The KPZ fixed point

Jeremy Quastel
University of Toronto

joint work with
Konstantin Matetski (University of Toronto) and Daniel Remenik (Universidad de Chile)
ICMP, Montreal 23 July 2018

1d randomly stirred fluid: Stochastic Burgers equation

$$
\partial_{t} u=\partial_{x} u^{2}+\partial_{x}^{2} u+\partial_{x} \xi \quad t>0, \quad x \in \mathbb{R}
$$

$$
\xi(t, x) \text { space-time white noise }
$$

Forster-Nelson-Stephen 77: Dynamic renormalization group
$\epsilon^{-1 / 2} u\left(\epsilon^{-3 / 2} t, \epsilon^{-1} x\right) \rightarrow$ Non-linear long time fixed pt
Anomalous fluctuations \rightarrow A new universality class ?

Two-dimensional growth - Eden's model
t (some shape) $+t^{\chi}$ Fluctuations
$1+1 \mathrm{~d}$: Fluctuation exponent $\chi=1 / 3$

Kardar-Parisi-Zhang (KPZ) Equation 86

$$
\begin{aligned}
& \partial_{t} h=\underbrace{\left(\partial_{x} h\right)^{2}}_{\text {lateral growth }}+\underbrace{\partial_{x}^{2} h}_{\text {relaxation }}+\underbrace{\xi}_{\substack{\text { space-time } \\
\text { white noise }}} \\
& \underbrace{h(t, x)}_{\begin{array}{c}
\text { height at time } \\
\mathrm{t} \text { position } \mathrm{x}
\end{array}} \\
& \partial_{x} h=u \rightsquigarrow \text { stoch Burgers eqn } \\
& \partial_{t} u=2 u \partial_{x} u+\partial_{x}^{2} u+\partial_{x} \xi
\end{aligned}
$$

T. Halpin-Healy, Y.C. Zhang/Physics Reports 254 (1995) 215-414

Burning paper Coffee Stains

Tumour growth
(?)

Bacterial growth

A special discretization of KPZ equation (TASEP)

$$
h(x+1)=h(x) \pm 1, x \in \mathbb{Z}
$$

$$
\text { local } \max \mapsto \text { local } \min \text { at rate } 1
$$

$$
-2 \mathbf{1}_{\wedge}=\frac{1}{2}\left[\left(\nabla^{-} h\right)\left(\nabla^{+} h\right)-1+\Delta h\right]
$$

symmetric random walk invariant (except for height shift)
Lab mouse of non-equilibrium stat mech since the late 60's

A special discretization of KPZ equation (TASEP)

$$
h(x+1)=h(x) \pm 1, x \in \mathbb{Z}
$$

$$
\text { local } \max \mapsto \text { local } \min \text { at rate } 1
$$

$$
-2 \mathbf{1}_{\wedge}=\frac{1}{2}\left[\left(\nabla^{-} h\right)\left(\nabla^{+} h\right)-1+\Delta h\right]
$$

symmetric random walk invariant (except for height shift)
Lab mouse of non-equilibrium stat mech since the late 60's

Asymptotic fluctuations depend on initial data

In TASEP special initial data could be computed oo's Johansson, Spohn, Borodin,
Sasamoto,...

Corner

$$
h(t, x) \sim c_{1} t-c_{2} \frac{x^{2}}{t}+c_{3} t^{1 / 3} F_{\mathrm{GUE}}
$$

Flat

$$
h(t, x) \sim c_{3} t+c_{4} t^{1 / 3} F_{\mathrm{GOE}}
$$

$F_{\text {GUE }} / F_{\text {GOE }}$ are the rescaled top eigenvalues of a matrix from the Gaussian Unitary/Orthogonal Ensembles

Asymptotic fluctuations depend on initial data

In TASEP special initial data could be computed oo's Johansson, Spohn, Borodin,
Sasamoto,...

