Singularity Formation in General Relativity

Jared Speck

Massachusetts Institute of Technology
\& Vanderbilt University
July 23, 2018

The Einstein-vacuum equations on $\mathbb{R} \times \mathbb{T}^{D}$

$$
\mathbf{R i c}_{\mu \nu}-\frac{1}{2} \mathbf{R} \mathbf{g}_{\mu \nu}=0
$$

- Data on $\Sigma_{1}=\mathbb{T}^{D}$ are tensors $(\stackrel{\circ}{g}, \stackrel{\circ}{k})$ verifying the Gauss and Codazzi constraints

The Einstein-vacuum equations on $\mathbb{R} \times \mathbb{T}^{D}$

$$
\mathbf{R i c}_{\mu \nu}-\frac{1}{2} \mathbf{R} \mathbf{g}_{\mu \nu}=0
$$

- Data on $\Sigma_{1}=\mathbb{T}^{D}$ are tensors $(\stackrel{\circ}{g}, \stackrel{\circ}{k})$ verifying the Gauss and Codazzi constraints
- The value of D is entertaining; stay tuned

The Einstein-vacuum equations on $\mathbb{R} \times \mathbb{T}^{D}$

$$
\mathbf{R i c}_{\mu \nu}-\frac{1}{2} \mathbf{R} \mathbf{g}_{\mu \nu}=0
$$

- Data on $\Sigma_{1}=\mathbb{T}^{D}$ are tensors $(\stackrel{\circ}{g}, \stackrel{\circ}{k})$ verifying the Gauss and Codazzi constraints
- The value of D is entertaining; stay tuned
- Our data will be Sobolev-close to Kasner data

The Einstein-vacuum equations on $\mathbb{R} \times \mathbb{T}^{D}$

$$
\mathbf{R i c}_{\mu \nu}-\frac{1}{2} \mathbf{R} \mathbf{g}_{\mu \nu}=0
$$

- Data on $\Sigma_{1}=\mathbb{T}^{D}$ are tensors $(\stackrel{\circ}{g}, \stackrel{\circ}{k})$ verifying the Gauss and Codazzi constraints
- The value of D is entertaining; stay tuned
- Our data will be Sobolev-close to Kasner data
- Choquet-Bruhat and Geroch: data verifying constraints launch a unique maximal globally hyperbolic development $(\boldsymbol{\mathcal { M }}, \mathbf{g})$

Kasner solutions

$$
\mathbf{g}_{K A S}=-d t \otimes d t+\sum_{i=1}^{D} t^{2 q_{i}} d x^{i} \otimes d x^{i}
$$

Kasner solutions

$$
\mathbf{g}_{K A S}=-d t \otimes d t+\sum_{i=1}^{D} t^{2 q_{i}} d x^{i} \otimes d x^{i}
$$

The $q_{i} \in(-1,1]$ verify the Kasner constraints:

$$
\sum_{i=1}^{D} q_{i}=1, \quad \sum_{i=1}^{D}\left(q_{i}\right)^{2}=1
$$

Kasner solutions

$$
\mathbf{g}_{K A S}=-d t \otimes d t+\sum_{i=1}^{D} t^{2 q_{i}} d x^{i} \otimes d x^{i}
$$

The $q_{i} \in(-1,1]$ verify the Kasner constraints:

$$
\sum_{i=1}^{D} q_{i}=1, \quad \sum_{i=1}^{D}\left(q_{i}\right)^{2}=1
$$

Riem $_{\alpha \beta \gamma \delta} \mathbf{R i e m}^{\alpha \beta \gamma \delta}=$ Ct $^{-4}$
where $C>0$ (unless a q_{i} is equal to 1)

Kasner solutions

$$
\mathbf{g}_{K A S}=-d t \otimes d t+\sum_{i=1}^{D} t^{2 q_{i}} d x^{i} \otimes d x^{i}
$$

The $q_{i} \in(-1,1]$ verify the Kasner constraints:

$$
\sum_{i=1}^{D} q_{i}=1, \quad \sum_{i=1}^{D}\left(q_{i}\right)^{2}=1
$$

Riem $_{\alpha \beta \gamma \delta} \mathbf{R i e m}^{\alpha \beta \gamma \delta}=$ Ct $^{-4}$
where $C>0$ (unless a q_{i} is equal to 1)
"Big Bang" singularity at $t=0$

