Bogoliubov theory in the Gross-Pitaevskii regime

Serena Cenatiempo - Gran Sasso Science Institute, L'Aquila

joint work with
Chiara Boccato, Christian Brennecke and Benjamin Schlein

ICMP 2018
Montréal, July 23-28

The dilute Bose gas in 3d

N bosons enclosed in a cubic box Λ of side length L, described by

$$
H_{N}=-\sum_{j=1}^{N} \Delta_{x_{j}}+\sum_{1 \leq i<j \leq N} V\left(x_{i}-x_{j}\right), \quad \rho a^{3} \ll 1
$$

Long-standing goals: for $N, L \rightarrow \infty$ and $\rho=N /|\Lambda|$ fixed

- prove the occurrence of condensation
- hard-core bosons at half filling [Dyson-Lieb-Simon,'78]
- renormalization group results:
[Benfatto '94], [Balaban-Feldman-Knörrer-Trubowitz ‘08-‘16]
- compute thermodynamic functions
- ground state energy: [Dyson‘57], [Lieb-Yngvason, ‘98], [Erdös-Schlein-Yau, '08], [Giuliani-Seiringer '09], [Yau-Yin, '13], [Brietzke-Solovej '17]
- low lying excitation spectrum

Bogoliubov theory

-) Fock space Hamiltonian, momentum space

$$
H=\sum_{p \in \Lambda^{*}} p^{2} a_{p}^{*} a_{p}+\frac{1}{2|\Lambda|} \sum_{p, q, r \in \Lambda^{*}} \widehat{V}(r) a_{p+r}^{*} a_{q}^{*} a_{p} a_{q+r}, \quad \Lambda^{*}=\frac{2 \pi}{L} \mathbb{Z}^{3}
$$

Bogoliubov theory

-) Fock space Hamiltonian, momentum space

$$
H=\sum_{p \in \Lambda^{*}} p^{2} a_{p}^{*} a_{p}+\frac{1}{2|\Lambda|} \sum_{p, q, r \in \Lambda^{*}} \widehat{V}(r) a_{p+r}^{*} a_{q}^{*} a_{p} a_{q+r}, \quad \Lambda^{*}=\frac{2 \pi}{L} \mathbb{Z}^{3}
$$

-) Since he expected BEC in low energy states replaced a_{0}, a_{0}^{*} by $N^{1 / 2}$

$$
\begin{array}{rlr}
H= & \frac{N(N-1)}{2|\Lambda|} \widehat{V}(0)+\sum_{p \in \Lambda_{+}^{*}}\left[|p|^{2}+\frac{N}{|\Lambda|} \widehat{V}(p)\right] a_{p}^{*} a_{p} \quad \Lambda_{+}^{*}=\frac{2 \pi}{L} \mathbb{Z}^{3} \backslash\{0\} \\
& +\frac{N}{2|\Lambda|} \sum_{p \in \Lambda_{+}^{*}} \widehat{V}(p)\left(a_{p} a_{-p}+a_{p}^{*} a_{-p}^{*}\right)+(\text { cubic })+(\text { quartic }), \quad N /|\Lambda|:=\rho
\end{array}
$$

Bogoliubov theory

-) Fock space Hamiltonian, momentum space

$$
H=\sum_{p \in \Lambda^{*}} p^{2} a_{p}^{*} a_{p}+\frac{1}{2|\Lambda|} \sum_{p, q, r \in \Lambda^{*}} \widehat{V}(r) a_{p+r}^{*} a_{q}^{*} a_{p} a_{q+r}, \quad \Lambda^{*}=\frac{2 \pi}{L} \mathbb{Z}^{3}
$$