Corner

Flat

$$
h(t, x) \sim c_{3} t+c_{4} t^{1 / 3} \mathcal{A}_{1}\left(t^{-2 / 3} x\right)
$$

Airy $_{2} /$ Airy $_{1}$ are special stochastic processes Equivalent to $h_{\epsilon}(t, x)=\epsilon^{1 / 2} h\left(\epsilon^{-3 / 2} t, \epsilon^{-1} x\right)-c \epsilon^{-3 / 2} t$

Conjectural KPZ universality class

KPZ fixed point is space-time random field at the centre, the non-linear fixed point invariant under $h_{\epsilon}(t, x)=\epsilon^{1 / 2} h\left(\epsilon^{-3 / 2} t, \epsilon^{-1} x\right)$ KPZ eq limit of $\epsilon^{1 / 2} h\left(\epsilon^{-2} t, \epsilon^{-1} x\right)$ with nonlinearity/ noise of order $\epsilon^{1 / 2}$

What is the fixed point?

- Formally, solution of Hopf equation $\partial_{t} \mathfrak{h}=\left(\partial_{x} \mathfrak{h}\right)^{2}$, or $\partial_{x} \mathfrak{h}=\mathfrak{u}$ solves Burgers equation $\partial_{t} \mathfrak{u}=\partial_{x} \mathfrak{u}^{2}$, but they are not well posed
- Instead, we describe it as a Markov process whose transition probabilities can be linearized, an integrable Markov process
- This is done by first solving TASEP, which also turns out to be an integrable Markov process, then taking limit
- At TASEP level there are well-posed equations (the Kolmogorov or backward equation, or the Fokker-Planck or forward equation) so the solution can be checked
- Method works for some variants of TASEP, but the fact that there is only one such fixed point is still conjectural

The KPZ fixed point

We give formulas for fixed point; formulas for TASEP similar with Brownian motion replaced by random walk
Markov transition probabilities are given by determinants

$$
\begin{aligned}
& \operatorname{Prob}\left(\mathfrak{h}\left(\boldsymbol{t}, \mathbf{x}_{1}\right) \leq \mathbf{a}_{1}, \ldots, \mathfrak{h}\left(\boldsymbol{t}, \mathbf{x}_{M}\right) \leq \mathbf{a}_{M} \mid \mathfrak{h}(0, \cdot)=\mathfrak{h}_{0}(\cdot)\right) \\
& =\operatorname{det}\left(\mathbf{I}-\mathbf{K}_{\mathfrak{h}_{0}, \boldsymbol{t}, \mathbf{x}, \mathbf{a}}\right)
\end{aligned}
$$

Fredholm determinant of a compact (trace class) operator

$$
\operatorname{det}(I+K)_{L^{2}(S, \mu)}=1+\sum_{n=1}^{\infty} \frac{1}{n!} \int_{S^{n}} \operatorname{det}\left[K\left(u_{i}, u_{j}\right)\right]_{i, j=1}^{n} d \mu\left(u_{1}\right) \cdots d \mu\left(u_{n}\right)
$$

Stochastic integrable system: dynamics linearized by a novel Brownian scattering transform $\mathfrak{h} \mapsto \mathbf{K}_{\mathfrak{h}}$

Brownian scattering transform

For \mathfrak{h} upper semi-continuous define for \mathbf{B} Brownian motion

$$
\mathbf{P}_{-L, L}^{\text {hit }}\left(u_{1}, u_{2}\right)=\mathbb{P}_{\mathbf{B}(-L)=u_{1}, \mathbf{B}(L)=u_{2}}(\mathbf{B} \text { hits hypo }(\mathfrak{h}) \text { on }[-L, L])
$$

The Brownian scattering transform of \mathfrak{h} is

$$
\mathbf{K}_{\mathfrak{h}}=\lim _{L \rightarrow \infty} e^{-L \partial^{2}} \mathbf{P}_{-L, L}^{\text {hit } \mathfrak{h}} e^{-L \partial^{2}}
$$

