
Setup and results Idea of proofs

The stability of Kerr-de Sitter black holes

András Vasy (joint work with Peter Hintz)

July 2018, Montréal
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This talk is about the stability of Kerr-de Sitter (KdS) black holes,
which are certain Lorentzian manifolds solving Einstein’s equation
– most of it will discuss what these black holes are and what
stability means.

We adopt the convention is that Lorentzian metrics on an
n-dimensional manifold have signature (1, n − 1). For instance, the
Minkowski metric on R4 = R1+3, with coordinates z0, z1, z2, z3, is

g = dz20 − dz21 − dz22 − dz23 .

Here z0 is ‘time’, (z1, z2, z3) ‘space’, but there are many other
timelike and spacelike coordinate functions on it! Here f timelike
means g−1(df , df ) > 0, spacelike means g−1(df , df ) < 0.
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In 4 dimensions Einstein’s equation in vacuum is an equation for
the metric tensor of the form

Ric(g) + Λg = 0,

where Λ is the cosmological constant, and Ric(g) is the Ricci
curvature of the metric. If there were matter present, there would
be a non-trivial right hand side of the equation, given by (a
modification of) the matter’s stress-energy tensor.

E.g. the Minkowski metric solves this with Λ = 0. Another
solution, with Λ > 0, is de Sitter space, which is the one-sheeted
hyperboloid in one higher dimensional Minkowski space.

We will be interested in Λ > 0; note that the observed accelerating
expansion of the universe is consistent with a positive cosmological
constant, which plays the role of a positive vacuum energy density,
thus is of physical interest.
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In local coordinates, the Ricci curvature is a non-linear expression
in up to second derivatives of g ; thus, this is a partial differential
equation. The type of PDE that Einstein’s equation is most similar
to (with issues!) are (tensorial, non-linear) wave equations. The
typical formulation of such a wave equation is that one specifies
‘initial data’ at a spacelike hypersurface, such as z0 = C , C
constant, in Minkowski space. For linear wave equations �u = f
on spaces like R1+3, the solution u for given data exists globally
and is unique.

The analogue of the question how solutions of Einstein’s equation
behave is: if one has a solution u0 of �u = 0, say u0 = 0 with
vanishing data, we ask how the solution u changes when we
slightly perturb data (to be still close to 0). For instance, does u
stay close to u0 everywhere? Does perhaps even tend to u0 as
z0 →∞? This is the question of stability of solutions.
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Very few properties of Ric matter for our purposes.

First, Ric is diffeomorphism invariant, so if Ψ is a diffeomorphism,
and g solves Einstein’s equation, then so does Ψ∗g . This means
that if there is one solution, there are many (even with same IC).
In practice (duality) this means that it may not be easy to solve
the equation at all!

This already indicates that Einstein’s equation is not quite a wave
equation, but it can be turned into one by imposing extra gauge
conditions. This is implemented using the second key property, the
2nd Bianchi identity, δgGgRic(g) = 0 for all g , where δg is the
symmetric gradient, and Gg r = r − 1

2(trg r)g . An implementation
is

Ric(g) + Λg − Φ(g , t) = 0,

where
Φ(g , t) = δ∗gΥ(g), Υ(g) = gg−10 δgGgg0.

This enabled Choquet-Bruhat to show local well-posedness: Υ = 0.
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The first stability results were obtained for Minkowski space and de
Sitter space, respectively, and are due to Christodoulou and
Klainerman (1990s), later simplified by Lindblad and Rodnianski
(2000s) (and extended by Bieri and Zipser, and in a different
direction by Hintz and V.), resp. Friedrich (1980s).

Our result with Peter Hintz is the stability of Kerr-de Sitter (KdS)
black holes (slowly rotating). These are family of metrics
depending on two parameters, called mass m and angular
momentum a. The a = 0 members of the family are called the
Schwarzschild-de Sitter (SdS) black holes; hS2 the metric on S2:

g = µ(r) dt2 − µ(r)−1 dr2 − r2 hS2 , µ(r) = 1− 2m

r
− Λr2

3
,

Λ = 0 gives the Schwarzschild metric, discovered in about a
month after Einstein’s 1915 paper.
m = 0 gives the de Sitter metric.
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Recall:

g = µ(r) dt2 − µ(r)−1 dr2 − r2 h, µ(r) = 1− 2m

r
− Λr2

3
.

µ(r) = 0 has two positive solutions r+, r− if m,Λ > 0; if
Λ = 0 the only root is 2m, if m = 0, the only root is

√
3/Λ.

In this form the metric makes sense where µ > 0:
Rt × (r−, r+)r × S2.

However, r = r± are coordinate singularities; with c± smooth,

t∗ = t − F (r), F ′(r) = ±(µ(r)−1 + c±(r)) near r = r±

desingularizes them and extends the metric to

Rt∗ × (0,∞)r × S2ω,

r = r− is called the event horizon, r = r+ the cosmological
horizon; they are very similar for the geometry.

∂t is a Killing vector field, i.e. translation in t preserves the
metric, and it is spherically symmetric.
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Without specifying the general KdS metric, we just mention that
the underlying manifold is a Rt∗ × (0,∞)r × S2, and ∂t∗ is a
Killing vector field, i.e. translation in t∗ preserves the metric.
These metrics are axisymmetric around the axis of rotation.

