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Introduction

These two random tiling models:

share two common features:

They are (equivalent to) exactly solvable two-dimensional lattice models.

They are related to Schubert calculus.
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Exactly solvable 2d lattice models → Symmetric polynomials

Symmetric polynomials1 appear in many areas of pure mathematics (combinatorics,
representation theory, etc), as well as in applied mathematics and mathematical physics
(random matrix theory, integrable systems, etc).

In many cases, there is an underlying “integrability”: certain families of symmetric
polynomials can be described explicitly in terms of two-dimensional exactly solvable
lattice models.

Sometimes, this integrability can be extended to the computation of structure constants
of the ring of symmetric polynomials in that particular basis (e.g., Schur functions and
Littlewood–Richardson coefficients).

There are deep connections to (enumerative, algebraic) geometry, in particular to
Schubert calculus.

1In fact, symmetry is not a crucial ingredient; in higher rank, one deals with nonsymmetric polynomials
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Schur polynomials: motivation

Schur polynomials are the most famous family of symmetric polynomials. They are
homogeneous polynomials with integer coefficients.

They form a basis of the ring of symmetric polynomials (i.e., a basis of Z[x1, . . . , xn]Sn as
a graded Z-module for each n).

They are the characters of polynomial irreducible representations of the general linear
group GLn.

They are related to the cohomology of the Grassmannian (they are representatives of
Schubert classes).
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Schur polynomials: definition

To a Young diagram λ (or its associated Maya diagram), one associates the Schur polynomial
sλ(x1, . . . , xn) which is a sum over lozenge tilings:

where each light pink lozenge at row i contributes a weight xi .
“Off-shell Bethe state”. Symmetry in the xi is ensured by integrability! (YBE)
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Schur polynomials: example

s (x1, x2) =

x21

· · ·· · ·

· · ·· · ·
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x2

+ x1x2

· · ·· · ·

· · ·· · ·

x1
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· · ·· · ·

· · ·· · ·

x1

x2
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Lozenge tilings as an exactly solvable model

The lozenge tiling model can be reformulated as a vertex model: the rational 5-vertex
model.

This model is quantum integrable; it is based on the algebra sl2 in the spin 1/2 irrep.

Actually, it is equivalent to Non-Intersecting Lattice Paths and therefore free fermionic /
determinantal.

It gained renewed interest in the last 20 years due to the limiting shape phenomenon:
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The Littlewood–Richardson problem

Whenever one has a basis of a ring (such as the sλ for the ring of symmetric
polynomials), one can ask about structure constants:

sλsµ =
∑
ν

cλ,µν sν

In the case of Schur polynomials, there is a representation-theoretic interpretation
(decomposition of tensor product of irreducible representations of the general or special
linear group).

In the case of Schur (or Schubert/Grothendieck) polynomials, there is a geometric
interpretation (intersection theory on the Grassmannian).
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Example

(
s
)2

= s + s
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The Littlewood–Richardson rule

We are looking for a manifestly positive formula for cλ,µν .

Such a formula was first proposed by Littlewood and Richardson in 1934 in terms of
tableaux, and proved by Schützenberger in 1977.

Another rule was given by Knutson and Tao (2003) in their proof of the saturation
conjecture: puzzles.
It is the form that most explicitly displays the underlying quantum integrability!

Here we present the closely related square-triangle tiling model.
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The square-triangle tiling model

Example 1:

(+ 2 more)

Example 2:
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The square-triangle tiling: history

1993: M. Widom introduces the square-triangle model (in relation to quasi-crystals),
deforms it into a regular triangular lattice (∼ puzzles) and proves integrability.

1994: P. Kalugin (partially) solves the Coordinate Bethe Ansatz equations (size→∞).

1997–2006: J. de Gier and B. Nienhuis reinvestigate it, noticing that it’s a singular limit
of an sl3 model.

2008: K. Purbhoo reformulates puzzles as mosaics (∼ square-triangle tilings).

2008: ZJ reproves the Littlewood–Richardson rule by repeated use of the YBE.
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Schubert calculus

Schubert calculus is a branch of enumerative geometry which is about answering questions
such as “How many lines in 3-space intersect 4 given lines in general position?”.
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Cohomology theories and QIS

These questions reduce to calculations in the cohomology ring of the space of
configurations, e.g. Grassmannians.

The recently discovered connection between QIS and cohomology theories (Okounkov et
al; see also Knutson+ZJ, Rimanyi+Tarasov+Varchenko), itself motivated by relations to
SUSY gauge theory (Nekrasov+Shatashvili), allows in particular to express appropriate
cohomology classes (e.g., Schur polynomials) as partition functions of QIS.