Hawking's incompleteness theorem

Theorem (Hawking (specialized to vacuum))

Assume

- $(\boldsymbol{\mathcal { M }}, \mathbf{g})$ is the maximal globally hyperbolic development of data $(\stackrel{g}{g}, \dot{k})$ on $\Sigma_{1} \simeq \mathbb{T}^{D}$
- trk $<C<0$

Hawking's incompleteness theorem

Theorem (Hawking (specialized to vacuum))

Assume

- $(\boldsymbol{\mathcal { M }}, \mathbf{g})$ is the maximal globally hyperbolic development of data $(\stackrel{g}{g}, \dot{k})$ on $\Sigma_{1} \simeq \mathbb{T}^{D}$
- trk $<C<0$

Then no past-directed timelike geodesic emanating from Σ_{1} is longer than $C^{\prime}<\infty$.

Hawking's incompleteness theorem

Theorem (Hawking (specialized to vacuum))

Assume

- $(\boldsymbol{\mathcal { M }}, \mathbf{g})$ is the maximal globally hyperbolic development of data $(\stackrel{g}{g}, \dot{k})$ on $\Sigma_{1} \simeq \mathbb{T}^{D}$
- trk $<C<0$

Then no past-directed timelike geodesic emanating from Σ_{1} is longer than $C^{\prime}<\infty$.

- Hawking's theorem applies to perturbations of Kasner data

Hawking's incompleteness theorem

Theorem (Hawking (specialized to vacuum))

Assume

- $(\boldsymbol{\mathcal { M }}, \mathbf{g})$ is the maximal globally hyperbolic development of data $(\stackrel{g}{g}, \stackrel{\circ}{k})$ on $\Sigma_{1} \simeq \mathbb{T}^{D}$
- trk $<C<0$

Then no past-directed timelike geodesic emanating from Σ_{1} is longer than $C^{\prime}<\infty$.

- Hawking's theorem applies to perturbations of Kasner data
Glaring question: Why are the timelike geodesics incomplete?

Main theorem

Theorem (JS and I. Rodnianski)

For Sobolev-class perturbations of the data (at $t=1$) of Kasner solutions with

$$
\max _{i=1}^{D}\left|q_{i}\right|<\frac{1}{6}
$$

the past-incompleteness is caused by spacetime curvature blowup: Riem ${ }_{\alpha \beta \gamma \delta} \mathbf{R i e m}^{\alpha \beta \gamma \delta} \sim \mathrm{Ct}^{-4}$.

Main theorem

Theorem (JS and I. Rodnianski)

For Sobolev-class perturbations of the data (at $t=1$) of Kasner solutions with

$$
\max _{i=1}^{D}\left|q_{i}\right|<\frac{1}{6}
$$

the past-incompleteness is caused by spacetime curvature blowup: Riem $_{\alpha \beta \gamma \delta} \mathbf{R i e m}^{\alpha \beta \gamma \delta} \sim \mathrm{Ct}^{-4}$.

- Such Kasner solutions exist when $D \geq 38$.

Main theorem

Theorem (JS and I. Rodnianski)

For Sobolev-class perturbations of the data (at $t=1$) of Kasner solutions with

$$
\max _{i=1}^{D}\left|q_{i}\right|<\frac{1}{6}
$$

the past-incompleteness is caused by spacetime curvature blowup: Riem ${ }_{\alpha \beta \gamma \delta} \mathbf{R i e m}^{\alpha \beta \gamma \delta} \sim \mathrm{Ct}^{-4}$.

- Such Kasner solutions exist when $D \geq 38$.
- First stable spacelike singularity formation result in GR without symmetry as an effect of pure gravity.

Main theorem

Theorem (JS and I. Rodnianski)

For Sobolev-class perturbations of the data (at $t=1$) of Kasner solutions with

$$
\max _{i=1}^{D}\left|q_{i}\right|<\frac{1}{6}
$$

the past-incompleteness is caused by spacetime curvature blowup: Riem ${ }_{\alpha \beta \gamma \delta} \mathbf{R i e m}^{\alpha \beta \gamma \delta} \sim \mathrm{Ct}^{-4}$.

