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The Einstein-vacuum equations on R x T?

;
Ric,, - 5Rg,, =0

@ Data on ¥ = TP? are tensors (g, l°<) verifying the
Gauss and Codazzi constraints

@ The value of D is entertaining; stay tuned
@ Our data will be Sobolev-close to Kasner data

@ Choquet-Bruhat and Geroch: data verifying
constraints launch a unique maximal globally
hyperbolic development (M, g)
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Okas = —dt @ dt + ) P%ax' @ ax’

i=1

The q; € (—1, 1] verify the Kasner constraints:

D D

da=1, > (@) =1

i=1 i=1

Riem,;.;Riem*?’ = Ct*
By

where C > 0 (unless a q; is equal to 1)
“Big Bang” singularity at t = 0
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Hawking’s incompleteness theorem

Theorem (Hawking (specialized to vacuum))
Assume
@ (M, qg) is the maximal globally hyperbolic
development of data (g, k) on £y ~ TP
etrk<C<0

Then no past-directed timelike geodesic emanating from
Y 1 is longer than C' < oc.

e Hawking’s theorem applies to perturbations of Kasner
data

Glaring question: Why are the timelike geodesics
incomplete?
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Main theorem

Theorem (JS and |. Rodnianski)

For Sobolev-class perturbations of the data (att = 1) of
Kasner solutions with

D 1
max |qi| < g,

the past-incompleteness is caused by spacetime curvature
blowup: Riem,;.;Riem®”’ ~ Ct~*.

e Such Kasner solutions exist when D > 38.

@ First stable spacelike singularity formation result in
GR without symmetry as an effect of pure gravity.

@ Qualitatively, the blowup is very different than the
weak null singularities of Dafermos and Luk.

@ Previously, we proved related stable spacelike
singularity formation results for nearly spatially
isotropic (i.e., near-FLRW) solutions to the
Einstein-scalar field system with D = 3.

@ The new techniques can be applied to various
Einstein matter systems with D = 3 for

moderately spatially anisotropic data
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Other contributors

Many people have investigated solutions to Einstein’s
equations near spacelike singularities:

Partial list of contributors

Aizawa, Akhoury, Andersson, Anguige, Aninos, Antoniou,
Barrow, Béguin, Berger, Beyer, Chitré, Claudel, Coley,
Cornish, Chrusciel, Damour, Demaret, Eardley, Ellis,
Elskens, van Elst, Garfinkle, Goode, Grubisi¢, Heinzle,
Henneaux, Hsu, Isenberg, Kichenassamy, Koguro,
LeBlanc, LeFloch, Levin, Liang, Lim, Misner, Moncrief,
Newman, Nicolai, Reiterer, Rendall, Ringstréom, Réhr,
Sachs, Saotome, Spindel, Stahl, Tod, Trubowitz, Uggla,
Wainwright, Weaver, - - -
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atglj = —2ng,'aké},
oK) = —V'V;n+n (Ric’j - t*1k"j> :
Ag(n—1)=t3n—-1)+nR

subject to the constraints

R— k3K +12=0,

The elliptic lapse equation synchronizes the singularity
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Analysis outline

The hard part is showing that the solution exists all the
way to t = 0. The key is to prove: |tk"j(t, x)| is bounded.
@ Low-norm bootstrap assumptions (slightly worse than
Kasner): ||gjlli=z) < 72, |90z < 13
@ High-norm bootstrap assumptions: ||g|| .1z, < et™*,
1kl s,y < et
@ N and A are parameters, with A large and N chosen
large relative to A
@ ¢ chosen small relative to N and A
@ Interpolation: ||8;gj ||z S et~(1/3+9), where
d =9(N,A) — 0as N — oo with A fixed
® Oy(tk') = tRic', + - ~ tg3(0g)? + - -+ < et (3/3+20)
@ Thus, integrability of t—(2/3+29) implies that for
t e (0,1]: [tk (t, x) — K'(1,x)

’ ~Y



Glimpse of the Proof
[e]e] ]

Top-order energy estimates

For t € (0, 1], we have:

177Gy + 1K B,
< Data
+{C.—24) / (1 0l sy + %K B
+ ey
where

@ C, can be large but is independent of N and A
@ .- denotes lower-order or time-integrable error terms



Glimpse of the Proof
[e]e] ]

Top-order energy estimates

For t € (0, 1], we have:

1492y + 1Kz,
< Data

+{C. - 2A}/ {jls+

)

9By + 15K 205, |

where

@ C, can be large but is independent of N and A
Q --.

denotes lower-order or time-integrable error terms

@ In my earlier work with Rodnianski, we had C, = O(¢)
“approximate monotonicity”



Glimpse of the Proof
[e]e] ]

Top-order energy estimates

For t € (0, 1], we have:

1492y + 1Kz,
< Data

+{C. - 2A}/ {jls+

)

9By + 15K 205, |

where

@ C, can be large but is independent of N and A
Q --.

denotes lower-order or time-integrable error terms

@ In my earlier work with Rodnianski, we had C, = O(¢)
“approximate monotonicity”

For A large, the integral has a friction sign



Glimpse of the Proof
[e]e] ]

Top-order energy estimates

For t € (0, 1], we have:

177Gy + 1K B,
< Data
+{C.—24) / (1 0l sy + %K B
+ ey
where

@ C, can be large but is independent of N and A

- denotes lower-order or time-integrable error terms

@ In my earlier work with Rodnianski, we had C, = O(¢);
“approximate monotonicity”

For A large, the integral has a friction sign

@ Hence, can show ||1‘A+1g||HN+1(z y+ HtAk||HN(Z) < Data



Glimpse of the Proof
[e]e] ]

Top-order energy estimates

For t € (0, 1], we have:

147912 + 1K B,

< Data
+{C.—24) / (1 0l sy + %K B

)

where

@ C, can be large but is independent of N and A
Q --.

denotes lower-order or time-integrable error terms
@ In my earlier work with Rodnianski, we had C, = O(¢);
“approximate monotonicity”
For A large, the integral has a friction sign

@ Hence, can show ||1‘A+1g||HN+1(z ,+ HtAk||HN(Z) < Data
@ Large A = very singular top-order energy estimates
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Future directions

@ Lowering the value of D: heuristics suggest that
similar results might hold for D > 10

@ What happens when there is severe spatial
anisotropy?

@ In particular, are there stable spacelike
Einstein-vacuum singularities when D = 37?

@ What happens when there is matter with timelike
characteristics?
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