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Quantum relative entropies

For classical states (i.e., prob. distributions) P and Q on X

D(P|Q) : ZP(x)Iog (x)
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Quantum relative entropies
For classical states (i.e., prob. distributions) P and Q on X

(x)

xeX )

D(PIIQ) :

For quantum states p and ¢ on C¢, multiple choices:
@ Matrix logarithm [Umegaki, 1962]

D(pllo) := tr[plog p] — tr[plog o]
@ Matrix logarithm in a different way [Belavkin, Stasewski, 1982]

D% (p||o) = tr [p log (p1/20‘1p1/2)]

© Optimize over all measurements [Donald, 1986]

DM(p”O‘) = sup Z tr[MXp] log t:[lwiXp]

{My}rcx PSD,Y, Me=id ‘o tr[Mxo]

Most common is Umegaki's: hypothesis testing interpretation [Hiai, Petz, 1991, The Proper Formula

for Relative Entropy and its Asymptotics in Quantum Probab'\\itv}
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. but others can also be useful too.
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Quantum relative entropies

Du(pllo) < D(pllo) < D®*(p]l0)
Most important property: Joint convexity

D((1 — t)po + tp1 (1 — t)oo + to1) < (1 — t)D(polloo) + tD(p1llor)

@ Classical relative entropy D(P||Q): simple application of convexity of x — x log x

@ Quantum relative entropies:

@ D: consequence of Lieb’s concavity theorem [Lieb, 1973]
@ DB5: consequence of concavity of matrix geometric mean [Fujii, Kamei, 1989]

@ Dy: follows easily from the classical case as sup of convex functions

Operational consequence: Data processing inequality, for A/ completely positive trace
preserving map

DN (p) IV (7)) < D(pllo)

Another appealing consequence: For S convex, min(, ;)es D(p||o) is a convex problem
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Quantities based on relative entropy optimization

@ Relative entropy of entanglement

Er(pag) = min  D(paglloas)

0ABESEP 5

More generally, relative entropy of resource E(p) = min,cx D(p||o) in a
resource theory where F are the free states
Quantifies amount of resource in state p

© Quantum channel capacities, e.g., entanglement assisted capacity
N(p) = tre(UpU*) with U isometry A — B® E

Cea(./\/):max —D(O’BEHO'B®idE)—D(O'B”idB)
s.t. oge = N(pA), PA € D(A)

© D of recovery of pagc: quantifies how well C can be locally recovered

: D Loon
RAL(B)=L(BC) CPTP (ascll(Za @ R)(pas))

Running example: recoverability
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Recoverability

I(A: C|B), = D(pasllida ® pg) — D(pascllida ® psc)
Motivation:
Operational properties of states pagc with /(A: C|B), < e

near-saturation of data processing inequality for D
“approximate quantum Markov chains”

. . . . . 1 . 1
Surprisingly, there is a state papc with /(A : C|B), < 5 and pagc is z-far from
exact Markov states [Ibinson, Linden, Winter, 2006] and [Christandl, Schuch, Winter, 2012]
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I(A: C|B), = D(pasllida ® pg) — D(pascllida ® psc)
Motivation:
Operational properties of states pagc with /(A: C|B), < e

near-saturation of data processing inequality for D
“approximate quantum Markov chains”

. . . . . 1 . 1
Surprisingly, there is a state papc with /(A : C|B), < 5 and pagc is z-far from
exact Markov states [Ibinson, Linden, Winter, 2006] and [Christandl, Schuch, Winter, 2012]

But, the state pagc is approximately recoverable [Fawzi, Renner, 2014] building
on [Li, Winter, 2012], ..., [Berta, Seshadreesan, Wilde, 2014]:

i D Ia®R <
R:L(B)—T(ISC) CPTP (pascl|(Za ® R)(pas)) < ¢

for D = —2log F (aka sandwiched Rényi divergence of order %)
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Recoverability

Let D**“(papc) = ming..(8)-L(ac) cpTp D(pasc||(Za ® R)(pag))
We saw that

]D)rec(pAgc) < /(A : ClB)p forD = -2 log F [Fawzi, Renner, 2014]

Note that —2log F < Dy < D < DBS
The inequality is true with D = D classically
Can it be improved in quantum case with I = Dy, D, DB>?
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Recoverability

Let D**“(papc) = ming..(8)-L(ac) cpTp D(pasc||(Za ® R)(pag))
We saw that

]D)rec(pAgc) < /(A : ClB)p forD = -2 log F [Fawzi, Renner, 2014]

Note that —2log F < Dy < D < DBS
The inequality is true with D = D classically
Can it be improved in quantum case with I = Dy, D, DB>?

