From quantum integrability to Schubert calculus

P. Zinn-Justin

School of Mathematics and Statistics, the University of Melbourne

July 27, 2018

Introduction

These two random tiling models:

share two common features:

- They are (equivalent to) exactly solvable two-dimensional lattice models.
- They are related to Schubert calculus.

Introduction

These two random tiling models:

share two common features:

- They are (equivalent to) exactly solvable two-dimensional lattice models.
- They are related to Schubert calculus.

Exactly solvable 2d lattice models \rightarrow Symmetric polynomials

- Symmetric polynomials ${ }^{1}$ appear in many areas of pure mathematics (combinatorics, representation theory, etc), as well as in applied mathematics and mathematical physics (random matrix theory, integrable systems, etc).
- In many cases, there is an underlying "integrability": certain families of symmetric polynomials can be described explicitly in terms of two-dimensional exactly solvable lattice models.
- Sometimes, this integrability can be extended to the computation of structure constants of the ring of symmetric polynomials in that particular basis (e.g., Schur functions and Littlewood-Richardson coefficients)
- There are deep connections to (enumerative, algebraic) geometry, in particular to Schubert calculus.
${ }^{1}$ In fact, symmetry is not a crucial ingredient; in higher rank, one deals with nonsymmetric polynomials

Exactly solvable 2d lattice models \rightarrow Symmetric polynomials

- Symmetric polynomials ${ }^{1}$ appear in many areas of pure mathematics (combinatorics, representation theory, etc), as well as in applied mathematics and mathematical physics (random matrix theory, integrable systems, etc).
- In many cases, there is an underlying "integrability": certain families of symmetric polynomials can be described explicitly in terms of two-dimensional exactly solvable lattice models.
- Sometimes, this integrability can be extended to the computation of structure constants of the ring of symmetric polynomials in that particular basis (e.g., Schur functions and Littlewood-Richardson coefficients)
- There are deep connections to (enumerative, algebraic) geometry, in particular to Schubert calculus.

[^0]
Exactly solvable 2d lattice models \rightarrow Symmetric polynomials

- Symmetric polynomials ${ }^{1}$ appear in many areas of pure mathematics (combinatorics, representation theory, etc), as well as in applied mathematics and mathematical physics (random matrix theory, integrable systems, etc).
- In many cases, there is an underlying "integrability": certain families of symmetric polynomials can be described explicitly in terms of two-dimensional exactly solvable lattice models.
- Sometimes, this integrability can be extended to the computation of structure constants of the ring of symmetric polynomials in that particular basis (e.g., Schur functions and Littlewood-Richardson coefficients).
- There are deep connections to (enumerative, algebraic) geometry, in particular to Schubert calculus.

[^1]
Exactly solvable 2d lattice models \rightarrow Symmetric polynomials

- Symmetric polynomials ${ }^{1}$ appear in many areas of pure mathematics (combinatorics, representation theory, etc), as well as in applied mathematics and mathematical physics (random matrix theory, integrable systems, etc).
- In many cases, there is an underlying "integrability": certain families of symmetric polynomials can be described explicitly in terms of two-dimensional exactly solvable lattice models.
- Sometimes, this integrability can be extended to the computation of structure constants of the ring of symmetric polynomials in that particular basis (e.g., Schur functions and Littlewood-Richardson coefficients).
- There are deep connections to (enumerative, algebraic) geometry, in particular to Schubert calculus.

[^2]
Schur polynomials: motivation

Schur polynomials are the most famous family of symmetric polynomials. They are homogeneous polynomials with integer coefficients.

- They form a basis of the ring of symmetric polynomials (i.e., a basis of $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]^{\mathcal{S}_{n}}$ as a graded \mathbb{Z}-module for each n).
- They are the characters of polynomial irreducible representations of the general linear group $G L_{n}$.
- They are related to the cohomology of the Grassmannian (they are representatives of Schubert classes)

Schur polynomials: motivation

Schur polynomials are the most famous family of symmetric polynomials. They are homogeneous polynomials with integer coefficients.