In general, for a manifold M with Σ0 a codimension 1 hypersurface,
the initial data are a Riemannian metric h and a symmetric
2-cotensor k which satisfy the constraint equations (needed for
solvability), and one calls a Lorentzian metric g on M a solution of
Einstein’s equation with initial data (Σ0, h, k) if the pull-back of g
to Σ0 is −h, and k is the second fundamental form of Σ0 in M.

Our main result is the global non-linear asymptotic stability of the
Kerr-de Sitter family for the initial value problem for small angular
momentum a on the space

Ω = [0,∞)t∗ × [r− − δ, r+ + δ]r × S2.
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Theorem (Hintz-V ’16; informal version)

Suppose (h, k) are smooth initial data on Σ0, satisfying the
constraint equations, which are close to the data (hb0 , kb0) of a
Schwarzschild–de Sitter spacetime, b0 = (m0, 0), in a high
regularity norm. Then there exist a solution g of Einstein’s
equation in Ω attaining these initial data at Σ0, and black hole
parameters b = (m, a) which are close to b0, so that

g − gb = O(e−αt∗)

for a constant α > 0 independent of the initial data; that is, g
decays exponentially fast to the Kerr–de Sitter metric gb.
Moreover, g and b are quantitatively controlled by (h, k).

What the theorem states is that the metric ‘settles down to’ a
Kerr-de Sitter metric at an exponential rate while emitting energy
through gravitational waves (recently detected by LIGO). Note that
even if we perturb a Schwarzschild-dS metric, we get a KdS limit!
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Strongest Λ = 0 black hole result is the stability of linearized
Schwarzschild, plus Teukolsky (very recently announced):
Dafermos-Holzegel-Rodnianski (2016), and a restricted (symmetry)
stability of Schwarzschild (Klainerman-Szeftel, 2017). There has
been extensive research in the area, including works by (in addition
to the authors already mentioned) Wald, Kay, Finster, Kamran,
Smoller, Yau, Tataru, Tohaneanu, Marzuola, Metcalfe, Sterbenz,
Andersson, Blue, Donninger, Schlag, Soffer, Sá Barreto, Wunsch,
Zworski, Bony, Häfner, Dyatlov, Luk, Ionescu,
Shlapentokh-Rothman...
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The analytic framework we use

non-elliptic linear global analysis with coefficients of finite
Sobolev regularity,

with a simple global Nash-Moser iteration to deal with the
loss of derivatives corresponding to both non-ellipticity and
trapping

gives global solvability for quasilinear wave equations like the
gauged Einstein’s equation provided

certain dynamical assumptions are satisfied (only trapping is
normally hyperbolic trapping, with an appropriate subprincipal
symbol condition) and

there are no exponentially growing modes (with a precise
condition on non-decaying ones), i.e. non-trivial solutions of
the linearized equation at gb0 of the form e−iσt∗ times a
function of the spatial variables r , ω only, with Imσ > 0.
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Unfortunately, in the harmonic/wave/DeTurck gauge, while the
dynamical assumptions are satisfied, there are growing modes,
although only a finite dimensional space of these. The key to
proving the theorem (given the analytic background) is to
overcome this issue.

The Kerr-de Sitter family automatically gives rise to non-decaying
modes with σ = 0, but as these correspond to non-linear solutions,
one may expect these not to be a problem with some work.

One might then expect that the other non-decaying (including
growing!) modes come from the diffeomorphism invariance, i.e.
gauge issues, but this is not true at this stage!

However, we can arrange for a partial success: we can modify Φ by
changing δ∗g by a 0th order term:
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δ̃∗ω = δ∗g0ω + γ1 dt∗ ⊗s ω − γ2g0 trg0(dt∗ ⊗s ω),

Φ(g , t) = δ̃∗Υ(g).

For suitable choices of γ1, γ2 � 0, this preserves the dynamical
requirements, and while the gauged Einstein’s equation does still
have growing modes, it has a new feature:

�̃CP
g = 2δgGg δ̃

∗, g = gb0

has no non-decaying modes! (There was no reason to expect that
the DeTurck gauge is well-behaved in any way except in a high
differential order sense, relevant for the local theory!)

Such a change to the gauge term, called ‘constraint damping’, has
been successfully used in the numerical relativity literature by
Pretorius and others, following the work of Gundlach et al, to
damp numerical errors in Υ(g) = 0; here we show rigorously why
such choices work well.
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This change is useful because it means that, for g = gb0 , any
non-decaying mode r of the linearized gauged Einstein equation is
a solution Dg (Ric(g) + Λg)r = 0, and thus is geometric, given by
infinitesimal diffeomorphisms or the KdS family (Ishibashi, Kodama
and Seto).

Concretely then, ignoring the KdS family induced zero modes, we
take

Φ(g , t; θ) = δ̃∗(Υ(g)− θ),

where θ is an unknown, lying in a finite dimensional space Θ of
gauge terms of the form Dgb0

Υ(δ∗gb0
(χω)), where χ ≡ 1 for

t∗ � 1, χ ≡ 0 near t∗ = 0, and such that δ∗gb0
ω is a non-decaying

resonance of the gauged Einstein operator, and solve

Ric(g) + Λg − Φ(g , t; θ) = 0

for g and θ, with g − gb0 in a decaying function space.
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