x log x

Quantum relative entropies:

D: consequence of Lieb’s concavity theorem [Lieb, 1973]
DBS : consequence of concavity of matrix geometric mean [Fujii, Kamei, 1989]

DM: follows easily from the classical case as sup of convex functions

Operational consequence: Data processing inequality, for N completely positive trace
preserving map

D(N (ρ)‖N (σ)) ≤ D(ρ‖σ)

Another appealing consequence: For S convex, min(ρ,σ)∈S D(ρ‖σ) is a convex problem
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Quantities based on relative entropy optimization

1 Relative entropy of entanglement

ER(ρAB) = min
σAB∈SepAB

D(ρAB‖σAB)

More generally, relative entropy of resource E (ρ) = minσ∈F D(ρ‖σ) in a
resource theory where F are the free states
Quantifies amount of resource in state ρ

2 Quantum channel capacities, e.g., entanglement assisted capacity
N (ρ) = trE (UρU∗) with U isometry A→ B ⊗ E

Cea(N ) = max − D(σBE‖σB ⊗ idE )− D(σB‖idB)

s.t. σBE = N (ρA), ρA ∈ D(A)

3 D of recovery of ρABC : quantifies how well C can be locally recovered

min
R:L(B)→L(BC) CPTP

D(ρABC‖(IA ⊗R)(ρAB))

Running example: recoverability
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Recoverability

I (A : C |B)ρ = D(ρAB‖idA ⊗ ρB)− D(ρABC‖idA ⊗ ρBC )

Motivation:

Operational properties of states ρABC with I (A : C |B)ρ ≤ ε

near-saturation of data processing inequality for D
“approximate quantum Markov chains”

Surprisingly, there is a state ρABC with I (A : C |B)ρ ≤ 1
d and ρABC is 1

4 -far from
exact Markov states [Ibinson, Linden, Winter, 2006] and [Christandl, Schuch, Winter, 2012]

But, the state ρABC is approximately recoverable [Fawzi, Renner, 2014] building
on [Li, Winter, 2012], ..., [Berta, Seshadreesan, Wilde, 2014]:

min
R:L(B)→L(BC) CPTP

D(ρABC‖(IA ⊗R)(ρAB)) ≤ ε

for D = −2 log F (aka sandwiched Rényi divergence of order 1
2 )
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Recoverability

Let Drec(ρABC ) = minR:L(B)→L(BC) CPTP D(ρABC‖(IA ⊗R)(ρAB))

We saw that

Drec(ρABC ) ≤ I (A : C |B)ρ for D = −2 log F [Fawzi, Renner, 2014]

Note that −2 log F ≤ DM ≤ D ≤ DBS

The inequality is true with D = D classically
Can it be improved in quantum case with D = DM,D,D

BS?

YES for DM as shown in [Brandao, Harrow, Oppenheim, Strelchuck, 2014]

NO for D as shown in [Fawzi, Fawzi, 2017]

Why does DM behave better here? → additivity property of Drec
M under tensor

product, not satisfied by Drec
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Additivity of optimized relative entropies I

Consider

Dopt(ρ) := min
σ∈C

D(ρ‖σ) ,

where C convex set of states

Both D = D and D = DM are super-additive on tensor product states

D(ρ1 ⊗ ρ2‖σ1 ⊗ σ2) ≥ D(ρ1‖σ1) + D(ρ2‖σ2)

Does this property transfer to Dopt?

Super-additivity of Dopt on tensor product states:

min
σ12∈C12

D(ρ1 ⊗ ρ2‖σ12) = Dopt(ρ1 ⊗ ρ2)

?
≥ Dopt(ρ1) + Dopt(ρ2)

= min
σ1∈C1

D(ρ1‖σ1) + min
σ2∈C2

D(ρ2‖σ2)
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Using variational formulas

Idea: Use variational formulas for D

D(ρ‖σ) = sup
ω>0

tr[ρ logω]+1−tr exp (log σ + logω) [Petz, 1988]

