Relative entropy optimization in quantum information

Omar Fawzi

ICMP 2018, Montréal

For classical states (i.e., prob. distributions) P and Q on \mathcal{X}

$$D(P \| Q) := \sum_{x \in \mathcal{X}} P(x) \log \frac{P(x)}{Q(x)}$$

For classical states (i.e., prob. distributions) P and Q on \mathcal{X}

$$D(P \| Q) := \sum_{x \in \mathcal{X}} P(x) \log \frac{P(x)}{Q(x)}$$

For quantum states ρ and σ on \mathbb{C}^d , multiple choices:

Matrix logarithm [Umegaki, 1962]

$$D(\rho \| \sigma) := \operatorname{tr}[\rho \log \rho] - \operatorname{tr}[\rho \log \sigma]$$

Ø Matrix logarithm in a different way [Belavkin, Stasewski, 1982]

$$D^{BS}(
ho\|\sigma) := \operatorname{tr}\left[
ho\log\left(
ho^{1/2}\sigma^{-1}
ho^{1/2}
ight)
ight]$$

Optimize over all measurements [Donald, 1986]

$$D_{\mathbb{M}}(\rho \| \sigma) := \sup_{\{M_x\}_{x \in \mathcal{X}}} \sup_{\mathsf{PSD}, \sum_x M_x = \mathsf{id}} \sum_{x \in \mathcal{X}} \mathsf{tr}[M_x \rho] \log \frac{\mathsf{tr}[M_x \rho]}{\mathsf{tr}[M_x \sigma]}$$

Most common is Umegaki's: hypothesis testing interpretation [Hiai, Petz, 1991, The Proper Formula for Relative Entropy and its Asymptotics in Quantum Probability]

For classical states (i.e., prob. distributions) P and Q on \mathcal{X}

$$D(P \| Q) := \sum_{x \in \mathcal{X}} P(x) \log \frac{P(x)}{Q(x)}$$

For quantum states ρ and σ on \mathbb{C}^d , multiple choices:

Matrix logarithm [Umegaki, 1962]

$$D(\rho \| \sigma) := tr[\rho \log \rho] - tr[\rho \log \sigma]$$

Ø Matrix logarithm in a different way [Belavkin, Stasewski, 1982]

$$D^{BS}(
ho\|\sigma) := \operatorname{tr}\left[
ho\log\left(
ho^{1/2}\sigma^{-1}
ho^{1/2}
ight)
ight]$$

Optimize over all measurements [Donald, 1986]

$$D_{\mathbb{M}}(\rho \| \sigma) := \sup_{\{M_x\}_{x \in \mathcal{X}}} \sup_{\mathsf{PSD}, \sum_x M_x = \mathsf{id}} \sum_{x \in \mathcal{X}} \mathsf{tr}[M_x \rho] \log \frac{\mathsf{tr}[M_x \rho]}{\mathsf{tr}[M_x \sigma]}$$

Most common is Umegaki's: hypothesis testing interpretation [Hiai, Petz, 1991, The Proper Formula for Relative Entropy and its Asymptotics in Quantum Probability]

... but others can also be useful too.

 $D_{\mathbb{M}}(
ho\|\sigma) \leq D(
ho\|\sigma) \leq D^{BS}(
ho\|\sigma)$

Most important property: Joint convexity

$$\mathbb{D}((1-t)\rho_0 + t\rho_1 \| (1-t)\sigma_0 + t\sigma_1) \le (1-t)\mathbb{D}(\rho_0 \| \sigma_0) + t\mathbb{D}(\rho_1 \| \sigma_1)$$

- Classical relative entropy D(P||Q): simple application of convexity of $x \mapsto x \log x$
- Quantum relative entropies:
 - D: consequence of Lieb's concavity theorem [Lieb, 1973]
 - D^{BS}: consequence of concavity of matrix geometric mean [Fujii, Kamei, 1989]
 - $D_{\mathbb{M}}$: follows easily from the classical case as sup of convex functions

 $\mbox{Operational consequence:}$ Data processing inequality, for ${\mathcal N}$ completely positive trace preserving map

$$\mathbb{D}(\mathcal{N}(\rho) \| \mathcal{N}(\sigma)) \leq \mathbb{D}(\rho \| \sigma)$$