-) Since he expected BEC in low energy states replaced a_{0}, a_{0}^{*} by $N^{1 / 2}$

$$
\begin{array}{rlr}
H= & \frac{N(N-1)}{2|\Lambda|} \widehat{V}(0)+\sum_{p \in \Lambda_{+}^{*}}\left[|p|^{2}+\frac{N}{|\Lambda|} \widehat{V}(p)\right] a_{p}^{*} a_{p} \quad \Lambda_{+}^{*}=\frac{2 \pi}{L} \mathbb{Z}^{3} \backslash\{0\} \\
& +\frac{N}{2|\Lambda|} \sum_{p \in \Lambda_{+}^{*}} \widehat{V}(p)\left(a_{p} a_{-p}+a_{p}^{*} a_{-p}^{*}\right)+(\text { cubic })+(\text { quartic }), \quad N /|\Lambda|:=\rho
\end{array}
$$

-) Neglecting cubic and quartic contributions, diagonalization leads to

$$
\begin{gathered}
H_{B}=E_{N, \Lambda}+\sum_{p \in \Lambda_{+}^{*}} \sqrt{p^{4}+2 \rho p^{2} \widehat{V}(p)} n_{p} \quad n_{p} \in \mathbb{N} \\
E_{N, \Lambda}=\frac{N}{2} \rho \widehat{V}(0)-\frac{1}{4} \sum_{p \in \Lambda_{+}^{*}} \frac{(\rho \widehat{V}(p))^{2}}{p^{2}}-\frac{1}{2} \sum_{p \in \Lambda_{+}^{*}}\left[p^{2}+\rho \widehat{V}(p)-\sqrt{p^{4}+2 \rho \widehat{V}(p) p^{2}}-\frac{1}{4} \sum_{p \in \Lambda_{+}^{*}} \frac{(\rho \widehat{V}(p))^{2}}{p^{2}}\right]
\end{gathered}
$$

Bogoliubov theory

-) Fock space Hamiltonian, momentum space

$$
H=\sum_{p \in \Lambda^{*}} p^{2} a_{p}^{*} a_{p}+\frac{1}{2|\Lambda|} \sum_{p, q, r \in \Lambda^{*}} \widehat{V}(r) a_{p+r}^{*} a_{q}^{*} a_{p} a_{q+r}, \quad \Lambda^{*}=\frac{2 \pi}{L} \mathbb{Z}^{3}
$$

-) Since he expected BEC in low energy states replaced a_{0}, a_{0}^{*} by $N^{1 / 2}$

$$
\begin{array}{rlr}
H= & \frac{N(N-1)}{2|\Lambda|} \widehat{V}(0)+\sum_{p \in \Lambda_{+}^{*}}\left[|p|^{2}+\frac{N}{|\Lambda|} \widehat{V}(p)\right] a_{p}^{*} a_{p} \quad \Lambda_{+}^{*}=\frac{2 \pi}{L} \mathbb{Z}^{3} \backslash\{0\} \\
& +\frac{N}{2|\Lambda|} \sum_{p \in \Lambda_{+}^{*}} \widehat{V}(p)\left(a_{p} a_{-p}+a_{p}^{*} a_{-p}^{*}\right)+(\text { cubic })+(\text { quartic }), \quad N /|\Lambda|:=\rho
\end{array}
$$

-) Neglecting cubic and quartic contributions, diagonalization leads to

$$
\begin{gathered}
H_{B}=E_{N, \Lambda}+\sum_{p \in \Lambda_{+}^{*}} \sqrt{p^{4}+2 \rho p^{2} \widehat{V}(p)} n_{p} \quad n_{p} \in \mathbb{N} \\
E_{N, \Lambda}=\frac{N}{2} \rho \widehat{V}(0)-\frac{1}{4} \sum_{p \in \Lambda_{+}^{*}} \frac{(\rho \widehat{V}(p))^{2}}{p^{2}}-\frac{1}{2} \sum_{p \in \Lambda_{+}^{*}}\left[p^{2}+\rho \widehat{V}(p)-\sqrt{p^{4}+2 \rho \widehat{V}(p) p^{2}}-\frac{1}{4} \sum_{p \in \Lambda_{+}^{*}} \frac{(\rho \widehat{V}(p))^{2}}{p^{2}}\right]
\end{gathered}
$$