- They form a basis of the ring of symmetric polynomials (i.e., a basis of $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]^{\mathcal{S}_{n}}$ as a graded \mathbb{Z}-module for each n).
- They are the characters of polynomial irreducible representations of the general linear group $G L_{n}$.
- They are related to the cohomology of the Grassmannian (they are representatives of Schubert classes)

Schur polynomials: motivation

Schur polynomials are the most famous family of symmetric polynomials. They are homogeneous polynomials with integer coefficients.

- They form a basis of the ring of symmetric polynomials (i.e., a basis of $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]^{\mathcal{S}_{n}}$ as a graded \mathbb{Z}-module for each n).
- They are the characters of polynomial irreducible representations of the general linear group $G L_{n}$.
- They are related to the cohomology of the Grassmannian (they are representatives of Schubert classes).

Schur polynomials: definition

To a Young diagram λ (or its associated Maya diagram), one associates the Schur polynomial $s^{\lambda}\left(x_{1}, \ldots, x_{n}\right)$ which is a sum over lozenge tilings:

where each light pink lozenge at row i contributes a weight x_{i}.
"Off-shell Bethe state". Symmetry in the x_{i} is ensured by integrability! (YBE)

Schur polynomials: definition

To a Young diagram λ (or its associated Maya diagram), one associates the Schur polynomial $s^{\lambda}\left(x_{1}, \ldots, x_{n}\right)$ which is a sum over lozenge tilings:

[^3]
Schur polynomials: definition

To a Young diagram λ (or its associated Maya diagram), one associates the Schur polynomial $s^{\lambda}\left(x_{1}, \ldots, x_{n}\right)$ which is a sum over lozenge tilings:

where each light pink lozenge at row i contributes a weight x_{i}.
"Off-shell Bethe state". Symmetry in the x_{i} is ensured by integrability! (YBE)

Schur polynomials: definition

To a Young diagram λ (or its associated Maya diagram), one associates the Schur polynomial $s^{\lambda}\left(x_{1}, \ldots, x_{n}\right)$ which is a sum over lozenge tilings:

where each light pink lozenge at row i contributes a weight x_{i}.

Off-shell Bethe state". Symmetry in the x_{i} is ensured by integrability! (YBE)

Schur polynomials: definition

To a Young diagram λ (or its associated Maya diagram), one associates the Schur polynomial $s^{\lambda}\left(x_{1}, \ldots, x_{n}\right)$ which is a sum over lozenge tilings:

where each light pink lozenge at row i contributes a weight x_{i}.
"Off-shell Bethe state". Symmetry in the x_{i} is ensured by integrability! (YBE)

Schur polynomials: example

Schur polynomials: example

Schur polynomials: example

Lozenge tilings as an exactly solvable model

- The lozenge tiling model can be reformulated as a vertex model: the rational 5-vertex model.
- This model is quantum integrable; it is based on the algebra $\mathfrak{s l}_{2}$ in the spin $1 / 2$ irrep
- Actually, it is equivalent to Non-Intersecting Lattice Paths and therefore free fermionic determinantal
- It gained renewed interest in the last 20 years due to the limiting shape phenomenon

Lozenge tilings as an exactly solvable model

- The lozenge tiling model can be reformulated as a vertex model: the rational 5-vertex model.
- This model is quantum integrable; it is based on the algebra $\mathfrak{s l}_{2}$ in the spin $1 / 2$ irrep.
- Actually, it is equivalent to Non-Intersecting Lattice Paths and therefore free fermionic determinantal
- It gained renewed interest in the last 20 years due to the limiting shape phenomenon

Lozenge tilings as an exactly solvable model

- The lozenge tiling model can be reformulated as a vertex model: the rational 5-vertex model.
- This model is quantum integrable; it is based on the algebra $\mathfrak{s l}_{2}$ in the spin $1 / 2$ irrep.
- Actually, it is equivalent to Non-Intersecting Lattice Paths and therefore free fermionic / determinantal.
- It gained renewed interest in the last 20 years due to the limiting shape phenomenon:

Lozenge tilings as an exactly solvable model

- The lozenge tiling model can be reformulated as a vertex model: the rational 5 -vertex model.
- This model is quantum integrable; it is based on the algebra $\mathfrak{s l}_{2}$ in the spin $1 / 2$ irrep.
- Actually, it is equivalent to Non-Intersecting Lattice Paths and therefore free fermionic / determinantal.
- It gained renewed interest in the last 20 years due to the limiting shape phenomenon:

三 \quad ㅇ

The Littlewood-Richardson problem

- Whenever one has a basis of a ring (such as the s^{λ} for the ring of symmetric polynomials), one can ask about structure constants:

$$
s^{\lambda} s^{\mu}=\sum_{\nu} c_{\nu}^{\lambda, \mu} s^{\nu}
$$

- In the case of Schur polynomials, there is a representation-theoretic interpretation (decomposition of tensor product of irreducible representations of the general or special linear group)
- In the case of Schur (or Schubert/Grothendieck) polynomials, there is a geometric interpretation (intersection theory on the Grassmannian)

The Littlewood-Richardson problem

- Whenever one has a basis of a ring (such as the s^{λ} for the ring of symmetric polynomials), one can ask about structure constants:

$$
s^{\lambda} s^{\mu}=\sum_{\nu} c_{\nu}^{\lambda, \mu} s^{\nu}
$$

- In the case of Schur polynomials, there is a representation-theoretic interpretation (decomposition of tensor product of irreducible representations of the general or special linear group).
- In the case of Schur (or Schubert/Grothendieck) polynomials, there is a geometric interpretation (intersection theory on the Grassmannian)

The Littlewood-Richardson problem

- Whenever one has a basis of a ring (such as the s^{λ} for the ring of symmetric polynomials), one can ask about structure constants:

$$
s^{\lambda} s^{\mu}=\sum_{\nu} c_{\nu}^{\lambda, \mu} s^{\nu}
$$

- In the case of Schur polynomials, there is a representation-theoretic interpretation (decomposition of tensor product of irreducible representations of the general or special linear group).
- In the case of Schur (or Schubert/Grothendieck) polynomials, there is a geometric interpretation (intersection theory on the Grassmannian).

Example

$$
\left(s^{\square}\right)^{2}=s^{\square}+s^{\square}
$$

The Littlewood-Richardson rule

- We are looking for a manifestly positive formula for $c_{\nu}^{\lambda, \mu}$.
- Such a formula was first proposed by Littlewood and Richardson in 1934 in terms of tableaux, and proved by Schützenberger in 1977
- Another rule was given by Knutson and Tao (2003) in their proof of the saturation conjecture: puzzles.
It is the form that most explicitly displays the underlying quantum integrability!
- Here we present the closely related square-triangle tiling model

The Littlewood-Richardson rule

- We are looking for a manifestly positive formula for $c_{\nu}^{\lambda, \mu}$.
- Such a formula was first proposed by Littlewood and Richardson in 1934 in terms of tableaux, and proved by Schützenberger in 1977.
- Another rule was given by Knutson and Tao (2003) in their proof of the saturation conjecture: puzzles.
It is the form that most explicitly displays the underlying quantum integrability!
- Here we present the closely related square-triangle tiling model

The Littlewood-Richardson rule

- We are looking for a manifestly positive formula for $c_{\nu}^{\lambda, \mu}$.
- Such a formula was first proposed by Littlewood and Richardson in 1934 in terms of tableaux, and proved by Schützenberger in 1977.
- Another rule was given by Knutson and Tao (2003) in their proof of the saturation conjecture: puzzles.
It is the form that most explicitly displays the underlying quantum integrability!
- Here we present the closely related square-triangle tiling model.

The Littlewood-Richardson rule

- We are looking for a manifestly positive formula for $c_{\nu}^{\lambda, \mu}$.
- Such a formula was first proposed by Littlewood and Richardson in 1934 in terms of tableaux, and proved by Schützenberger in 1977.
- Another rule was given by Knutson and Tao (2003) in their proof of the saturation conjecture: puzzles.
It is the form that most explicitly displays the underlying quantum integrability!
- Here we present the closely related square-triangle tiling model.