Another appealing consequence: For S convex, $\min_{(\rho,\sigma)\in S} \mathbb{D}(\rho \| \sigma)$ is a convex problem

Quantities based on relative entropy optimization

Relative entropy of entanglement

$$E_R(\rho_{AB}) = \min_{\sigma_{AB} \in \operatorname{Sep}_{AB}} D(\rho_{AB} \| \sigma_{AB})$$

More generally, relative entropy of resource $E(\rho) = \min_{\sigma \in \mathcal{F}} D(\rho \| \sigma)$ in a resource theory where \mathcal{F} are the free states Quantifies amount of resource in state ρ

2 Quantum channel capacities, e.g., entanglement assisted capacity $\mathcal{N}(\rho) = \operatorname{tr}_{E}(U\rho U^{*})$ with U isometry $A \to B \otimes E$

$$\begin{split} \mathcal{C}_{ea}(\mathcal{N}) &= \max \quad -D(\sigma_{BE} \| \sigma_B \otimes \mathrm{id}_E) - D(\sigma_B \| \mathrm{id}_B) \\ \text{s.t.} \quad \sigma_{BE} &= \mathcal{N}(\rho_A), \ \rho_A \in \mathsf{D}(A) \end{split}$$

3 D of recovery of ρ_{ABC} : quantifies how well C can be locally recovered

$$\min_{\mathcal{R}: \mathsf{L}(B) \to \mathsf{L}(BC) \text{ CPTP}} \mathbb{D}(\rho_{ABC} \| (\mathcal{I}_A \otimes \mathcal{R})(\rho_{AB}))$$

Running example: recoverability

$$I(A: C|B)_{\rho} = D(\rho_{AB} \| \mathrm{id}_A \otimes \rho_B) - D(\rho_{ABC} \| \mathrm{id}_A \otimes \rho_{BC})$$

Motivation:

Operational properties of states ρ_{ABC} with $I(A : C|B)_{\rho} \le \epsilon$ near-saturation of data processing inequality for D

"approximate quantum Markov chains"

Surprisingly, there is a state ρ_{ABC} with $I(A : C|B)_{\rho} \leq \frac{1}{d}$ and ρ_{ABC} is $\frac{1}{4}$ -far from exact Markov states [Ibinson, Linden, Winter, 2006] and [Christandl, Schuch, Winter, 2012]

$$I(A: C|B)_{\rho} = D(\rho_{AB} \| \mathrm{id}_A \otimes \rho_B) - D(\rho_{ABC} \| \mathrm{id}_A \otimes \rho_{BC})$$

Motivation:

Operational properties of states ρ_{ABC} with $I(A : C|B)_{\rho} \leq \epsilon$ near-saturation of data processing inequality for D

"approximate quantum Markov chains"

Surprisingly, there is a state ρ_{ABC} with $I(A : C|B)_{\rho} \leq \frac{1}{d}$ and ρ_{ABC} is $\frac{1}{4}$ -far from exact Markov states [Ibinson, Linden, Winter, 2006] and [Christandl, Schuch, Winter, 2012]

But, the state ρ_{ABC} is approximately recoverable [Fawzi, Renner, 2014] building on [Li, Winter, 2012], ..., [Berta, Seshadreesan, Wilde, 2014]:

$$\min_{\mathcal{R}: \mathsf{L}(B) \to \mathsf{L}(BC) \text{ CPTP}} \mathbb{D}(\rho_{ABC} \| (\mathcal{I}_A \otimes \mathcal{R})(\rho_{AB})) \leq \epsilon$$

for $\mathbb{D} = -2 \log F$ (aka sandwiched Rényi divergence of order $\frac{1}{2}$)

Let $\mathbb{D}^{\mathrm{rec}}(\rho_{ABC}) = \min_{\mathcal{R}: L(B) \to L(BC)} \operatorname{CPTP} \mathbb{D}(\rho_{ABC} \| (\mathcal{I}_A \otimes \mathcal{R})(\rho_{AB}))$ We saw that

 $\mathbb{D}^{
m rec}(
ho_{ABC}) \leq I(A:C|B)_{
ho}$ for $\mathbb{D}=-2\log F$ [Fawzi, Renner, 2014]

Note that $-2 \log F \le D_{\mathbb{M}} \le D \le D^{BS}$ The inequality is true with $\mathbb{D} = D$ classically Can it be improved in quantum case with $\mathbb{D} = D_{\mathbb{M}}, D, D^{BS}$?

