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Intro Main Theorem Glimpse of the Proof Future Directions

The Einstein-vacuum equations on R× TD

Ricµν −
1
2

Rgµν = 0

Data on Σ1 = TD are tensors (g̊, k̊) verifying the
Gauss and Codazzi constraints
The value of D is entertaining; stay tuned
Our data will be Sobolev-close to Kasner data
Choquet-Bruhat and Geroch: data verifying
constraints launch a unique maximal globally
hyperbolic development (M,g)
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Kasner solutions

gKAS = −dt ⊗ dt +
D∑

i=1

t2qi dx i ⊗ dx i

The qi ∈ (−1,1] verify the Kasner constraints:

D∑
i=1

qi = 1,
D∑

i=1

(qi)
2 = 1

RiemαβγδRiemαβγδ = Ct−4

where C > 0 (unless a qi is equal to 1)

“Big Bang” singularity at t = 0
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Hawking’s incompleteness theorem

Theorem (Hawking (specialized to vacuum))
Assume

(M,g) is the maximal globally hyperbolic
development of data (g̊, k̊) on Σ1 ' TD

trk̊ < C < 0
Then no past-directed timelike geodesic emanating from
Σ1 is longer than C ′ <∞.

• Hawking’s theorem applies to perturbations of Kasner
data
Glaring question: Why are the timelike geodesics
incomplete?
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Main theorem
Theorem (JS and I. Rodnianski)
For Sobolev-class perturbations of the data (at t = 1) of
Kasner solutions with

D
max
i=1
|qi | <

1
6
,

the past-incompleteness is caused by spacetime curvature
blowup: RiemαβγδRiemαβγδ ∼ Ct−4.

• Such Kasner solutions exist when D ≥ 38.

First stable spacelike singularity formation result in
GR without symmetry as an effect of pure gravity.
Qualitatively, the blowup is very different than the
weak null singularities of Dafermos and Luk.
Previously, we proved related stable spacelike
singularity formation results for nearly spatially
isotropic (i.e., near-FLRW) solutions to the
Einstein-scalar field system with D = 3.
The new techniques can be applied to various
Einstein matter systems with D = 3 for

moderately spatially anisotropic data
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Other contributors

Many people have investigated solutions to Einstein’s
equations near spacelike singularities:

Partial list of contributors
Aizawa, Akhoury, Andersson, Anguige, Aninos, Antoniou,
Barrow, Béguin, Berger, Beyer, Chitré, Claudel, Coley,
Cornish, Chrusciel, Damour, Demaret, Eardley, Ellis,
Elskens, van Elst, Garfinkle, Goode, Grubišić, Heinzle,
Henneaux, Hsu, Isenberg, Kichenassamy, Koguro,
LeBlanc, LeFloch, Levin, Liang, Lim, Misner, Moncrief,
Newman, Nicolai, Reiterer, Rendall, Ringström, Röhr,
Sachs, Saotome, Spindel, Ståhl, Tod, Trubowitz, Uggla,
Wainwright, Weaver, · · ·
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Einstein’s equations in CMCTSC gauge

Decomposing g = −n2dt ⊗ dt + gabdxa ⊗ dxb, Einstein’s
equations with ka

a = −t−1 are:

∂tgij = −2ngiaka
j ,

∂t(k i
j) = −∇i∇jn + n

(
Rici

j − t−1k i
j

)
,

∆g(n − 1) = t−2(n − 1) + nR

subject to the constraints

R− ka
bkb

a + t−2 = 0,
∇aka

i = 0

The elliptic lapse equation synchronizes the singularity



Intro Main Theorem Glimpse of the Proof Future Directions

Einstein’s equations in CMCTSC gauge

Decomposing g = −n2dt ⊗ dt + gabdxa ⊗ dxb, Einstein’s
equations with ka

a = −t−1 are:

∂tgij = −2ngiaka
j ,

∂t(k i
j) = −∇i∇jn + n

(
Rici

j − t−1k i
j

)
,

∆g(n − 1) = t−2(n − 1) + nR

subject to the constraints

R− ka
bkb

a + t−2 = 0,
∇aka

i = 0

The elliptic lapse equation synchronizes the singularity



Intro Main Theorem Glimpse of the Proof Future Directions

Analysis outline
The hard part is showing that the solution exists all the
way to t = 0. The key is to prove: |tk i

j(t , x)| is bounded.
Low-norm bootstrap assumptions (slightly worse than
Kasner): ‖gij‖L∞(Σt ) ≤ t−1/3, ‖g ij‖L∞(Σt ) ≤ t−1/3

High-norm bootstrap assumptions: ‖g‖ḢN+1(Σt )
≤ εt−A,

‖k‖ḢN (Σt )
≤ εt−A

N and A are parameters, with A large and N chosen
large relative to A
ε chosen small relative to N and A
Interpolation: ‖∂igjk‖L∞(Σt ) . εt−(1/3+δ), where
δ = δ(N,A)→ 0 as N →∞ with A fixed
∂t(tk i

j) = tRici
j + · · · ∼ tg−3(∂g)2 + · · · . εt−(2/3+2δ)

Thus, integrability of t−(2/3+2δ) implies that for
t ∈ (0,1]: |tk i

j(t , x)− k i
j(1, x)| . ε
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Top-order energy estimates
For t ∈ (0,1], we have:

‖tA+1g‖2
ḢN+1(Σt )

+ ‖tAk‖2
ḢN (Σt )

≤ Data

+ {C? − 2A}
∫ 1

t
s−1

{
‖sA+1g‖2

ḢN+1(Σs)
+ ‖sAk‖2

ḢN (Σs)

}
ds

+ · · · ,

where
C? can be large but is independent of N and A
· · · denotes lower-order or time-integrable error terms
In my earlier work with Rodnianski, we had C? = O(ε);
“approximate monotonicity”

For A large, the integral has a friction sign

Hence, can show ‖tA+1g‖2
ḢN+1(Σt )

+ ‖tAk‖2
ḢN (Σt )

≤ Data
Large A =⇒ very singular top-order energy estimates
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ḢN+1(Σs)
+ ‖sAk‖2
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Future directions

Lowering the value of D: heuristics suggest that
similar results might hold for D ≥ 10
What happens when there is severe spatial
anisotropy?
In particular, are there stable spacelike
Einstein-vacuum singularities when D = 3?
What happens when there is matter with timelike
characteristics?
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