- Such Kasner solutions exist when $D \geq 38$.
- First stable spacelike singularity formation result in GR without symmetry as an effect of pure gravity.
- Qualitatively, the blowup is very different than the weak null singularities of Dafermos and Luk.

Main theorem

Theorem (JS and I. Rodnianski)

For Sobolev-class perturbations of the data (at $t=1$) of Kasner solutions with

$$
\max _{i=1}^{D}\left|q_{i}\right|<\frac{1}{6},
$$

the past-incompleteness is caused by spacetime curvature blowup: Riem ${ }_{\alpha \beta \gamma \delta} \mathbf{R i e m}^{\alpha \beta \gamma \delta} \sim \mathrm{Ct}^{-4}$.

- Such Kasner solutions exist when $D \geq 38$.
- First stable spacelike singularity formation result in GR without symmetry as an effect of pure gravity.
- Qualitatively, the blowup is very different than the weak null singularities of Dafermos and Luk.
- Previously, we proved related stable spacelike singularity formation results for nearly spatially isotropic (i.e., near-FLRW) solutions to the Einstein-scalar field system with $D=3$.

Main theorem

Theorem (JS and I. Rodnianski)

For Sobolev-class perturbations of the data (at $t=1$) of Kasner solutions with

$$
\max _{i=1}^{D}\left|q_{i}\right|<\frac{1}{6},
$$

the past-incompleteness is caused by spacetime curvature blowup: Riem ${ }_{\alpha \beta \gamma \delta} \mathbf{R i e m}^{\alpha \beta \gamma \delta} \sim \mathrm{Ct}^{-4}$.

- Such Kasner solutions exist when $D \geq 38$.
- First stable spacelike singularity formation result in GR without symmetry as an effect of pure gravity.
- Qualitatively, the blowup is very different than the weak null singularities of Dafermos and Luk.
- Previously, we proved related stable spacelike singularity formation results for nearly spatially isotropic (i.e., near-FLRW) solutions to the Einstein-scalar field system with $D=3$.
- The new techniques can be applied to various Einstein matter systems with $D=3$ for

Other contributors

Many people have investigated solutions to Einstein's equations near spacelike singularities:

Partial list of contributors
Aizawa, Akhoury, Andersson, Anguige, Aninos, Antoniou, Barrow, Béguin, Berger, Beyer, Chitré, Claudel, Coley, Cornish, Chrusciel, Damour, Demaret, Eardley, Ellis, Elskens, van Elst, Garfinkle, Goode, Grubišić, Heinzle, Henneaux, Hsu, Isenberg, Kichenassamy, Koguro, LeBlanc, LeFloch, Levin, Liang, Lim, Misner, Moncrief, Newman, Nicolai, Reiterer, Rendall, Ringström, Röhr, Sachs, Saotome, Spindel, Ståhl, Tod, Trubowitz, Uggla, Wainwright, Weaver, ...

Einstein's equations in CMCTSC gauge

Decomposing $\mathbf{g}=-n^{2} d t \otimes d t+g_{a b} d x^{a} \otimes d x^{b}$, Einstein's equations with $k_{a}^{a}=-t^{-1}$ are:

$$
\begin{aligned}
\partial_{t} g_{i j} & =-2 n g_{i a} k_{j}^{a}, \\
\partial_{t}\left(k_{j}^{i}\right) & =-\nabla^{i} \nabla_{j} n+n\left(\mathrm{Ric}_{j}^{i}-t^{-1} k_{j}^{i}\right), \\
\Delta_{g}(n-1) & =t^{-2}(n-1)+n \mathrm{R}
\end{aligned}
$$

subject to the constraints

$$
\begin{aligned}
\mathrm{R}-k_{b}^{a} k_{a}^{b}+t^{-2} & =0, \\
\nabla_{a} k_{i}^{a} & =0
\end{aligned}
$$

