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Evolution of scalar fields
I Scalar fields: Investigate the evolution of solutions to wave equation

2gψ = 0

on black hole backgrounds (Schwarzschild, Kerr, Reissner–Nordström)
 event
horizon

null infinity

I Motivation: In harmonic gauge 2gx
µ = 0 the vacuum equations take the

form
2ggµν = Nµν(g, ∂g).

Hence the wave equation serves as a (necessary) toy model in studying the
dynamics of Einstein equations.

I Goal:
I Upper bounds for stability considerations
I Lower bounds for strong cosmic censorship

I This talk: Emphasis on conservation laws, asymptotics and physical conse-
quences
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Conservation laws along characteristic hypersurfaces

Let Sv be a foliation with section of a null hypersurface H.

Then roughly speaking a conservation law consists of integrals of the form∫
Sv

F (ψ,Daψ)

which are independent of v for all scalar fields ψ satisfying the wave equation.
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Late-time tails on sub-extremal black holes
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Previous mathematical works

Very active research area in the past decade.

I Main difficulties: Low frequencies, superradiant, trapping, redshift

I Contributors: Dafermos, Rodnianski, Andersson, Tataru, Moschidis, Blue,
Holzegel, Shlapentokh-Rothman, Dyatlov, Häfner, Bony, Smulevici, Klain-
erman, Ionescu, Tohaneanu, Sterbenz, Soffer, Schlue, Luk, Finster, Kamran,
Smoller, Yau, Donninger, Schlag, Vasy, Hintz, Metcalfe, Wald, ...

I Lower bounds were first proved in the work of Luk–Oh.

I All methods break down at the extremal case.
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The Newman–Penrose constant

I The Newman–Penrose constant gives rise to a conservation law along null
infinity.

The constant is equal to

NP [ψ] =

∫
Sτ

lim
r→∞

r2 · ∂v(rψ)

I However, NP [ψ] = 0 for compactly supported data. Then, generically,

NP [∂−1
t ψ] 6= 0

where ∂−1
t ψ is canonically defined as long as ∂t 6= 0.

I The constant NP [∂−1
t ψ] can be explicitly computed using the initial data

of ψ.

I Denote I(1)[ψ] := NP [∂−1
t ψ].

I I(1) is the unique obstruction to inverting T 2.
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Late-time asymptotics

Theorem (Angelopoulos, A., Gajic)

If ψ is a solution to the wave equation on a sub-extremal Reissner–Nordström
space-time with smooth compactly supported initial data then

Asymptotics in the exterior region

ψ|H ψ|r=R rψ|I

8I(1)[ψ] · τ−3 8I(1)[ψ] · τ−3 −2I(1)[ψ] · τ−2 − 8MI(1)[ψ] log τ · τ−3

Comments:

I

I(1)[ψ] =
M

4π

∫
{t=0}∩SBF

ψ dΩ +
M

4π

∫
{t=0}

1

1− 2M
r

∂tψ r
2drdΩ.

I Sharp lower and upper pointwise bounds.
I I(1)[ψ] related to the quantity L of Luk–Oh.
I Correlated asymptotics along H+ (ψ ∼ 8I(1)[ψ] · τ−3) and I+

(rψ ∼ −2I(1)[ψ] · τ−2).
I Leading order asymptotics recover work of Leaver.
I Precise logarithmic corrections along I+ appear to be new.
I We further obtain (2`+ 3)-asymptotics.

7 / 20



Late-time tails (or late-time tales) for extremal black holes
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Why extremal black holes?

I Mass minimizers

I Applications in supersymmetry, quantum gravity, string theory

I Electromagnetic and gravitational signatures

I Turbulent gravitational behavior

I Vast astronomical evidence for near-extremal black holes.

I Rees et al. (The distribution and cosmic evolution of massive black hole
spins, Astrophys. J.) report that “the spin distribution is heavily skewed
toward fast-rotating Kerr black holes” and that “about 70% of all stellar
black holes at all epochs are maximally rotating”. Gas accretion dominant
effect and spins black holes up.
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Firstly, we have the following

Proposition (A.)

If ψ satisfies the wave equation on extremal Reissner–Nordström then the integral

H[ψ] = −
∫
Sτ

(
Y ψ +

1

2M
ψ
)

dvol

is independent of τ . Here Y is transversal to the horizon.

I For smooth solutions ψ we have H[Tψ] = 0. Hence H is an obstruction to
inverting T .
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“Outgoing radiation”

Solutions ψ with H[ψ] 6= 0 and NP [ψ] = 0
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“Initially static moment”

Solutions ψ with H[ψ] 6= 0 and NP [ψ] 6= 0
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“Ingoing radiation”

Solutions ψ with H[ψ] = 0 and NP [ψ] = 0
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H[ψ] as a “horizon hair”

I Outgoing perturbations and perturbations with an initially static moment
(H[ψ] 6= 0) satisfy along the event horizon:

1) Non-decay: Y ψ → − 1
M
H[ψ]

2) Blow-up: Y Y ψ → 1
M3H[ψ] · τ

I H[ψ]: “horizon” “hair” since

1) Energy density measured by incoming observers: T rr[ψ] ∼ H[ψ] where
T is the E-M tensor,
2) |Y kψ|, |T rr[ψ]| ≤ 0 away from the horizon.