The integrability of the product rule is an extra ingredient, whose geometric meaning was
recently uncovered by Knutson+ZJ.

More generally, we expect to be able to express structure constants of the cohomology of
Nakajima quiver varieties (and beyond).
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A tentative diagram of generalizations

Schur Hall–Littlewood

Schur P/Q

Jack

Macdonald

Symplectic
characters

Type BC
Hall–Littlewood Koornwinder

Grothendieck
(Grassmannian)

Schubert
C/S Schwartz
MacPherson

Grothendieck
(general)

Motivic C/S
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Case of Grothendieck polynomials

Grothendieck polynomials were introduced by Lascoux and Schützenberger (1982) in
relation to the K -theory of flag varieties.

They are a one-parameter deformation of Schur polynomials.

The corresponding integrable model is implicit in the work of Fomin and Kirillov (1994).

Here we first consider the case of the Grassmannian (analogue of Schur polynomials,
rather than general Schubert polynomials).

The integrable model describing the polynomials themselves is also lozenge tilings, but
now interacting; equivalent to the trigonometric 5-vertex model.

The integrable model describing the product rule is the square-triangle-shield tiling model.
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The square-triangle shield model
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Case of Hall–Littlewood polynomials

Hall–Littlewood polynomials Pλ(t; x1, . . . , xn) are a family of polynomials depending on
one parameter t which interpolate between two bases: Schur polynomials (t = 0) and
symmetrized monomials (t = 1).

Remarkably, to express them as partition functions of a lattice model requires a
trigonometric sl2 model with infinite spin, where t plays the role of quantum parameter.

The integrable model for their product rule is a sl3 infinite spin (parabolic Verma module)
model, best expressed in terms of honeycombs. [ZJ ’18]

P. Zinn-Justin From quantum integrability to Schubert calculus July 27, 2018 18 / 22



Case of Hall–Littlewood polynomials

Hall–Littlewood polynomials Pλ(t; x1, . . . , xn) are a family of polynomials depending on
one parameter t which interpolate between two bases: Schur polynomials (t = 0) and
symmetrized monomials (t = 1).

Remarkably, to express them as partition functions of a lattice model requires a
trigonometric sl2 model with infinite spin, where t plays the role of quantum parameter.

The integrable model for their product rule is a sl3 infinite spin (parabolic Verma module)
model, best expressed in terms of honeycombs. [ZJ ’18]

P. Zinn-Justin From quantum integrability to Schubert calculus July 27, 2018 18 / 22



Case of Hall–Littlewood polynomials

Hall–Littlewood polynomials Pλ(t; x1, . . . , xn) are a family of polynomials depending on
one parameter t which interpolate between two bases: Schur polynomials (t = 0) and
symmetrized monomials (t = 1).

Remarkably, to express them as partition functions of a lattice model requires a
trigonometric sl2 model with infinite spin, where t plays the role of quantum parameter.

The integrable model for their product rule is a sl3 infinite spin (parabolic Verma module)
model, best expressed in terms of honeycombs. [ZJ ’18]

P. Zinn-Justin From quantum integrability to Schubert calculus July 27, 2018 18 / 22



Honeycombs

1−t

1+t+t2

3

3

1

1

1

1

1

1

1

3

1

12

1

1

1

2

2

1

1

2

2

2

1

1

3

2

1 1

P. Zinn-Justin From quantum integrability to Schubert calculus July 27, 2018 19 / 22



Honeycombs

1−t

1+t+t2

3

3

1

1

1

1

1

1

1

3

1

12

1

1

1

2

2

1

1

2

2

2

1

1

3

2

1 1

P. Zinn-Justin From quantum integrability to Schubert calculus July 27, 2018 19 / 22



Beyond sl2

All the families of symmetric polynomials considered so far are based on the algebra sl2,
i.e., A1.

The product rules turned out to be also given by integrable models, but based on the
algebra sl3, i.e., A2.

In order to proceed further, one needs to extend this construction to other Lie algebras.
In particular, Schubert calculus in d-step flag varieties (i.e., Schubert or general
Grothendieck polynomials) are related to Ad .

We have achieved this (partially) in our recent paper arXiv:1706.10019 with A. Knutson,
thus providing a partial answer to the venerable 19th century problem of Schubert
calculus.
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QIS and root systems

Family of polynomials ↔ model 1 , their product rule ↔ model 2 .

model 1 dim rep 1 model 2 dim rep 2

d = 1 A1 2

A2 3

d = 2 A2 3

D4 8

d = 3 A3 4

E6 27

d = 4 A4 5

E8 248 + 1

d ≥ 5 Ad d + 1

Kac–Moody? ∞
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