Einstein's equations in CMCTSC gauge

Decomposing $\mathbf{g}=-n^{2} d t \otimes d t+g_{a b} d x^{a} \otimes d x^{b}$, Einstein's equations with $k_{a}^{a}=-t^{-1}$ are:

$$
\begin{aligned}
\partial_{t} g_{i j} & =-2 n g_{i a} k_{j}^{a}, \\
\partial_{t}\left(k_{j}^{i}\right) & =-\nabla^{i} \nabla_{j} n+n\left(\operatorname{Ric}_{j}^{i}-t^{-1} k_{j}^{i}\right), \\
\Delta_{g}(n-1) & =t^{-2}(n-1)+n \mathrm{R}
\end{aligned}
$$

subject to the constraints

$$
\begin{aligned}
\mathrm{R}-k_{b}^{a} k_{a}^{b}+t^{-2} & =0, \\
\nabla_{a} k_{i}^{a} & =0
\end{aligned}
$$

The elliptic lapse equation synchronizes the singularity

Analysis outline

The hard part is showing that the solution exists all the way to $t=0$. The key is to prove: $\left|t k_{j}^{i}(t, x)\right|$ is bounded.

Analysis outline

The hard part is showing that the solution exists all the way to $t=0$. The key is to prove: $\left|t k_{j}^{i}(t, x)\right|$ is bounded.

- Low-norm bootstrap assumptions (slightly worse than Kasner): $\left\|g_{i j}\right\|_{L^{\infty}\left(\Sigma_{t}\right)} \leq t^{-1 / 3},\left\|g^{i j}\right\|_{L^{\infty}\left(\Sigma_{t}\right)} \leq t^{-1 / 3}$
- High-norm bootstrap assumptions: $\|g\|_{\dot{H}^{N+1}\left(\Sigma_{t}\right)} \leq \epsilon t^{-A}$,

$$
\|k\|_{\dot{H}^{N}\left(\Sigma_{t}\right)} \leq \epsilon t^{-A}
$$

Analysis outline

The hard part is showing that the solution exists all the way to $t=0$. The key is to prove: $\left|t k_{j}^{i}(t, x)\right|$ is bounded.

- Low-norm bootstrap assumptions (slightly worse than Kasner): $\left\|g_{i j}\right\|_{L^{\infty}\left(\Sigma_{t}\right)} \leq t^{-1 / 3},\left\|g^{i j}\right\|_{L^{\infty}\left(\Sigma_{t}\right)} \leq t^{-1 / 3}$
- High-norm bootstrap assumptions: $\|g\|_{\dot{H}^{N+1}\left(\Sigma_{t}\right)} \leq \epsilon t^{-A}$, $\|k\|_{\dot{H}^{N}\left(\Sigma_{t}\right)} \leq \epsilon t^{-A}$
- N and A are parameters, with A large and N chosen large relative to A
- ϵ chosen small relative to N and A

Analysis outline

The hard part is showing that the solution exists all the way to $t=0$. The key is to prove: $\left|t k_{j}^{i}(t, x)\right|$ is bounded.

- Low-norm bootstrap assumptions (slightly worse than Kasner): $\left\|g_{i j}\right\|_{L^{\infty}\left(\Sigma_{t}\right)} \leq t^{-1 / 3},\left\|g^{i j}\right\|_{L^{\infty}\left(\Sigma_{t}\right)} \leq t^{-1 / 3}$
- High-norm bootstrap assumptions: $\|g\|_{\dot{H}^{N+1}\left(\Sigma_{t}\right)} \leq \epsilon t^{-A}$, $\|k\|_{\dot{H}^{N}\left(\Sigma_{t}\right)} \leq \epsilon t^{-A}$
- N and A are parameters, with A large and N chosen large relative to A
- ϵ chosen small relative to N and A
- Interpolation: $\left\|\partial_{i} g_{j k}\right\|_{L \infty\left(\Sigma_{t}\right)} \lesssim \epsilon t^{-(1 / 3+\delta)}$, where $\delta=\delta(N, A) \rightarrow 0$ as $N \rightarrow \infty$ with A fixed

Analysis outline

The hard part is showing that the solution exists all the way to $t=0$. The key is to prove: $\left|t k_{j}^{i}(t, x)\right|$ is bounded.