Let $\mathbb{D}^{\operatorname{rec}}(\rho_{ABC}) = \min_{\mathcal{R}: L(B) \to L(BC)} \operatorname{CPTP} \mathbb{D}(\rho_{ABC} \| (\mathcal{I}_A \otimes \mathcal{R})(\rho_{AB}))$ We saw that

 $\mathbb{D}^{
m rec}(
ho_{ABC}) \leq I(A:C|B)_{
ho}$ for $\mathbb{D}=-2\log F$ [Fawzi, Renner, 2014]

Note that $-2 \log F \le D_{\mathbb{M}} \le D \le D^{BS}$ The inequality is true with $\mathbb{D} = D$ classically Can it be improved in quantum case with $\mathbb{D} = D_{\mathbb{M}}, D, D^{BS}$?

YES for $D_{\mathbb{M}}$ as shown in [Brandao, Harrow, Oppenheim, Strelchuck, 2014] NO for D as shown in [Fawzi, Fawzi, 2017]

Let $\mathbb{D}^{\operatorname{rec}}(\rho_{ABC}) = \min_{\mathcal{R}: L(B) \to L(BC)} \operatorname{CPTP} \mathbb{D}(\rho_{ABC} \| (\mathcal{I}_A \otimes \mathcal{R})(\rho_{AB}))$ We saw that

 $\mathbb{D}^{
m rec}(
ho_{ABC}) \leq I(A:C|B)_{
ho}$ for $\mathbb{D}=-2\log F$ [Fawzi, Renner, 2014]

Note that $-2 \log F \le D_{\mathbb{M}} \le D \le D^{BS}$ The inequality is true with $\mathbb{D} = D$ classically Can it be improved in quantum case with $\mathbb{D} = D_{\mathbb{M}}, D, D^{BS}$?

YES for $D_{\mathbb{M}}$ as shown in [Brandao, Harrow, Oppenheim, Strelchuck, 2014] NO for D as shown in [Fawzi, Fawzi, 2017]

Why does $D_{\mathbb{M}}$ behave better here? \rightarrow **additivity** property of $D_{\mathbb{M}}^{\mathrm{rec}}$ under tensor product, not satisfied by D^{rec}

• Consider

$$\mathbb{D}^{\mathrm{opt}}(
ho) := \min_{\sigma \in \mathcal{C}} \mathbb{D}(
ho \| \sigma) \,,$$

where $\ensuremath{\mathcal{C}}$ convex set of states

• Consider

$$\mathbb{D}^{\mathrm{opt}}(
ho) := \min_{\sigma \in \mathcal{C}} \mathbb{D}(
ho \| \sigma) \,,$$

where $\ensuremath{\mathcal{C}}$ convex set of states

Consider

$$\mathbb{D}^{\mathrm{opt}}(
ho) := \min_{\sigma \in \mathcal{C}} \mathbb{D}(
ho \| \sigma) \,,$$

where $\ensuremath{\mathcal{C}}$ convex set of states

• Both $\mathbb{D} = D$ and $\mathbb{D} = D_{\mathbb{M}}$ are super-additive on tensor product states

$$\mathbb{D}(\rho_1 \otimes \rho_2 \| \sigma_1 \otimes \sigma_2) \geq \mathbb{D}(\rho_1 \| \sigma_1) + \mathbb{D}(\rho_2 \| \sigma_2)$$

• Does this property transfer to \mathbb{D}^{opt} ?