Looks terrible because of backwards heat equation, but we only ever use

$$
\mathbf{K}_{\mathfrak{h}, \boldsymbol{t}}=U_{t} \mathbf{K}^{\mathfrak{h}_{0}} U_{t}^{-1} \quad U_{\boldsymbol{t}}=e^{\frac{t}{3} \partial^{3}}
$$

Ok! $e^{\mathrm{x} \partial^{2}+\frac{\boldsymbol{t}}{3} \partial^{3}}\left(z_{1}, z_{2}\right)=\boldsymbol{t}^{-1 / 3} e^{\frac{2 x^{3}}{3 t^{2}}-\frac{\left(z_{1}-z_{2}\right) \mathrm{x}}{t}} \mathrm{Ai}\left(-\boldsymbol{t}^{-1 / 3}\left(z_{1}-z_{2}\right)+\boldsymbol{t}^{-4 / 3} \boldsymbol{x}^{2}\right)$ even for $x<0$ as long as $t \neq 0$!

KPZ fixed pt formula

$$
\mathbb{P}_{\mathfrak{h}_{0}}\left(\mathfrak{h}\left(\boldsymbol{t}, \mathbf{x}_{1}\right) \leq \mathbf{a}_{1}, \ldots, \mathfrak{h}\left(\boldsymbol{t}, \mathbf{x}_{M}\right) \leq \mathbf{a}_{M}\right)=\operatorname{det}\left(\mathbf{I}-\chi_{\mathbf{a}} U_{\boldsymbol{t}} \mathbf{K}_{\mathfrak{h}_{0}}^{\text {ext }} U_{\boldsymbol{t}}^{-1} \chi_{\mathbf{a}}\right)
$$

$$
\mathbf{K}_{\mathfrak{h}}^{\text {ext }}\left(\mathbf{x}_{i}, \cdot ; \mathbf{x}_{j}, \cdot\right)=-e^{\left(\mathbf{x}_{j}-\mathbf{x}_{i}\right) \partial^{2}} \mathbb{1}_{\mathbf{x}_{i}<\mathbf{x}_{j}}+e^{-\mathbf{x}_{i} \partial^{2}} \mathbf{K}^{\mathfrak{h}_{0}} e^{\mathbf{x}_{j} \partial^{2}} \quad \chi_{\mathbf{a}}\left(\mathbf{x}_{i}, u\right)=\mathbb{1}_{u>\mathbf{a}_{i}}
$$

- Conjecturally unique local dynamics satisfying
(1) (1:2:3 scaling invariant) $\alpha \mathfrak{h}\left(\alpha^{-3} \boldsymbol{t}, \alpha^{-2} \mathbf{x} ; \alpha \mathfrak{h}_{0}\left(\alpha^{-2} \mathbf{x}\right)\right)$ dist $\mathfrak{=}\left(\boldsymbol{t}, \mathbf{x} ; \mathfrak{h}_{0}\right)$
(2) (Skew time reversible) $\mathbb{P}(\mathfrak{h}(\boldsymbol{t}, \mathbf{x} ; \mathfrak{g}) \leq-\mathfrak{f}(\mathbf{x}))=\mathbb{P}(\mathfrak{h}(\boldsymbol{t}, \mathbf{x} ; \mathfrak{f}) \leq-\mathfrak{g}(\mathbf{x}))$
(3) (Stationarity in space) $\mathfrak{h}\left(\boldsymbol{t}, \mathbf{x}+\mathbf{u} ; \mathfrak{h}_{0}(\mathbf{x}-\mathbf{u})\right) \stackrel{\text { dist }}{=} \mathfrak{h}\left(\boldsymbol{t}, \mathbf{x} ; \mathfrak{h}_{0}\right)$;
- For TASEP (and a few related models) if the rescaled height function converges to \mathfrak{h}_{0} as upper semicont fns
$\epsilon^{1 / 2}\left[h\left(2 \epsilon^{-3 / 2} \boldsymbol{t}, 2 \epsilon^{-1} \mathbf{x}\right)+\epsilon^{-3 / 2} \boldsymbol{t}\right] \underset{\epsilon \rightarrow 0}{\longrightarrow} \mathfrak{h}\left(\boldsymbol{t}, \mathbf{x} ; \mathfrak{h}_{0}\right)$ in distr
- For $\boldsymbol{t}>0, \mathfrak{h}(\boldsymbol{t}, \mathbf{x})$ locally Brownian, Hölder $\frac{1}{2}-$ in $\mathbf{x}, \frac{1}{3}-$ in \boldsymbol{t}
- For eg, flat, narrow wedge, Brownian scattering transform is easy to compute and recovers the known formulas for the Airy processes.