- Low-norm bootstrap assumptions (slightly worse than Kasner): $\left\|g_{i j}\right\|_{L^{\infty}\left(\Sigma_{t}\right)} \leq t^{-1 / 3},\left\|g^{i j}\right\|_{L^{\infty}\left(\Sigma_{t}\right)} \leq t^{-1 / 3}$
- High-norm bootstrap assumptions: $\|g\|_{\dot{H}^{N+1}\left(\Sigma_{t}\right)} \leq \epsilon t^{-A}$, $\|k\|_{\dot{H}^{N}\left(\Sigma_{t}\right)} \leq \epsilon t^{-A}$
- N and A are parameters, with A large and N chosen large relative to A
- ϵ chosen small relative to N and A
- Interpolation: $\left\|\partial_{i} g_{j k}\right\|_{L \infty\left(\Sigma_{t}\right)} \lesssim \epsilon t^{-(1 / 3+\delta)}$, where $\delta=\delta(N, A) \rightarrow 0$ as $N \rightarrow \infty$ with A fixed
- $\partial_{t}\left(t k_{j}^{i}\right)=t \operatorname{Ric}^{i}{ }_{j}+\cdots \sim \operatorname{tg}^{-3}(\partial g)^{2}+\cdots \lesssim \epsilon t^{-(2 / 3+2 \delta)}$

Analysis outline

The hard part is showing that the solution exists all the way to $t=0$. The key is to prove: $\left|t k_{j}^{i}(t, x)\right|$ is bounded.

- Low-norm bootstrap assumptions (slightly worse than Kasner): $\left\|g_{i j}\right\|_{L^{\infty}\left(\Sigma_{t}\right)} \leq t^{-1 / 3},\left\|g^{i j}\right\|_{L^{\infty}\left(\Sigma_{t}\right)} \leq t^{-1 / 3}$
- High-norm bootstrap assumptions: $\|g\|_{\dot{j}^{N+1}\left(\Sigma_{t}\right)} \leq \epsilon t^{-A}$, $\|k\|_{\dot{H}^{N}\left(\Sigma_{t}\right)} \leq \epsilon t^{-A}$
- N and A are parameters, with A large and N chosen large relative to A
- ϵ chosen small relative to N and A
- Interpolation: $\left\|\partial_{i} g_{j k}\right\|_{L \infty\left(\Sigma_{t}\right)} \lesssim \epsilon t^{-(1 / 3+\delta)}$, where $\delta=\delta(N, A) \rightarrow 0$ as $N \rightarrow \infty$ with A fixed
- $\partial_{t}\left(t k_{j}^{i}\right)=t \operatorname{Ric}^{i}{ }_{j}+\cdots \sim \operatorname{tg}^{-3}(\partial g)^{2}+\cdots \lesssim \epsilon t^{-(2 / 3+2 \delta)}$
- Thus, integrability of $t^{-(2 / 3+2 \delta)}$ implies that for $t \in(0,1]:\left|t k_{j}^{i}(t, x)-k_{j}^{i}(1, x)\right| \lesssim \epsilon$

Top-order energy estimates

For $t \in(0,1]$, we have:

$$
\begin{aligned}
& \left\|t^{A+1} g\right\|_{\dot{H}^{N+1}\left(\Sigma_{t}\right)}^{2}+\left\|t^{A} k\right\|_{\dot{H}^{N}\left(\Sigma_{t}\right)}^{2} \\
& \leq \text { Data } \\
& +\left\{C_{\star}-2 A\right\} \int_{t}^{1} s^{-1}\left\{\left\|s^{A+1} g\right\|_{\dot{H}^{N+1}\left(\Sigma_{s}\right)}^{2}+\left\|s^{A} k\right\|_{\dot{H}^{N}\left(\Sigma_{s}\right)}^{2}\right\} d s \\
& +\cdots,
\end{aligned}
$$

where

- C_{\star} can be large but is independent of N and A
- ... denotes lower-order or time-integrable error terms

Top-order energy estimates

For $t \in(0,1]$, we have:

$$
\begin{aligned}
& \left\|t^{A+1} g\right\|_{\dot{H}^{N+1}\left(\Sigma_{t}\right)}^{2}+\left\|t^{A} k\right\|_{H^{N}\left(\Sigma_{t}\right)}^{2} \\
& \leq \text { Data } \\
& +\left\{C_{\star}-2 A\right\} \int_{t}^{1} s^{-1}\left\{\left\|s^{A+1} g\right\|_{\dot{H}^{N+1}\left(\Sigma_{s}\right)}^{2}+\left\|s^{A} k\right\|_{\dot{H}^{N}\left(\Sigma_{s}\right)}^{2}\right\} d s \\
& +\cdots,
\end{aligned}
$$

where

- C_{\star} can be large but is independent of N and A
- ... denotes lower-order or time-integrable error terms
- In my earlier work with Rodnianski, we had $C_{\star}=\mathcal{O}(\epsilon)$; "approximate monotonicity"

