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1d randomly stirred fluid: Stochastic Burgers equation

∂tu = ∂xu
2 + ∂2

xu + ∂xξ t > 0, x ∈ R

ξ(t, x) space-time white noise

Forster-Nelson-Stephen 77: Dynamic renormalization group

ε−1/2u(ε−3/2t, ε−1x) → Non-linear long time fixed pt

Anomalous fluctuations → A new universality class ?
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t(some shape) + tχFluctuations

1 + 1 d: Fluctuation exponent χ = 1/3
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Kardar-Parisi-Zhang (KPZ) Equation 86

∂th = (∂xh)2︸ ︷︷ ︸
lateral growth

+ ∂2
xh︸︷︷︸

relaxation

+ ξ︸︷︷︸
space−time
white noise

h(t, x)︸ ︷︷ ︸
height at time
t position x

∂xh=u  stoch Burgers eqn
∂tu=2u∂xu+∂2

xu+∂xξ

Eden growth

Ballistic aggregration

ASEP
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Burning paper Coffee Stains

Tumour growth
(?) Bacterial growth
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A special discretization of KPZ equation (TASEP)

h(x + 1) = h(x)± 1, x ∈ Z
local max 7→ local min at rate 1
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X(1)X(2)X(3) X(0) X(-1) X(-2)

y y×

−21∧ = 1
2

[
(∇−h)(∇+h)− 1 + ∆h

]
symmetric random walk invariant (except for height shift)

Lab mouse of non-equilibrium stat mech since the late 60’s
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A special discretization of KPZ equation (TASEP)
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Asymptotic fluctuations depend on initial data

In TASEP special initial data could be computed 00’s Johansson, Spohn, Borodin,

Sasamoto,...

Corner

h(t, x) ∼ c1t − c2
x2

t + c3t
1/3FGUE

Flat

h(t, x) ∼ c3t + c4t
1/3FGOE

FGUE/FGOE are the rescaled top eigenvalues of a matrix from the
Gaussian Unitary/Orthogonal Ensembles
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Asymptotic fluctuations depend on initial data

In TASEP special initial data could be computed 00’s Johansson, Spohn, Borodin,

Sasamoto,...

Corner

h(t, x) ∼ c1t − c2
x2

t + c3t
1/3A2(t−2/3x)

Flat

h(t, x) ∼ c3t + c4t
1/3A1(t−2/3x)

Airy2/Airy1 are special stochastic processes
Equivalent to hε(t, x) = ε1/2h(ε−3/2t, ε−1x)− cε−3/2t
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Conjectural KPZ universality class

KPZ fixed point is space-time random field at the centre, the non-linear
fixed point invariant under hε(t, x) = ε1/2h(ε−3/2t, ε−1x)

KPZ eq limit of ε1/2h(ε−2t, ε−1x) with nonlinearity/noise of order ε1/2
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What is the fixed point?

Formally, solution of Hopf equation ∂th = (∂xh)2, or ∂xh = u solves
Burgers equation ∂tu = ∂xu

2 , but they are not well posed

Instead, we describe it as a Markov process whose transition
probabilities can be linearized, an integrable Markov process

This is done by first solving TASEP, which also turns out to be an
integrable Markov process, then taking limit

At TASEP level there are well-posed equations (the Kolmogorov or
backward equation, or the Fokker-Planck or forward equation) so the
solution can be checked

Method works for some variants of TASEP, but the fact that there is
only one such fixed point is still conjectural
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The KPZ fixed point

We give formulas for fixed point; formulas for TASEP similar with
Brownian motion replaced by random walk
Markov transition probabilities are given by determinants

Prob
(
h(t, x1) ≤ a1, . . . , h(t, xM) ≤ aM | h(0, ·) = h0(·)

)
= det(I−Kh0,t,x,a)

Fredholm determinant of a compact (trace class) operator

det(I + K )L2(S,µ) = 1 +
∞∑
n=1

1

n!