Biorthogonalization of TASEP

$$
\text { One-sided i.d. } X(0)=X(-1)=\cdots=+\infty, 1 \leq n_{1}<n_{2}<\cdots<n_{M}
$$

Borodin, Ferrari, Prähofer and Sasamoto'07:

$$
\mathbb{P}_{X_{0}}\left(X_{t}\left(n_{j}\right)>a_{j}, j=1, \ldots, M\right)=\operatorname{det}\left(I-\mathbb{1}_{x_{i} \leq a_{i}} K_{t} \mathbb{1}_{x_{i} \leq a_{i}}\right)_{\ell^{2}\left(\left\{n_{1}, \ldots, n_{M}\right\} \times \mathbb{Z}\right)}
$$

$$
\begin{aligned}
& K_{t}\left(n_{i}, x_{i} ; n_{j}, x_{j}\right)=-Q^{n_{j}-n_{i}}\left(x_{i}, x_{j}\right) \mathbb{1}_{n_{i}<n_{j}}+\sum_{k=1}^{n_{j}} \Psi_{n_{i}-k}^{n_{i}}\left(x_{i}\right) \Phi_{n_{j}-k}^{n_{j}}\left(x_{j}\right) \\
& Q(x, y)=\mathbb{1}_{x>y} \quad \Psi_{k}^{n}(x)=\frac{1}{2 \pi \mathrm{i}} \oint_{\Gamma_{0}} \frac{d w}{w^{x-x_{0}(n-k)+1}}\left(\frac{1-w}{w}\right)^{k} e^{t(w-1 / 2)}
\end{aligned}
$$

Ψ_{k}^{n} Charlier polynomials. Φ_{k}^{n} are defined implicitly by
(1) Biorthogonality: $\sum_{x \in \mathbb{Z}} \Psi_{\ell}^{n}(x) \Phi_{k}^{n}(x)=\mathbb{1}_{\ell=k}$
(2) Φ_{k}^{n} is a polynomial of degree k
Φ_{k}^{n} were only known for particles equally spaced in a block. We find them in general

Exact fluctuations starting from $\mathfrak{h}_{0}(x)=x^{2}$ explains recent experimental results of Takeuchi on fluctuations of inward growing fronts (incorrect claims that it has flat fluctuations, F_{GOE})

$$
t=2 \mathrm{~s}
$$

$t=20 \mathrm{~s}$

Here we have finite time ($t=50 s$) blowup. If initial data has (say) linear growth at ∞ then solutions for all time

Conclusions

- At least now we can state the

KPZ Universality conjecture: All models in the class should converge to this fixed point under the 1:2:3 scaling

We have proved it now for TASEP and several generalizations

- The solution of TASEP (after 50 yrs!) has ramifications well beyond the KPZ fixed point.

TASEP is a microscopic (as opposed to continuum) model for (single lane) traffic (Burgers equation).

With Mustazee Rahman (MIT) we are have results for eg. position of shock (typically the difference of two GOE's. Earlier special cases by Ferrari-Nejjar.)