The square-triangle tiling model

Example 1:

(+ 2 more)

The square-triangle tiling model

Example 1:

(+ 2 more)

The square-triangle tiling: history

- 1993: M. Widom introduces the square-triangle model (in relation to quasi-crystals), deforms it into a regular triangular lattice (\sim puzzles) and proves integrability.
- 1994: P. Kalugin (partially) solves the Coordinate Bethe Ansatz equations (size $\rightarrow \infty$)
- 1997-2006: J. de Gier and B. Nienhuis reinvestigate it, noticing that it's a singular limit of an $\mathfrak{s l}_{3}$ model.
- 2008: K. Purbhoo reformulates puzzles as mosaics (~ square-triangle tilings).
- 2008: ZJ reproves the Littlewood-Richardson rule by repeated use of the YBE.

The square-triangle tiling: history

- 1993: M. Widom introduces the square-triangle model (in relation to quasi-crystals), deforms it into a regular triangular lattice (\sim puzzles) and proves integrability.
- 1994: P. Kalugin (partially) solves the Coordinate Bethe Ansatz equations (size $\rightarrow \infty$).
- 1997-2006: J. de Gier and B. Nienhuis reinvestigate it, noticing that it's a singular limit of an $\mathfrak{s l}_{3}$ model.
- 2008: K. Purbhoo reformulates puzzles as mosaics (~ square-triangle tilings)
- 2008: ZJ reproves the Littlewood-Richardson rule by repeated use of the YBE.

The square-triangle tiling: history

- 1993: M. Widom introduces the square-triangle model (in relation to quasi-crystals), deforms it into a regular triangular lattice (\sim puzzles) and proves integrability.
- 1994: P. Kalugin (partially) solves the Coordinate Bethe Ansatz equations (size $\rightarrow \infty$).
- 1997-2006: J. de Gier and B. Nienhuis reinvestigate it, noticing that it's a singular limit of an $\mathfrak{s l}_{3}$ model.
- 2008: K. Purbhoo reformulates puzzles as mosaics (~ square-triangle tilings).
- 2008: ZJ reproves the Littlewood-Richardson rule by repeated use of the YBE.

The square-triangle tiling: history

- 1993: M. Widom introduces the square-triangle model (in relation to quasi-crystals), deforms it into a regular triangular lattice (\sim puzzles) and proves integrability.
- 1994: P. Kalugin (partially) solves the Coordinate Bethe Ansatz equations (size $\rightarrow \infty$).
- 1997-2006: J. de Gier and B. Nienhuis reinvestigate it, noticing that it's a singular limit of an $\mathfrak{s l}_{3}$ model.
- 2008: K. Purbhoo reformulates puzzles as mosaics (~ square-triangle tilings).
- 2008: ZJ reproves the Littlewood-Richardson rule by repeated use of the YBE

The square-triangle tiling: history

- 1993: M. Widom introduces the square-triangle model (in relation to quasi-crystals), deforms it into a regular triangular lattice (\sim puzzles) and proves integrability.
- 1994: P. Kalugin (partially) solves the Coordinate Bethe Ansatz equations (size $\rightarrow \infty$).
- 1997-2006: J. de Gier and B. Nienhuis reinvestigate it, noticing that it's a singular limit of an $\mathfrak{s l}_{3}$ model.
- 2008: K. Purbhoo reformulates puzzles as mosaics (~ square-triangle tilings).
- 2008: ZJ reproves the Littlewood-Richardson rule by repeated use of the YBE.

Schubert calculus

Schubert calculus is a branch of enumerative geometry which is about answering questions such as "How many lines in 3 -space intersect 4 given lines in general position?".

Schubert calculus

Schubert calculus is a branch of enumerative geometry which is about answering questions such as "How many lines in 3 -space intersect 4 given lines in general position?".

Cohomology theories and QIS

- These questions reduce to calculations in the cohomology ring of the space of configurations, e.g. Grassmannians.
- The recently discovered connection between QIS and cohomology theories (Okounkov et al; see also Knutson+ZJ, Rimanyi+Tarasov+Varchenko), itself motivated by relations to SUSY gauge theory (Nekrasov+Shatashvili), allows in particular to express appropriate cohomology classes (e.g., Schur polynomials) as partition functions of QIS.
- The integrability of the product rule is an extra ingredient, whose geometric meaning was recently uncovered by Knutson+ZJ.
- More generally, we expect to be able to express structure constants of the cohomology of Nakajima quiver varieties (and beyond)