Top-order energy estimates

For $t \in(0,1]$, we have:

$$
\begin{aligned}
& \left\|t^{A+1} g\right\|_{\dot{H}^{N+1}\left(\Sigma_{t}\right)}^{2}+\left\|t^{A} k\right\|_{\dot{H}^{N}\left(\Sigma_{t}\right)}^{2} \\
& \leq \text { Data } \\
& +\left\{C_{\star}-2 A\right\} \int_{t}^{1} s^{-1}\left\{\left\|s^{A+1} g\right\|_{\dot{H}^{N+1}\left(\Sigma_{s}\right)}^{2}+\left\|s^{A} k\right\|_{\dot{H}^{N}\left(\Sigma_{s}\right)}^{2}\right\} d s \\
& +\cdots,
\end{aligned}
$$

where

- C_{\star} can be large but is independent of N and A
- ... denotes lower-order or time-integrable error terms
- In my earlier work with Rodnianski, we had $C_{\star}=\mathcal{O}(\epsilon)$; "approximate monotonicity"
For A large, the integral has a friction sign

Top-order energy estimates

For $t \in(0,1]$, we have:

$$
\begin{aligned}
& \left\|t^{A+1} g\right\|_{\dot{H}^{N+1}\left(\Sigma_{t}\right)}^{2}+\left\|t^{A} k\right\|_{\dot{H}^{N}\left(\Sigma_{t}\right)}^{2} \\
& \leq \text { Data } \\
& +\left\{C_{\star}-2 A\right\} \int_{t}^{1} s^{-1}\left\{\left\|s^{A+1} g\right\|_{\dot{H}^{N+1}\left(\Sigma_{s}\right)}^{2}+\left\|s^{A} k\right\|_{\dot{H}^{N}\left(\Sigma_{s}\right)}^{2}\right\} d s \\
& +\cdots,
\end{aligned}
$$

where

- C_{\star} can be large but is independent of N and A
- ... denotes lower-order or time-integrable error terms
- In my earlier work with Rodnianski, we had $C_{\star}=\mathcal{O}(\epsilon)$; "approximate monotonicity"
For A large, the integral has a friction sign
- Hence, can show $\left\|t^{A+1} g\right\|_{\dot{j}^{N+1}\left(\Sigma_{t}\right)}^{2}+\left\|t^{A} k\right\|_{\dot{H}^{N}\left(\Sigma_{t}\right)}^{2} \leq$ Data

Top-order energy estimates

For $t \in(0,1]$, we have:
$\left\|t^{A+1} g\right\|_{\dot{j}^{N+1}\left(\Sigma_{t}\right)}^{2}+\left\|t^{A} k\right\|_{\dot{H}^{N}\left(\Sigma_{t}\right)}^{2}$
\leq Data
$+\left\{C_{\star}-2 A\right\} \int_{t}^{1} s^{-1}\left\{\left\|s^{A+1} g\right\|_{\dot{H}^{N+1}\left(\Sigma_{s}\right)}^{2}+\left\|s^{A} k\right\|_{\dot{H}^{N}\left(\Sigma_{s}\right)}^{2}\right\} d s$
$+\cdots$,
where

- C_{\star} can be large but is independent of N and A
- ... denotes lower-order or time-integrable error terms
- In my earlier work with Rodnianski, we had $C_{\star}=\mathcal{O}(\epsilon)$; "approximate monotonicity"
For A large, the integral has a friction sign
- Hence, can show $\left\|t^{A+1} g\right\|_{j^{N+1}\left(\Sigma_{t}\right)}^{2}+\left\|t^{A} k\right\|_{\dot{j}^{N}\left(\Sigma_{t}\right)}^{2} \leq$ Data
- Large $A \Longrightarrow$ very singular top-order energy estimates

Future directions

- Lowering the value of D : heuristics suggest that similar results might hold for $D \geq 10$
- What happens when there is severe spatial anisotropy?
- In particular, are there stable spacelike Einstein-vacuum singularities when $D=3$?
- What happens when there is matter with timelike characteristics?