YES for Dy as shown in [Brandao, Harrow, Oppenheim, Strelchuck, 2014]
NO for D as shown in [Fawzi, Fawzi, 2017]

Why does Dy behave better here? — additivity property of Dy under tensor
product, not satisfied by D¢
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Additivity of optimized relative entropies |

o Consider
D" (p) := minD
(p) min (pllo),

where C convex set of states
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Additivity of optimized relative entropies |

o Consider
D" (p) := minD
(p) min (pllo),

where C convex set of states
@ Both D = D and D = Dy are super-additive on tensor product states

D(p1 ® p2l|o1 ® 02) = D(p1|o1) + D(p2]|02)

e Does this property transfer to D°Pt?

@ Super-additivity of D°P' on tensor product states:

min D(p1 ® palo12) = D (p1 @ p2)

012€C12

?
> DP*(p1) + DP(p2)

= min D in D

min D(pyflor) + min D(p2ljo2)
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Using variational formulas
@ lIdea: Use variational formulas for D
D(p|lo) = sup tr[plogw]+1—trexp (logo + logw) [Petz, 1988]
w>0
Dyi(pllo) = sup tr[plogw] + 1 — trow] [Hiai, Petz '93, Berta, Fawzi, Tomamichel '15]
w>0

@ Remarks:
@ Golden-Thompson inequality — Dy < D

@ The formula for Dy — efficient computation for Dy
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@ lIdea: Use variational formulas for D

D(p|lo) = sup tr[plogw]+1—trexp (logo + logw) [Petz, 1988]
w>0
Dyi(pllo) = sup tr[plogw] + 1 — trlow] [Hiai, Petz '93, Berta, Fawzi, Tomamichel '15]
w>0

@ Remarks:
@ Golden-Thompson inequality — Dy < D

@ The formula for Dy — efficient computation for Dy

@ Back to showing additivity D(p||o) = sup,,~q f(p, 0, w)
Using Sion’s minimax theorem:

D°PY(p) = min sup f(p,o,w) = sup min f(p, o, w)
oeC >po€C

@ For D = Dy,
inf = mintrpl 1-t
min f(p, o,w) = mintrlplogw] + rlow]
Semidefinite program (if C is nice) — use strong duality

min f(p,0,w) = max f(p,,w)
oeC GeCy

@ For D = D, not a semidefinite program: o — trexp (log o + log w) is concave but no
simple expression for its dual
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Additivity using variational formulas

@ We wrote the optimized measured relative entropy as

DyP(p) = sup max f(p,&,w)

GGCm

@ Want to show DyP*(p1 ® p2) > DyP*(p1) + Dy (p2)
@ Proof: Take wi,w2 > 0and 51 € C1, 52 € C» achieving maximum. Then consider w1 ® wo
and g1 ® 2 € C12 and get
Dﬁﬂpt(m ® p2) > Fp1 ® p2,51 ® F2,w1 @ wa) > F(p1,51,w1) + F(p2,52,ws)
= D' (p1) + DP* (p2)
This wgrks provided
@ f is super-additive

flp1 ® 2,61 ® 52,w1 ® wa) > Fp1,51,w1) + F(p2, 52, w2)
@ the sets C are closed under tensor products
o1 € C_1 and o) € C_z imply that &1 ® a2 € 512
@ For recoverability example:

@ C={(Za® Rp—sc)(pag)} and f = tr(papc logwapc) + 1 — tr(capcwasc)

o C, ={7:idgc ® Gar > wasc ® idg, tr(Garpar) = 1} and F = tr(pasc logwasc)
= Dy is super-additive
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Relative entropy optimization: algorithms

Based on [Fawzi, Saunderson, 2015]

Example: computing Dy(p|lo) = sup,,~q tr[plogw] + 1 — tr[ow] for fixed p, o
(computing min(, ,es D(pl|o) slightly more complicated but uses similar ideas)

2=k
o logw ~ “——=L for k — oo

s 5 e W T
o k=1.w>=T IfF[T I]EO

e k=1:
T-1 w T
Dy(pllo) ~ max{tr {p (1/2)] +1—trlow] : [T /] > 0} + SDP
@ Recursion for k > 2

For more efficient approximation [Fawzi, Saunderson, Parrilo, 2017]
[Fawzi, Fawzi, 2017] used it to show that D' is not additive

10/11



Concluding remarks

@ Multiple quantum relative entropies D that are jointly convex

@ Use variational expressions and duality to establish additivity properties of
optimized relative entropies

@ Can efficiently approximate min(, ,yes D(pl/o) using semidefinite programs

https://github.com/hfawzi/cvxquad/

11/11