I Generic ingoing perturbations: |Y Y Y ψ| → ∞, as τ → +∞.

I Later extensions/applications by: Reall, Murata, Casals, Zimmerman, Gralla, Tana-
hashi, Bizon, Lucietti, Angelopoulos, Gajic, Ori, Sela, Tsukamoto, Kimura, Harada,
Hadar, Dain, Dotti, Godazgar, Burko, Khanna, Bhattacharjee, Chow, Berti et al,
Cardoso et al,...
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Late-time asymptotics

Theorem (Angelopoulos, A.,Gajic)

The following asymptotics hold on ERN:

Asymptotics along the event horizon

Perturbation outgoing data ingoing data

ψ|H 2H · τ−1 −2H(1) · τ−2

Y ψ|H − 1
M
·H 2

M2 ·H(1) · τ−2

Y Y ψ|H 1
M3 ·H · τ 1

M3 ·H(1)

Y Y Y ψ|H − 3
2M5 ·H · τ2 − 3

M5 ·H(1) · τ

I H registers in the asymptotics for ψ.
I Here H(1) = H[T−1ψ]. It is well-defined for ingoing perturbations.
I Asymptotics on H+ confirm numerical results of Murata–Reall–Tanahashi

and is consistent with decay rates of Blaskley–Burko, Ori–Sela and Casals–
Gralla–Zimmerman.

I Asymptotics (with log corrections) on the event horizon are important for
dynamics in the interior of extremal black holes–C2 extendibility. (Gajic,
Reall et al., Gajic–Luk).
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Late-time asymptotics

Theorem (Angelopoulos, A.,Gajic)

The following asymptotics hold on ERN:

Asymptotics away from the event horizon

Data ψ|r=R rψ|I

outgoing 4M
r−MH · τ−2

(
4MH − 2I(1)

)
· τ−2

static moment 4
(
NP + M

r−MH
)
· τ−2 2 ·NP [ψ] · τ−1

ingoing −8
(
I(1) + M

r−MH(1)
)
· τ−3 −2I(1) · τ−2

I Here I(1) = NP [T−1ψ] and H(1)[ψ] = H[T−1ψ].
I H[ψ] registers in the asymptotics away from H, even on null infinity I.
I 4M

r−M is the static solution.
I For outgoing perturbation ψ, T−1ψ is singular on H+: its local energy is

infinite.
I Asymptotics for rψ|I were not known in physics literature.
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Measuring the horizon hair H from null infinity

I In principle, precise asymptotics allow to observe/measure the horizon in-
stability from afar.

Let’s consider outgoing radiation.

I Along r = R > M : We have a slower decay rate if H 6= 0. In fact,

H[ψ] =
R−M

4M
· lim
τ→∞

τ2 · ψ|r=R

I Along I+: We have the same decay rate for the radiation field, but the

horizon hair registers in the asymptotics rψ|I ∼
(

4MH − 2I(1)
)
· τ−2. In

fact, it turns out that I(1) = M
4π

∫
I+∩{τ≥0} rψ dΩdτ which yields

H[ψ] =
1

4M
lim
τ→∞

(
τ2 · (rψ)|I

)
+

1

8π

∫
I+∩{τ≥0}

rψ|I dΩdτ

I We conclude that for extremal black holes information “leaks” from the
event horizon to null infinity.
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Comparison with sub-extremal tails

For ERN:

H[ψ] =
1

4M
lim
τ→∞

(
τ2 · (rψ)|I

)
+

1

8π

∫
I+∩{τ≥0}

rψ|I dΩdτ

For sub-extremal RN we have:

I The RHS vanishes for sub-extremal RN!

I Specifically, we have

lim
τ→∞

(
τ2 · (rψ)|I

)
= −M

2π

∫
I+∩{τ≥0}

rψ|I dΩdτ,

lim
τ→∞

(
τ3 · ψ|r=R

)
=

2M

π

∫
I+∩{τ≥0}

rψ|I dΩdτ,

lim
τ→∞

(
τ3 · ψ|H

)
=

2M

π

∫
I+∩{τ≥0}

rψ|I dΩdτ,

I Late time tails are dictated by the weak-field dynamics, namely by dynamics
at very large r.

I Integral of the radiation field had been used by Luk–Oh for lower bounds
on sub-extremal RN.
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Physics Literature

I Work by Reall, Murata and Tanahashi suggests that perturbations of initial
data of extremal R–N in the context of the Cauchy problem for the Einstein–
Maxwell-scalar field equations exhibit a version of the horizon instability.

I Work by Casals–Gralla–Zimmerman and subsequently by Hadar–Reall ob-
tained that the decay rate for non-zero azimuthal frequencies along the event
horizon on extremal Kerr is 1√

τ
and for the first-order transversal derivative

is
√
τ (amplified instability).
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Thank you!
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