On multiple SLEs

Eveliina Peltola

Université de Genève; Section de Mathématiques < eveliina.peltola@unige.ch >

July 25th 2018

Based on joint works with

Vincent Beffara (Université Grenoble Alpes, Institut Fourier), and Hao Wu (Yau Mathematical Sciences Center, Tsinghua University)

ICMP, Equilibrium Statistical Mechanics Session

Plan

- Motivation
 - critical models in statistical physics, scaling limits
 - conformal invariance of interfaces & correlations
- Multiple SLEs: classification
 - "global" multiple SLEs
 - "local" multiple SLEs (i.e., commuting SLEs)
- Partition functions of multiple SLEs
 - marginals of global multiple SLEs
 - Iocal ⇔ global ???
- Relation to connection probabilities
 - multichordal loop-erased random walks / UST branches
 - level lines of the Gaussian free field
 - double-dimer pairings
 - Ising model crossing probabilities

MOTIVATION

1

Example: 2D Ising model

- put random spins $\sigma_x = \pm 1$ at vertices x of a graph
- nearest neighbor interaction: $\mathbb{P}[\text{config.}] \propto \exp\left(\frac{1}{T}\sum_{x \sim y} \sigma_x \sigma_y\right)$
- phase transition at critical temperature $T = T_c$

look at correlation of a pair of spins at *x* and *y* $C(x, y) = \mathbb{E}[\sigma_x \sigma_y] - \mathbb{E}[\sigma_x] \mathbb{E}[\sigma_y]$ when |x - y| >> 1:

 $T < T_c$

 $C(x, y) \sim \text{const.}$

 $T = T_c$ $C(x, y) \sim |x - y|^{-\beta}$

 $T_c < T$ $C(x, y) \sim e^{-\frac{1}{\xi}|x-y|}$

• scaling limit at critical temperature T_c : conformal invariance

Dobrushin boundary conditions: $\partial \Omega^{\delta} = \{ \oplus \text{ segment} \} \bigcup \{ \ominus \text{ segment} \}$

interface of Ising model $\xrightarrow{\delta \to 0}$ Schramm-Loewner evolution, SLE₃ [Chelkak, Duminil-Copin, Hongler, Kemppainen, Smirnov (2014)]

CONFORMAL INVARIANCE OF MULTIPLE ISING INTERFACES

- fix discrete domain data $(\Omega^{\delta}; x_1^{\delta}, \dots, x_{2N}^{\delta})$
- consider critical **Ising model** in $\Omega^{\delta} \subset \delta \mathbb{Z}^2$ with alternating \oplus / \ominus b.c.

• Izyurov (2015):

interfaces $\xrightarrow{\delta \to 0}$ (local) multiple SLE₃

Proof: multi-point holomorphic observable

CONFORMAL INVARIANCE OF MULTIPLE ISING INTERFACES

... then we have:

Theorem

- fix discrete domain data $(\Omega^{\delta}; x_1^{\delta}, \dots, x_{2N}^{\delta})$
- consider critical **Ising model** in $\Omega^{\delta} \subset \delta \mathbb{Z}^2$ with alternating \oplus / \ominus b.c.
- Izyurov (2015):

interfaces $\stackrel{\delta \to 0}{\longrightarrow}$ (local) multiple SLE₃

Proof: multi-point holomorphic observable

• If we condition on the event that the interfaces connect the boundary points according to a given connectivity ...

The law of the *N* macroscopic interfaces of the critical Ising model **converges in the scaling limit** $\delta \rightarrow 0$ **to the** *N*-SLE_{κ} **with** $\kappa = 3$.

Wu [arXiv:1703.02022] Beffara, P. & Wu [arXiv:1801.07699] Proof: convergence for N = 1 and classification of multiple SLE₃

CONFORMAL INVARIANCE OF MULTIPLE FK-ISING INTERFACES

- fix discrete domain data $(\Omega^{\delta}; x_1^{\delta}, \dots, x_{2N}^{\delta})$
- consider critical FK-Ising model in $\Omega^{\delta} \subset \delta \mathbb{Z}^2$ with alternating free/wir b.c.
- Kemppainen & Smirnov (2018):
 - 2 interfaces $\xrightarrow{\delta \to 0}$ hSLE_{16/3}

Proof: holomorphic observable

CONFORMAL INVARIANCE OF MULTIPLE FK-ISING INTERFACES

... then we have:

Theorem

- fix discrete domain data $(\Omega^{\delta}; x_1^{\delta}, \dots, x_{2N}^{\delta})$
- consider critical FK-Ising model in $\Omega^{\delta} \subset \delta \mathbb{Z}^2$ with alternating free/wir b.c.
- Kemppainen & Smirnov (2018): 2 interfaces $\xrightarrow{\delta \to 0} hSLE_{16/3}$

Proof: holomorphic observable

• If we condition on the event that the interfaces connect the boundary points according to a given connectivity ...

The law of the *N* macroscopic interfaces of the critical FK-Ising model **converges in the scaling limit** $\delta \rightarrow 0$ **to the** *N*-SLE_{κ} **with** $\kappa = 16/3$.