Cohomology theories and QIS

- These questions reduce to calculations in the cohomology ring of the space of configurations, e.g. Grassmannians.
- The recently discovered connection between QIS and cohomology theories (Okounkov et al; see also Knutson+ZJ, Rimanyi+Tarasov+Varchenko), itself motivated by relations to SUSY gauge theory (Nekrasov+Shatashvili), allows in particular to express appropriate cohomology classes (e.g., Schur polynomials) as partition functions of QIS.
- The integrability of the product rule is an extra ingredient, whose geometric meaning was recently uncovered by Knutson+ZJ.
- More generally, we expect to be able to express structure constants of the cohomology of Nakajima quiver varieties (and beyond)

Cohomology theories and QIS

- These questions reduce to calculations in the cohomology ring of the space of configurations, e.g. Grassmannians.
- The recently discovered connection between QIS and cohomology theories (Okounkov et al; see also Knutson+ZJ, Rimanyi+Tarasov+Varchenko), itself motivated by relations to SUSY gauge theory (Nekrasov+Shatashvili), allows in particular to express appropriate cohomology classes (e.g., Schur polynomials) as partition functions of QIS.
- The integrability of the product rule is an extra ingredient, whose geometric meaning was recently uncovered by Knutson+ZJ.
- More generally, we expect to be able to express structure constants of the cohomology of Nakajima quiver varieties (and beyond)

Cohomology theories and QIS

- These questions reduce to calculations in the cohomology ring of the space of configurations, e.g. Grassmannians.
- The recently discovered connection between QIS and cohomology theories (Okounkov et al; see also Knutson+ZJ, Rimanyi+Tarasov+Varchenko), itself motivated by relations to SUSY gauge theory (Nekrasov+Shatashvili), allows in particular to express appropriate cohomology classes (e.g., Schur polynomials) as partition functions of QIS.
- The integrability of the product rule is an extra ingredient, whose geometric meaning was recently uncovered by Knutson+ZJ.
- More generally, we expect to be able to express structure constants of the cohomology of Nakajima quiver varieties (and beyond).

A tentative diagram of generalizations

A tentative diagram of generalizations

Case of Grothendieck polynomials

- Grothendieck polynomials were introduced by Lascoux and Schützenberger (1982) in relation to the K-theory of flag varieties.
- They are a one-parameter deformation of Schur polynomials.
- The corresponding integrable model is implicit in the work of Fomin and Kirillov (1994)
- Here we first consider the case of the Grassmannian (analogue of Schur nolynomials, rather than general Schubert polynomials).
- The integrable model describing the polynomials themselves is also lozenge tilings, but now interacting; equivalent to the trigonometric 5 -vertex model
- The integrable model describing the product rule is the square-triangle-shield tiling model.

Case of Grothendieck polynomials

- Grothendieck polynomials were introduced by Lascoux and Schützenberger (1982) in relation to the K-theory of flag varieties.
- They are a one-parameter deformation of Schur polynomials.
- The corresponding integrable model is implicit in the work of Fomin and Kirillov (1994)
- Here we first consider the case of the Grassmannian (analogue of Schur polynomials, rather than general Schubert polynomials).
- The integrable model describing the polynomials themselves is also lozenge tilings, but now interacting; equivalent to the trigonometric 5 -vertex model
- The integrable model describing the product rule is the square-triangle-shield tiling model.

Case of Grothendieck polynomials

- Grothendieck polynomials were introduced by Lascoux and Schützenberger (1982) in relation to the K-theory of flag varieties.
- They are a one-parameter deformation of Schur polynomials.
- The corresponding integrable model is implicit in the work of Fomin and Kirillov (1994).
- Here we first consider the case of the Grassmannian (analogue of Schur polynomials, rather than general Schubert polynomials)
- The integrable model describing the polynomials themselves is also lozenge tilings, but now interacting; equivalent to the trigonometric 5 -vertex model
- The integrable model describing the product rule is the square-triangle-shield tiling model