∫
Sn

det
[
K (ui , uj)

]n
i ,j=1

dµ(u1) · · · dµ(un)

Stochastic integrable system: dynamics linearized by a novel
Brownian scattering transform h 7→ Kh
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Brownian scattering transform

For h upper semi-continuous define for B Brownian motion

Phit h
−L,L(u1, u2) = PB(−L)=u1,B(L)=u2

(
B hits hypo(h) on [−L, L]

)
The Brownian scattering transform of h is

Kh = lim
L→∞

e−L∂
2
Phit h
−L,Le

−L∂2

Looks terrible because of backwards heat equation, but we only ever use

Kh,t = UtK
h0U−1

t Ut = e
t
3
∂3

Ok! ex∂
2+

t
3 ∂

3

(z1, z2) = t−1/3e
2x3

3t2−
(z1−z2)x

t Ai(−t−1/3(z1 − z2) + t−4/3x2)
even for x < 0 as long as t 6= 0 !
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KPZ fixed pt formula

Ph0

(
h(t, x1) ≤ a1, . . . , h(t, xM) ≤ aM

)
= det

(
I− χaUtK

ext
h0

U−1
t χa

)
Kext

h (xi , ·; xj , ·) = −e(xj−xi )∂2
1xi<xj + e−xi∂

2
Kh0exj∂

2
χa(xi , u) = 1u>ai

Conjecturally unique local dynamics satisfying

1 (1:2:3 scaling invariant) αh(α−3t, α−2x;αh0(α−2x))
dist
= h(t, x; h0)

2 (Skew time reversible) P
(
h(t, x; g) ≤ −f(x)

)
= P

(
h(t, x; f) ≤ −g(x)

)
3 (Stationarity in space) h(t, x + u; h0(x− u))

dist
= h(t, x; h0);

For TASEP (and a few related models) if the rescaled height function
converges to h0 as upper semicont fns

ε1/2
[
h(2ε−3/2t, 2ε−1x) + ε−3/2t

]
−−→
ε→0

h(t, x; h0) in distr

For t > 0, h(t, x) locally Brownian, Hölder 1
2− in x, 1

3− in t
For eg, flat, narrow wedge, Brownian scattering transform is easy to
compute and recovers the known formulas for the Airy processes.
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Biorthogonalization of TASEP

One-sided i.d. X (0) = X (−1) = · · · = +∞, 1 ≤ n1 < n2 < · · · < nM

Borodin, Ferrari, Prähofer and Sasamoto’07:

PX0

(
Xt(nj) > aj , j = 1, . . . ,M

)
= det

(
I − 1xi≤aiKt1xi≤ai

)
`2({n1,...,nM}×Z)

Kt(ni , xi ; nj , xj) = −Qnj−ni (xi , xj)1ni<nj +

nj∑
k=1

Ψni
ni−k(xi ) Φ

nj
nj−k(xj)

Q(x , y) = 1x>y Ψn
k(x) =

1

2πi

∮
Γ0

dw

w x−X0(n−k)+1

(1− w

w

)k
et(w−1/2)

Ψn
k Charlier polynomials. Φn

k are defined implicitly by
1 Biorthogonality:

∑
x∈Z Ψn

` (x)Φn
k(x) = 1`=k

2 Φn
k is a polynomial of degree k

Φn
k were only known for particles equally spaced in a block. We find them

in general
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Exact fluctuations starting from h0(x) = x2 explains recent experimental
results of Takeuchi on fluctuations of inward growing fronts (incorrect
claims that it has flat fluctuations, FGOE)

Here we have finite time (t = 50s) blowup. If initial data has (say) linear
growth at ∞ then solutions for all time
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Conclusions

At least now we can state the

KPZ Universality conjecture: All models in the class should converge
to this fixed point under the 1:2:3 scaling

We have proved it now for TASEP and several generalizations

The solution of TASEP (after 50 yrs!) has ramifications well beyond
the KPZ fixed point.

TASEP is a microscopic (as opposed to continuum) model for (single
lane) traffic (Burgers equation).

With Mustazee Rahman (MIT) we are have results for eg. position of
shock (typically the difference of two GOE’s. Earlier special cases by
Ferrari-Nejjar.)
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