Beffara, P. & Wu [arXiv:1801.07699]

Proof: convergence for N = 1 and classification of multiple SLE_{16/3}

Schramm-Loewner

EVOLUTIONS

SLE_K

Schramm's classification of chordal SLE_{κ}

Theorem [Schramm ~2000]

 \exists ! one-parameter family $(SLE_{\kappa})_{\kappa\geq 0}$ of probability measures on chordal curves with **conformal invariance** and **domain Markov property**

- encode SLE_κ random curves in random conformal maps (g_t)_{t≥0}
- driving process = image of the tip:

 $X_t := \lim_{z \to \gamma(t)} g_t(z) = \sqrt{\kappa} B_t$

g_t: ℍ \ γ[0, t] → ℍ solutions to
 Loewner equation:

$$\frac{\mathrm{d}}{\mathrm{d}t}g_t(z) = \frac{2}{g_t(z) - X_t}, \qquad g_0(z) = z$$

 g_t

CLASSIFICATION OF GLOBAL MULTIPLE SLE_{κ}

- family of random curves in $(\Omega; x_1, \ldots, x_{2N})$
- various connectivities encoded in planar pair partitions $\alpha \in LP_N$

Theorem

Let $\kappa \in (0, 4] \cup \{16/3, 6\}$. For any fixed connectivity α of 2N points, there exists a unique probability measure on N curves such that conditionally on N - 1 of the curves, the remaining one is

the chordal SLE_{κ} in the random domain where it can live.

Dubédat (2006); Kozdron & Lawler (2007–2009); Miller & Sheffield (2016); Miller, Sheffield & Werner (2018); P. & Wu (2017); Beffara, P. & Wu (2018)

Let $\kappa \in (0, 4] \cup \{16/3, 6\}$. For any fixed connectivity α of 2N points, there exists at most one probability measure on N curves such that conditionally on N - 1 of the curves, the remaining one is

the chordal SLE_{κ} in the random domain where it can live.

Idea of proof:

[Beffara, P. & Wu [arXiv:1801.07699]]

- sample curves according to conditional law
 - \Rightarrow Markov chain on space of curves
- prove that there is a coupling of two such Markov chains, started from *any* two initial configurations, such that they have a *uniformly positive chance to agree after a few steps* ⇒ there is *at most one* stationary measure

Let $\kappa \in (0, 4] \cup \{16/3, 6\}$. For any fixed connectivity α of 2N points, there exists at most one probability measure on N curves such that conditionally on N - 1 of the curves, the remaining one is the chordal SLE_{κ} in the random domain where it can live.

Remarks:

• uniformly exponential mixing: \exists coupling s.t. $\mathbb{P}[X_{4n} \neq \tilde{X}_{4n}] \leq (1 - p_0)^n$

Let $\kappa \in (0, 4] \cup \{16/3, 6\}$. For any fixed connectivity α of 2N points, there exists at most one probability measure on N curves such that conditionally on N - 1 of the curves, the remaining one is

the chordal SLE_{κ} in the random domain where it can live.

Remarks:

- uniformly exponential mixing: \exists coupling s.t. $\mathbb{P}[X_{4n} \neq \tilde{X}_{4n}] \leq (1 - p_0)^n$
- the case of *N* = 2 was proved in Miller & Sheffield: IG II using the coupling of SLE with the Gaussian free field (GFF)
- but $N \ge 3$ curves *cannot* be coupled with the GFF
- our proof does not use the GFF in any way

Let $\kappa \in (0, 4] \cup \{16/3, 6\}$. For any fixed connectivity α of 2N points, there exists at most one probability measure on N curves such that conditionally on N - 1 of the curves, the remaining one is

the chordal SLE_{κ} in the random domain where it can live.

Remarks:

- uniformly exponential mixing: \exists coupling s.t. $\mathbb{P}[X_{4n} \neq \tilde{X}_{4n}] \leq (1 - p_0)^n$
- the case of *N* = 2 was proved in Miller & Sheffield: IG II using the coupling of SLE with the Gaussian free field (GFF)
- but $N \ge 3$ curves *cannot* be coupled with the GFF
- our proof does not use the GFF in any way
- update: $N = 2, \kappa \in (0, 8)$: Miller, Sheffield, Werner (2018)

For any fixed connectivity α of 2N points, there exists at least one probability measure on N curves such that conditionally on N – 1 of the curves, the remaining one is the chordal SLE_k in the random domain where it can live.

1. From scaling limits of multiple interfaces in critical models works for $\kappa \in \{2, 3, 4, 16/3, 6\}$

[Schramm & Sheffield (2013); Izyurov (2015); Beffara, P. & Wu (2018)]

For any fixed connectivity α of 2N points, there exists at least one probability measure on N curves such that conditionally on N – 1 of the curves, the remaining one is the chordal SLE_k in the random domain where it can live.

1. From scaling limits of multiple interfaces in critical models works for $\kappa \in \{2, 3, 4, 16/3, 6\}$

[Schramm & Sheffield (2013); Izyurov (2015); Beffara, P. & Wu (2018)]

 Global construction by Brownian loop measure works for κ ∈ (0, 4]
 [Dubédat (2006); Kozdron & Lawler (2007–2009); P. & Wu (2017)]

For any fixed connectivity α of 2N points, there exists at least one probability measure on N curves such that conditionally on N – 1 of the curves, the remaining one is the chordal SLE_k in the random domain where it can live.