Case of Grothendieck polynomials

- Grothendieck polynomials were introduced by Lascoux and Schützenberger (1982) in relation to the K-theory of flag varieties.
- They are a one-parameter deformation of Schur polynomials.
- The corresponding integrable model is implicit in the work of Fomin and Kirillov (1994).
- Here we first consider the case of the Grassmannian (analogue of Schur polynomials, rather than general Schubert polynomials).
- The integrable model describing the polynomials themselves is also lozenge tilings, but now interacting; equivalent to the trigonometric 5 -vertex model
- The integrable model describing the product rule is the square-triangle-shield tiling model

Case of Grothendieck polynomials

- Grothendieck polynomials were introduced by Lascoux and Schützenberger (1982) in relation to the K-theory of flag varieties.
- They are a one-parameter deformation of Schur polynomials.
- The corresponding integrable model is implicit in the work of Fomin and Kirillov (1994).
- Here we first consider the case of the Grassmannian (analogue of Schur polynomials, rather than general Schubert polynomials).
- The integrable model describing the polynomials themselves is also lozenge tilings, but now interacting; equivalent to the trigonometric 5 -vertex model.
- The integrable model describing the product rule is the square-triangle-shield tiling model

Case of Grothendieck polynomials

- Grothendieck polynomials were introduced by Lascoux and Schützenberger (1982) in relation to the K-theory of flag varieties.
- They are a one-parameter deformation of Schur polynomials.
- The corresponding integrable model is implicit in the work of Fomin and Kirillov (1994).
- Here we first consider the case of the Grassmannian (analogue of Schur polynomials, rather than general Schubert polynomials).
- The integrable model describing the polynomials themselves is also lozenge tilings, but now interacting; equivalent to the trigonometric 5 -vertex model.
- The integrable model describing the product rule is the square-triangle-shield tiling model.

The square-triangle shield model

Case of Hall-Littlewood polynomials

- Hall-Littlewood polynomials $P_{\lambda}\left(t ; x_{1}, \ldots, x_{n}\right)$ are a family of polynomials depending on one parameter t which interpolate between two bases: Schur polynomials $(t=0)$ and symmetrized monomials $(t=1)$.
- Remarkably, to express them as partition functions of a lattice model requires a trigonometric $\mathfrak{s l}_{2}$ model with infinite spin, where t plays the role of quantum parameter
- The integrable model for their product rule is a $\mathfrak{s l}_{3}$ infinite spin (parabolic Verma module) model, best expressed in terms of honeycombs. [ZJ '18]

Case of Hall-Littlewood polynomials

- Hall-Littlewood polynomials $P_{\lambda}\left(t ; x_{1}, \ldots, x_{n}\right)$ are a family of polynomials depending on one parameter t which interpolate between two bases: Schur polynomials $(t=0)$ and symmetrized monomials $(t=1)$.
- Remarkably, to express them as partition functions of a lattice model requires a trigonometric $\mathfrak{s l}_{2}$ model with infinite spin, where t plays the role of quantum parameter.
- The integrable model for their product rule is a $\mathfrak{s l}_{3}$ infinite spin (parabolic Verma module) model, best expressed in terms of honeycombs. [ZJ '18]

Case of Hall-Littlewood polynomials

- Hall-Littlewood polynomials $P_{\lambda}\left(t ; x_{1}, \ldots, x_{n}\right)$ are a family of polynomials depending on one parameter t which interpolate between two bases: Schur polynomials $(t=0)$ and symmetrized monomials $(t=1)$.
- Remarkably, to express them as partition functions of a lattice model requires a trigonometric $\mathfrak{s l}_{2}$ model with infinite spin, where t plays the role of quantum parameter.
- The integrable model for their product rule is a $\mathfrak{s l}_{3}$ infinite spin (parabolic Verma module) model, best expressed in terms of honeycombs. [ZJ '18]

Honeycombs

Honeycombs

Beyond $\mathfrak{s l}_{2}$

- All the families of symmetric polynomials considered so far are based on the algebra $\mathfrak{s l}_{2}$, i.e., A_{1}.
- The product rules turned out to be also given by integrable models, but based on the algebra $\mathfrak{s l}_{3}$, i.e., A_{2}
- In order to proceed further, one needs to extend this construction to other Lie algebras. In particular, Schubert calculus in d-step flag varieties (i.e., Schubert or general Grothendieck polynomials) are related to A_{d}
- We have achieved this (partially) in our recent paper arXiv:1706.10019 with A. Knutson, thus providing a partial answer to the venerable $19^{\text {th }}$ century problem of Schubert calculus.