Consider

$$\mathbb{D}^{\mathrm{opt}}(
ho) := \min_{\sigma \in \mathcal{C}} \mathbb{D}(
ho \| \sigma) \,,$$

where $\ensuremath{\mathcal{C}}$ convex set of states

• Both $\mathbb{D} = D$ and $\mathbb{D} = D_{\mathbb{M}}$ are super-additive on tensor product states

$$\mathbb{D}(
ho_1\otimes
ho_2\|\sigma_1\otimes\sigma_2)\geq\mathbb{D}(
ho_1\|\sigma_1)+\mathbb{D}(
ho_2\|\sigma_2)$$

- Does this property transfer to \mathbb{D}^{opt} ?
- \bullet Super-additivity of $\mathbb{D}^{\mathrm{opt}}$ on tensor product states:

$$\begin{split} \min_{\sigma_{12}\in\mathcal{C}_{12}} \mathbb{D}(\rho_1\otimes\rho_2\|\sigma_{12}) &= \mathbb{D}^{\mathrm{opt}}(\rho_1\otimes\rho_2) \\ &\stackrel{?}{\geq} \mathbb{D}^{\mathrm{opt}}(\rho_1) + \mathbb{D}^{\mathrm{opt}}(\rho_2) \\ &= \min_{\sigma_1\in\mathcal{C}_1} \mathbb{D}(\rho_1\|\sigma_1) + \min_{\sigma_2\in\mathcal{C}_2} \mathbb{D}(\rho_2\|\sigma_2) \end{split}$$

• Idea: Use variational formulas for \mathbb{D} $D(\rho \| \sigma) = \sup_{\omega > 0} \operatorname{tr}[\rho \log \omega] + 1 - \operatorname{tr} \exp(\log \sigma + \log \omega)$ [Petz, 1988] $D_{\mathbb{M}}(\rho \| \sigma) = \sup_{\omega > 0} \operatorname{tr}[\rho \log \omega] + 1 - \operatorname{tr}[\sigma \omega]$ [Hiai, Petz '93, Berta, Fawzi, Tomamichel '15]

- Remarks:
 - $\bullet \ \ {\sf Golden-Thompson \ inequality} \to {\it D}_{\mathbb M} \leq {\it D}$
 - The formula for $D_{\mathbb{M}} o$ efficient computation for $D_{\mathbb{M}}$

• Idea: Use variational formulas for \mathbb{D} $D(\rho \| \sigma) = \sup_{\omega > 0} \operatorname{tr}[\rho \log \omega] + 1 - \operatorname{tr} \exp(\log \sigma + \log \omega)$ [Petz, 1988] $D_{\mathbb{M}}(\rho \| \sigma) = \sup_{\omega > 0} \operatorname{tr}[\rho \log \omega] + 1 - \operatorname{tr}[\sigma \omega]$ [Hiai, Petz '93, Berta, Fawzi, Tomamichel '15]

- Remarks:
 - $\bullet \ \ {\sf Golden-Thompson \ inequality} \to {\it D}_{\mathbb M} \leq {\it D}$
 - The formula for $D_{\mathbb{M}} o$ efficient computation for $D_{\mathbb{M}}$
- Back to showing additivity $\mathbb{D}(\rho \| \sigma) = \sup_{\omega > 0} f(\rho, \sigma, \omega)$ Using Sion's minimax theorem:

$$\mathbb{D}^{\operatorname{opt}}(\rho) = \min_{\sigma \in \mathcal{C}} \sup_{\omega > 0} f(\rho, \sigma, \omega) = \sup_{\omega > 0} \min_{\sigma \in \mathcal{C}} f(\rho, \sigma, \omega)$$

• <u>Idea</u>: Use variational formulas for \mathbb{D} $D(\rho \| \sigma) = \sup_{\omega > 0} \operatorname{tr}[\rho \log \omega] + 1 - \operatorname{tr} \exp(\log \sigma + \log \omega)$ [Petz, 1988] $D_{\mathbb{M}}(\rho \| \sigma) = \sup_{\omega > 0} \operatorname{tr}[\rho \log \omega] + 1 - \operatorname{tr}[\sigma \omega]$ [Hiai, Petz '93, Berta, Fawzi, Tomamichel '15]