DM(ρ‖σ) = sup
ω>0

tr[ρ logω] + 1− tr[σω] [Hiai, Petz ’93, Berta, Fawzi, Tomamichel ’15]

Remarks:
Golden-Thompson inequality → DM ≤ D

The formula for DM → efficient computation for DM

Back to showing additivity D(ρ‖σ) = supω>0 f (ρ, σ, ω)
Using Sion’s minimax theorem:

Dopt(ρ) = min
σ∈C

sup
ω>0

f (ρ, σ, ω) = sup
ω>0

min
σ∈C

f (ρ, σ, ω)

For D = DM,

min
σ∈C

f (ρ, σ, ω) = min
σ∈C

tr[ρ logω] + 1− tr[σω]

Semidefinite program (if C is nice) → use strong duality

min
σ∈C

f (ρ, σ, ω) = max
σ̄∈C̄ω

f̄ (ρ, σ̄, ω)

For D = D, not a semidefinite program: σ 7→ tr exp (log σ + logω) is concave but no
simple expression for its dual
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Additivity using variational formulas

We wrote the optimized measured relative entropy as

Dopt
M (ρ) = sup

ω>0
max
σ̄∈C̄ω

f̄ (ρ, σ̄, ω)

Want to show Dopt
M (ρ1 ⊗ ρ2) ≥ Dopt

M (ρ1) + Dopt
M (ρ2)

Proof: Take ω1, ω2 > 0 and σ̄1 ∈ C̄1, σ̄2 ∈ C̄2 achieving maximum. Then consider ω1 ⊗ ω2

and σ̄1 ⊗ σ̄2 ∈ C̄12 and get

Dopt
M (ρ1 ⊗ ρ2) ≥ f̄ (ρ1 ⊗ ρ2, σ̄1 ⊗ σ̄2, ω1 ⊗ ω2) ≥ f̄ (ρ1, σ̄1, ω1) + f̄ (ρ2, σ̄2, ω2)

= Dopt
M (ρ1) + Dopt

M (ρ2)

This works provided
f̄ is super-additive

f̄ (ρ1 ⊗ ρ2, σ̄1 ⊗ σ̄2, ω1 ⊗ ω2) ≥ f̄ (ρ1, σ̄1, ω1) + f̄ (ρ2, σ̄2, ω2)

the sets C̄ are closed under tensor products

σ̄1 ∈ C̄1 and σ̄2 ∈ C̄2 imply that σ̄1 ⊗ σ̄2 ∈ C̄12

For recoverability example:
C = {(IA ⊗RB→BC )(ρAB)} and f = tr(ρABC logωABC ) + 1− tr(σABCωABC )

C̄ω = {σ̄ : idBC ⊗ σ̄AR ≥ ωABC ⊗ idR , tr(σ̄ARρAR) = 1} and f̄ = tr(ρABC logωABC )
⇒ Drec

M is super-additive
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Relative entropy optimization: algorithms

Based on [Fawzi, Saunderson, 2015]

Example: computing DM(ρ‖σ) = supω>0 tr[ρ logω] + 1− tr[σω] for fixed ρ, σ
(computing min(ρ,σ)∈S D(ρ‖σ) slightly more complicated but uses similar ideas)

logω ≈ ω2−k
−1

2−k for k →∞

k = 1: ω � T 2 iff

[
ω T
T I

]
� 0

k = 1:

DM(ρ‖σ) ≈ max

{
tr

[
ρ

(
T − 1

1/2

)]
+ 1− tr[σω] :

[
ω T
T I

]
� 0

}
← SDP

Recursion for k ≥ 2

For more efficient approximation [Fawzi, Saunderson, Parrilo, 2017]

[Fawzi, Fawzi, 2017] used it to show that Drec is not additive
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Concluding remarks

Multiple quantum relative entropies D that are jointly convex

Use variational expressions and duality to establish additivity properties of
optimized relative entropies

Can efficiently approximate min(ρ,σ)∈S D(ρ‖σ) using semidefinite programs

https://github.com/hfawzi/cvxquad/
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