1. From scaling limits of multiple interfaces in critical models works for $\kappa \in \{2, 3, 4, 16/3, 6\}$

[Schramm & Sheffield (2013); Izyurov (2015); Beffara, P. & Wu (2018)]

- 2. Global construction by Brownian loop measure works for κ ∈ (0, 4]
 [Dubédat (2006); Kozdron & Lawler (2007–2009); P. & Wu (2017)]
- 3. Global construction using CLE_{κ} works for $\kappa \in [8/3, 8)$

For any fixed connectivity α of 2N points, there exists at least one probability measure on N curves such that conditionally on N – 1 of the curves, the remaining one is the chordal SLE_k in the random domain where it can live.

1. From scaling limits of multiple interfaces in critical models works for $\kappa \in \{2, 3, 4, 16/3, 6\}$

[Schramm & Sheffield (2013); Izyurov (2015); Beffara, P. & Wu (2018)]

- 2. Global construction by Brownian loop measure works for κ ∈ (0, 4]
 [Dubédat (2006); Kozdron & Lawler (2007–2009); P. & Wu (2017)]
- 3. Global construction using CLE_{κ} works for $\kappa \in [8/3, 8)$
- 4?. Local construction by Loewner evolutions expect $\forall \kappa \in (0, 8)$ [Bauer, Bernard & Kytölä (2005); Dubédat (2006)]

10

For any fixed connectivity α of 2N points, there exists at least one probability measure on N curves such that conditionally on N – 1 of the curves, the remaining one is the chordal SLE_k in the random domain where it can live.

1. From scaling limits of multiple interfaces in critical models works for $\kappa \in \{2, 3, 4, 16/3, 6\}$

[Schramm & Sheffield (2013); Izyurov (2015); Beffara, P. & Wu (2018)]

- 2. Global construction by Brownian loop measure works for κ ∈ (0, 4]
 [Dubédat (2006); Kozdron & Lawler (2007–2009); P. & Wu (2017)]
- 3. Global construction using CLE_{κ} works for $\kappa \in [8/3, 8)$
- 4?. Local construction by Loewner evolutions ok $\forall \kappa \in (0, 4]$ expect $\forall \kappa \in (0, 8)$ [Bauer, Bernard & Kytölä (2005); Dubédat (2006)]

Let $\kappa \in (0, 4] \cup \{16/3, 6\}$. For any fixed connectivity α of 2N points, there exists a unique probability measure on N curves s.t. conditionally on N - 1 of the curves, the remaining one is the chordal SLE_{κ} in the random domain where it can live.

Proposition

Let $\kappa \in (0, 4]$. The marginal law of the curve starting from x_1 is given by the Loewner chain with driving process

$$dW_t = \sqrt{\kappa} \, dB_t + \kappa \, \partial_1 \log \mathcal{Z}_\alpha \left(W_t, V_t^2, V_t^3, \dots, V_t^{2N} \right) dt, \qquad W_0 = x_1$$
$$dV_t^i = \frac{2dt}{V_t^i - W_t}, \qquad V_0^i = x_i, \quad \text{for } i \neq 1$$

Therefore, **local** *N*-SLE_{κ} with partition function \mathcal{Z}_{α}

= global N-SLE_{κ} associated to connectivity α

CONNECTION PROBABILITIES

Application: Connection probabilities

Idea: discrete connection probabilities $\xrightarrow{\delta \to 0}$ partition functions: $Z_{\alpha}(x_1, \dots, x_{2N})$

 $\lim_{\delta \to 0} \mathbb{P}[\text{interfaces form connectivity } \alpha] = \frac{\mathcal{Z}_{\alpha}(x_1, \dots, x_{2N})}{\sum_{\beta} \mathcal{Z}_{\beta}(x_1, \dots, x_{2N})}$

[Suggested e.g. by Bauer, Bernard, Kytölä (2005)]

Application: Connection probabilities

Idea: discrete connection probabilities $\stackrel{\delta \to 0}{\longrightarrow}$ partition functions: $\lim_{\delta \to 0} \mathbb{P}[\text{interfaces form connectivity } \alpha] = \frac{\mathcal{Z}_{\alpha}(x_1, \dots, x_{2N})}{\sum_{\beta} \mathcal{Z}_{\beta}(x_1, \dots, x_{2N})}$

[Suggested e.g. by Bauer, Bernard, Kytölä (2005)]

- Gaussian free field ($\kappa = 4$) with alternating boundary data $+\lambda, -\lambda, +\lambda, -\lambda, \dots$ [P. & Wu [arXiv:1703.00898]]
- **double-dimer model** ($\kappa = 4$) [Kenyon & Wilson (2011)]
- boundary touching branches in **uniform spanning tree** ($\kappa = 2$) with wired boundary [Karrila, Kytölä, P. [arXiv:1702.03261]]
- critical Ising model with alternating b.c. [in progress...]

THANKS