- Remarks:
 - $\bullet \ \ {\sf Golden-Thompson \ inequality} \to {\it D}_{\mathbb M} \leq {\it D}$
 - The formula for $D_{\mathbb{M}} o$ efficient computation for $D_{\mathbb{M}}$
- Back to showing additivity $\mathbb{D}(\rho \| \sigma) = \sup_{\omega > 0} f(\rho, \sigma, \omega)$ Using Sion's minimax theorem:

$$\mathbb{D}^{\mathrm{opt}}(\rho) = \min_{\sigma \in \mathcal{C}} \sup_{\omega > 0} f(\rho, \sigma, \omega) = \sup_{\omega > 0} \min_{\sigma \in \mathcal{C}} f(\rho, \sigma, \omega)$$

• For $\mathbb{D} = D_{\mathbb{M}}$,

$$\min_{\sigma \in \mathcal{C}} f(\rho, \sigma, \omega) = \min_{\sigma \in \mathcal{C}} \operatorname{tr}[\rho \log \omega] + 1 - \operatorname{tr}[\sigma \omega]$$

Semidefinite program (if C is nice) \rightarrow use strong duality

$$\min_{\sigma \in \mathcal{C}} f(\rho, \sigma, \omega) = \max_{\bar{\sigma} \in \bar{\mathcal{C}}_{\omega}} \bar{f}(\rho, \bar{\sigma}, \omega)$$

• Idea: Use variational formulas for \mathbb{D} $D(\rho \| \sigma) = \sup_{\omega > 0} \operatorname{tr}[\rho \log \omega] + 1 - \operatorname{tr} \exp(\log \sigma + \log \omega)$ [Petz, 1988] $D_{\mathbb{M}}(\rho \| \sigma) = \sup_{\omega > 0} \operatorname{tr}[\rho \log \omega] + 1 - \operatorname{tr}[\sigma \omega]$ [Hiai, Petz '93, Berta, Fawzi, Tomamichel '15]

- Remarks:
 - $\bullet \ \ \mbox{Golden-Thompson inequality} \to D_{\mathbb M} \leq D$
 - The formula for $D_{\mathbb{M}} o$ efficient computation for $D_{\mathbb{M}}$
- Back to showing additivity $\mathbb{D}(\rho \| \sigma) = \sup_{\omega > 0} f(\rho, \sigma, \omega)$ Using Sion's minimax theorem:

$$\mathbb{D}^{\mathrm{opt}}(\rho) = \min_{\sigma \in \mathcal{C}} \sup_{\omega > 0} f(\rho, \sigma, \omega) = \sup_{\omega > 0} \min_{\sigma \in \mathcal{C}} f(\rho, \sigma, \omega)$$

• For $\mathbb{D} = D_{\mathbb{M}}$,

$$\min_{\sigma \in \mathcal{C}} f(\rho, \sigma, \omega) = \min_{\sigma \in \mathcal{C}} \operatorname{tr}[\rho \log \omega] + 1 - \operatorname{tr}[\sigma \omega]$$

Semidefinite program (if C is nice) \rightarrow use strong duality

$$\min_{\sigma \in \mathcal{C}} f(\rho, \sigma, \omega) = \max_{\bar{\sigma} \in \bar{\mathcal{C}}_{\omega}} \bar{f}(\rho, \bar{\sigma}, \omega)$$

For D = D, not a semidefinite program: σ → tr exp (log σ + log ω) is concave but no simple expression for its dual

Additivity using variational formulas

• We wrote the optimized measured relative entropy as

 $D^{\mathrm{opt}}_{\mathbb{M}}(
ho) = \sup_{\omega>0} \max_{ar{\sigma}\inar{\mathcal{C}}_{\omega}} ar{f}(
ho,ar{\sigma},\omega)$