Beyond $\mathfrak{s l}_{2}$

- All the families of symmetric polynomials considered so far are based on the algebra $\mathfrak{s l}_{2}$, i.e., A_{1}.
- The product rules turned out to be also given by integrable models, but based on the algebra $\mathfrak{s l}_{3}$, i.e., A_{2}.
- In order to proceed further, one needs to extend this construction to other Lie algebras. In particular, Schubert calculus in d-step flag varieties (i.e., Schubert or general Grothendieck polynomials) are related to A_{d}
- We have achieved this (partially) in our recent paper arXiv:1706.10019 with A. Knutson, thus providing a partial answer to the venerable $19^{\text {th }}$ century problem of Schubert calculus.

Beyond $\mathfrak{s l}_{2}$

- All the families of symmetric polynomials considered so far are based on the algebra $\mathfrak{s l}_{2}$, i.e., A_{1}.
- The product rules turned out to be also given by integrable models, but based on the algebra $\mathfrak{s l}_{3}$, i.e., A_{2}.
- In order to proceed further, one needs to extend this construction to other Lie algebras. In particular, Schubert calculus in d-step flag varieties (i.e., Schubert or general Grothendieck polynomials) are related to A_{d}.
- We have achieved this (partially) in our recent paper arXiv:1706.10019 with A. Knutson, thus providing a partial answer to the venerable $19^{\text {th }}$ century problem of Schubert calculus.

Beyond $\mathfrak{s l}_{2}$

- All the families of symmetric polynomials considered so far are based on the algebra $\mathfrak{s l}_{2}$, i.e., A_{1}.
- The product rules turned out to be also given by integrable models, but based on the algebra $\mathfrak{s l}_{3}$, i.e., A_{2}.
- In order to proceed further, one needs to extend this construction to other Lie algebras. In particular, Schubert calculus in d-step flag varieties (i.e., Schubert or general Grothendieck polynomials) are related to A_{d}.
- We have achieved this (partially) in our recent paper arXiv:1706.10019 with A. Knutson, thus providing a partial answer to the venerable $19^{\text {th }}$ century problem of Schubert calculus.

QIS and root systems

Family of polynomials \leftrightarrow model (1) their product rule \leftrightarrow model (2).

	model (1)	dim rep (1)	model (2)	dim rep (2
$d=1$	A_{1}	2		
$d=2$	A_{2}	3		
$d=3$	A_{3}	4		
$d=4$	A_{4}	5		
$d \geq 5$	A_{d}	$d+1$		

QIS and root systems

Family of polynomials \leftrightarrow model (1), their product rule \leftrightarrow model (2.

	model (1)	dim rep (1)	model (2)	dim rep (2
$d=1$	A_{1}	2	A_{2}	
$d=2$	A_{2}	3	D_{4}	
$d=3$	A_{3}	4	E_{6}	
$d=4$	A_{4}	5	E_{8}	
$d \geq 5$	A_{d}	$d+1$	Kac-Moody?	

QIS and root systems

Family of polynomials \leftrightarrow model (1), their product rule \leftrightarrow model (2.

	model (1)	dim rep (1)	model (2)	dim rep (2
$d=1$	A_{1}	2	A_{2}	3
$d=2$	A_{2}	3	D_{4}	8
$d=3$	A_{3}	4	E_{6}	27
$d=4$	A_{4}	5	E_{8}	$248+1$
$d \geq 5$	A_{d}	$d+1$	Kac-Moody?	∞

$d=3$ example

[^0]: ${ }^{1}$ In fact, symmetry is not a crucial ingredient; in higher rank, one deals with nonsymmetric polynomials

[^1]: ${ }^{1}$ In fact, symmetry is not a crucial ingredient; in higher rank, one deals with nonsymmetric polynomials

[^2]: ${ }^{1}$ In fact, symmetry is not a crucial ingredient; in higher rank, one deals with nonsymmetric polynomials

[^3]: where each light pink lozenge at row i contributes a weight x_{i}
 "Off-shell Bethe state". Symmetry in the x_{i} is ensured by integrability! (YBE)

