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Evolution of scalar fields
» Scalar fields: Investigate the evolution of solutions to wave equation

Og¢ =0
on black hole backgrounds (Schwarzschild, Kerr, Reissner—Nordstrom)
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Study the behavior of 1)
and its derivatives
owards the future
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> Motivation: In harmonic gauge O x" = 0 the vacuum equations take the
form

7

Prescribe on Yy initial data for
the wave equation Ogt) =0

Og9uv = Nuv(g, 99).
Hence the wave equation serves as a (necessary) toy model in studying the
dynamics of Einstein equations.
» Goal:
» Upper bounds for stability considerations
» Lower bounds for strong cosmic censorship

» This talk: Emphasis on conservation laws, asymptotics and physical conse-

quences
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Conservation laws along characteristic hypersurfaces

Let S, be a foliation with section of a null hypersurface H.

Then roughly speaking a conservation law consists of integrals of the form

F(y, D)

Sy

which are independent of v for all scalar fields v satisfying the wave equation.
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Late-time tails on sub-extremal black holes

4/20



Previous mathematical works

Very active research area in the past decade.

» Main difficulties: Low frequencies, superradiant, trapping, redshift

» Contributors: Dafermos, Rodnianski, Andersson, Tataru, Moschidis, Blue,
Holzegel, Shlapentokh-Rothman, Dyatlov, Hafner, Bony, Smulevici, Klain-
erman, lonescu, Tohaneanu, Sterbenz, Soffer, Schlue, Luk, Finster, Kamran,
Smoller, Yau, Donninger, Schlag, Vasy, Hintz, Metcalfe, Wald, ...

» Lower bounds were first proved in the work of Luk—Oh.

» All methods break down at the extremal case.
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The Newman—Penrose constant

» The Newman—Penrose constant gives rise to a conservation law along null
infinity.

black hole

The constant is equal to
NP[Y] = / lim 72 - O (1)
ST r—00

» However, N P[¢)] = 0 for compactly supported data. Then, generically,
PO, 4] #0

where 8, ') is canonically defined as long as 9; # 0.

> The constant N P[d; 4] can be explicitly computed using the initial data
of 1.

> Denote IV [y] := NP[d; 4]

> () is the unique obstruction to inverting T2
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Late-time asymptotics

Theorem (Angelopoulos, A., Gajic)

If 4 is a solution to the wave equation on a sub-extremal Reissner—Nordstrém
space-time with smooth compactly supported initial data then

Asymptotics in the exterior region

Plu Ylr=r rilz
I 773 | 1MW) - 773 | =21V ] - 772 = 8MITV[Y]logT - 772
Comments:
| 2
O =M bdQ + —/ atwr drdQ.
ft=0y 1—2%

471' {t=0}NSgr

» Sharp lower and upper pointwise bounds.

> [(M[y)] related to the quantity £ of Luk—Oh.

> Correlated asymptotics along H* (1) ~ 8T (] - 773) and ZF

(r ~ —

21 - 772).

» Leading order asymptotics recover work of Leaver.

» Precise logarithmic corrections along Z appear to be new.
> We further obtain (2¢ + 3)-asymptotics.
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Late-time tails (or late-time tales) for extremal black holes
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Why extremal black holes?

vyVvVvYvYyVvyVvyy

Mass minimizers

Applications in supersymmetry, quantum gravity, string theory
Electromagnetic and gravitational signatures

Turbulent gravitational behavior

Vast astronomical evidence for near-extremal black holes.

Rees et al. (The distribution and cosmic evolution of massive black hole
spins, Astrophys. J.) report that “the spin distribution is heavily skewed
toward fast-rotating Kerr black holes” and that “about 70% of all stellar
black holes at all epochs are maximally rotating”. Gas accretion dominant
effect and spins black holes up.
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Firstly, we have the following

Proposition (A.)

If ) satisfies the wave equation on extremal Reissner—Nordstrém then the integral
1
HIg) == | (Yo + 50)dvol
[¥] /S vt gyt dve

is independent of 7. Here Y is transversal to the horizon.

» For smooth solutions 1) we have H[T'}] = 0. Hence H is an obstruction to
inverting 7.
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“Outgoing radiation”

Solutions ¢ with H[¢] # 0 and NP[¢] =0
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“Initially static moment”

Solutions ¢ with H[¢)] # 0 and NP[y)] # 0
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“Ingoing radiation”

Solutions ¢ with H[¢)] =0 and NP[)] =0
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H{[v)] as a “horizon hair”

» Outgoing perturbations and perturbations with an initially static moment
(H[] # 0) satisfy along the event horizon:
1) Non-decay: Yo — — - H[1)]
2) Blow-up: YY) — = H[y] - T

> H[y]: “horizon” “hair" since

1) Energy density measured by incoming observers: T, [¢)] ~ H[¢)] where
T is the E-M tensor,
2) [Y*|, | T [10]] < 0 away from the horizon.