- Want to show $D_{\mathbb{M}}^{\mathrm{opt}}(\rho_1 \otimes \rho_2) \geq D_{\mathbb{M}}^{\mathrm{opt}}(\rho_1) + D_{\mathbb{M}}^{\mathrm{opt}}(\rho_2)$
- <u>Proof</u>: Take $\omega_1, \omega_2 > 0$ and $\bar{\sigma}_1 \in \bar{C}_1$, $\bar{\sigma}_2 \in \bar{C}_2$ achieving maximum. Then consider $\omega_1 \otimes \omega_2$ and $\bar{\sigma}_1 \otimes \bar{\sigma}_2 \in \bar{C}_{12}$ and get

$$egin{aligned} D^{ ext{opt}}_{\mathbb{M}}(
ho_1\otimes
ho_2) &\geq ar{f}(
ho_1\otimes
ho_2,ar{\sigma}_1\otimesar{\sigma}_2,\omega_1\otimes\omega_2) \geq ar{f}(
ho_1,ar{\sigma}_1,\omega_1) + ar{f}(
ho_2,ar{\sigma}_2,\omega_2) \ &= D^{ ext{opt}}_{\mathbb{M}}(
ho_1) + D^{ ext{opt}}_{\mathbb{M}}(
ho_2) \end{aligned}$$

This works provided

• \bar{f} is super-additive

$$\bar{f}(\rho_1 \otimes \rho_2, \bar{\sigma}_1 \otimes \bar{\sigma}_2, \omega_1 \otimes \omega_2) \geq \bar{f}(\rho_1, \bar{\sigma}_1, \omega_1) + \bar{f}(\rho_2, \bar{\sigma}_2, \omega_2)$$

 $\bullet~$ the sets $\bar{\mathcal{C}}$ are closed under tensor products

$$\bar{\sigma}_1 \in \bar{\mathcal{C}}_1 \text{ and } \bar{\sigma}_2 \in \bar{\mathcal{C}}_2 \quad \text{imply that} \quad \bar{\sigma}_1 \otimes \bar{\sigma}_2 \in \bar{\mathcal{C}}_{12}$$

For recoverability example:

- $C = \{(\mathcal{I}_A \otimes \mathcal{R}_{B \to BC})(\rho_{AB})\}$ and $f = tr(\rho_{ABC} \log \omega_{ABC}) + 1 tr(\sigma_{ABC} \omega_{ABC})$
- $\bar{\mathcal{C}}_{\omega} = \{\bar{\sigma} : \mathrm{id}_{BC} \otimes \bar{\sigma}_{AR} \ge \omega_{ABC} \otimes \mathrm{id}_R, \mathrm{tr}(\bar{\sigma}_{AR}\rho_{AR}) = 1\}$ and $\bar{f} = \mathrm{tr}(\rho_{ABC} \log \omega_{ABC})$ $\Rightarrow D_{\mathrm{id}}^{\mathrm{rec}}$ is super-additive

Relative entropy optimization: algorithms

Based on [Fawzi, Saunderson, 2015]

Example: computing $D_{\mathbb{M}}(\rho \| \sigma) = \sup_{\omega > 0} \operatorname{tr}[\rho \log \omega] + 1 - \operatorname{tr}[\sigma \omega]$ for fixed ρ, σ (computing $\min_{(\rho,\sigma) \in S} \mathbb{D}(\rho \| \sigma)$ slightly more complicated but uses similar ideas)

•
$$\log \omega \approx \frac{\omega^{2^{-k}} - 1}{2^{-k}}$$
 for $k \to \infty$
• $k = 1$: $\omega \succeq T^2$ iff $\begin{bmatrix} \omega & T \\ T & I \end{bmatrix} \succeq 0$

• k = 1:

$$\mathcal{D}_{\mathbb{M}}(\rho \| \sigma) \approx \max \left\{ \operatorname{tr} \left[
ho \left(rac{T-1}{1/2}
ight)
ight] + 1 - \operatorname{tr}[\sigma \omega] : \begin{bmatrix} \omega & T \\ T & I \end{bmatrix} \succeq 0
ight\} \leftarrow \operatorname{SDP}$$

• Recursion for $k \ge 2$

For more efficient approximation [Fawzi, Saunderson, Parrilo, 2017] [Fawzi, Fawzi, 2017] used it to show that D^{rec} is not additive

- $\bullet\,$ Multiple quantum relative entropies $\mathbb D$ that are jointly convex
- Use variational expressions and duality to establish additivity properties of optimized relative entropies
- Can efficiently approximate $\min_{(\rho,\sigma)\in S} \mathbb{D}(\rho \| \sigma)$ using semidefinite programs

https://github.com/hfawzi/cvxquad/