» Generic ingoing perturbations: |YYY4| — oo, as 7 — 4o0.

> Later extensions/applications by: Reall, Murata, Casals, Zimmerman, Gralla, Tana-
hashi, Bizon, Lucietti, Angelopoulos, Gajic, Ori, Sela, Tsukamoto, Kimura, Harada,
Hadar, Dain, Dotti, Godazgar, Burko, Khanna, Bhattacharjee, Chow, Berti et al,
Cardoso et al,...
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Late-time asymptotics

Theorem (Angelopoulos, A.,Gajic)

The following asymptotics hold on ERN:

Asymptotics along the event horizon

Perturbation | outgoing data ingoing data
Plu 2H -1 DY = (CONE
Yol - H 2, H® .72
VYl X H-1 L HO
YYYWH —2515 CH 12 _T*) CHW L4

» H registers in the asymptotics for 1.

> Here HY = H[T~14]. It is well-defined for ingoing perturbations.

> Asymptotics on 1T confirm numerical results of Murata—Reall-Tanahashi
and is consistent with decay rates of Blaskley—Burko, Ori—-Sela and Casals—

Gralla—Zimmerman.

> Asymptotics (with log corrections) on the event horizon are important for
dynamics in the interior of extremal black holes—C? extendibility. (Gajic,
Reall et al., Gajic—Luk).
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Late-time asymptotics

Theorem (Angelopoulos, A.,Gajic)

The following asymptotics hold o

n ERN:

Asymptotics away from the event horizon

Data '¢'|T‘:R 7‘1/)‘1
outgoing A2 (4MH — 2I<1>) o2
static moment 4 (NP + TE/IM H) L2 2-NP[y]- -1
ingoing -8 (](1> + %H(l)) L3 _o7() . ;-2
black hole

AM_ s the static solution.

r—M

vvyvyy

infinite.

v

Here IV = NP[T~'¢] and HV [¢)] = H[T~'4].
H[v] registers in the asymptotics away from H, even on null infinity Z.

For outgoing perturbation 1), T4 is singular on %" its local energy is

Asymptotics for r1)|z were not known in physics literature.
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Measuring the horizon hair H from null infinity

» In principle, precise asymptotics allow to observe/measure the horizon in-
stability from afar.

Let's consider outgoing radiation.

» Along r = R > M: We have a slower decay rate if H # 0. In fact,

R=M i 72 Y|r=r

AWy = = Jim,

> Along Z7: We have the same decay rate for the radiation field, but the
horizon hair registers in the asymptotics ri|z ~ (4MH — 21(1)) 772 In

fact, it turns out that /™ = % r dQ2dT which yields

fI+ﬁ{TZO}

1 1
H[y] = M Tl;m ( (r¢)|z) + 3 ~/I+m{rzo} ri|z dQdr

» We conclude that for extremal black holes information “leaks” from the
event horizon to null infinity.
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Comparison with sub-extremal tails

For ERN:

1
Hy] = YNYi TILH;O (7-2 . (T?/))ll) + 3 /I+ 0y r|z dQdr
n{r>

For sub-extremal RN we have:
» The RHS vanishes for sub-extremal RN!

» Specifically, we have

M
lim (72 . (rw)\z) =—— ri|z dQdr,
Teo 27 Jz4n(r>0)
2M
lim (73 -¢|7.:R) = rip|z dQdr,
Teo ™ Jz+n{r>0}
2M
lim (T?’ -¢|H) == rip|z dQdr,
Teo ™ Jz+n{r>0}

> Late time tails are dictated by the weak-field dynamics, namely by dynamics
at very large r.

» Integral of the radiation field had been used by Luk—Oh for lower bounds
on sub-extremal RN.
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Physics Literature

» Work by Reall, Murata and Tanahashi suggests that perturbations of initial
data of extremal R—N in the context of the Cauchy problem for the Einstein—
Maxwell-scalar field equations exhibit a version of the horizon instability.

» Work by Casals—Gralla—Zimmerman and subsequently by Hadar—Reall ob-
tained that the decay rate for non-zero azimuthal frequencies along the event
horizon on extremal Kerr is \% and for the first-order transversal derivative
is /7 (amplified instability).
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Thank you!
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