-) Thermodinamic limit and emergence of the scattering length

$$
e_{0}=\lim _{N,|\Lambda| \rightarrow \infty, \rho=N /|\Lambda|} \frac{E_{N, \Lambda}}{N}=4 \pi \rho\left(\mathfrak{a}_{0}+\mathfrak{a}_{1}\right)+4 \pi \rho \mathfrak{a}_{0} \frac{128}{15 \pi} \sqrt{\rho \mathfrak{a}_{0}^{3}}+o\left(\rho^{3 / 2} \mathfrak{a}_{0}^{5 / 2}\right)
$$

where $\mathfrak{a}_{0}=(8 \pi)^{-1} \widehat{V}(0)$ and $\mathfrak{a}_{1}=\mathcal{O}\left(\mathfrak{a}_{0}^{2} / R\right)$, with R the range of the interaction.

Bogoliubov theory and rigorous results

Expectation for the ground state energy for particle:

$$
\begin{array}{r}
e_{0}=4 \pi \rho\left(\mathfrak{a}_{0}+\mathfrak{a}_{1}\right)+4 \pi \rho \mathfrak{a}_{0} \frac{128}{15 \pi} \sqrt{\rho \mathfrak{a}_{0}^{3}}+o\left(\rho^{3 / 2} \mathfrak{a}_{0}^{5 / 2}\right) \\
?=4 \pi \rho \mathfrak{a}+4 \pi \rho \mathfrak{a} \frac{128}{15 \pi} \sqrt{\rho \mathfrak{a}^{3}}+o\left(\rho^{3 / 2} \mathfrak{a}^{5 / 2}\right)
\end{array}
$$

Recall: $8 \pi \mathfrak{a}=\int V(x) f(x) d x$ with f solution of $\left(-\Delta+\frac{1}{2} V\right) f=0$ with $f(x) \rightarrow 1$ as $|x| \rightarrow \infty$. For $\mathfrak{a}_{0}=(8 \pi)^{-1} \widehat{V}(0) \ll R$ we may write

$$
\mathfrak{a}=\mathfrak{a}_{0}+\mathfrak{a}_{1}+\mathfrak{a}_{2}+\ldots \quad \text { with } \quad \mathfrak{a}_{j}=\mathfrak{a}_{0}\left(\mathfrak{a}_{0} / R\right)^{j}
$$

Rigorous results

- Leading order: [Dyson‘57], [Lieb-Yngvason, ‘98]
\Rightarrow Second order: upper and lower bounds for regimes s.t. $\mathfrak{a}_{1} \gg \mathfrak{a}_{0} \sqrt{\rho \mathfrak{a}_{0}^{3}} \gg \mathfrak{a}_{2}$ [Lieb-Solovej, '01 \& '04], [Giuliani-Seiringer '09], [Brietzke-Solovej '17];
- Second order for $\rho \mathfrak{a}^{3} \ll 1$, only upper bounds available [Erdös-Schlein-Yau, ‘08], [Yau-Yin, '13]

Bogoliubov theory and rigorous results

Bogoliubov approximation has been proved to be valid for bosons in the mean field regime:

$$
H_{N}^{m f}=-\sum_{j=1}^{N} \Delta_{x_{j}}+\frac{1}{N} \sum_{1 \leq i<j \leq N} V\left(x_{i}-x_{j}\right), \quad|\Lambda|=1
$$

where $\mathfrak{a}_{0}, \mathfrak{a}_{0} / R \sim N^{-1}$, hence $\mathfrak{a}_{j} \sim N^{-(j+1)}$ and $\mathfrak{a}_{1} \gg \mathfrak{a}_{0} \sqrt{\rho \mathfrak{a}_{0}^{3}} \gg \mathfrak{a}_{2}$.
Results for the homogeneous case [Seiringer '11]:

- Condensation with rate of convergence: $1-\left\langle\varphi_{0}, \gamma_{N}^{(1)} \varphi_{0}\right\rangle \leq C N^{-1}$
- Ground state energy at second order

$$
E_{N}^{m f}=\frac{(N-1) \widehat{V}(0)}{2}-\frac{1}{2} \sum_{p \in \Lambda_{+}^{*}}\left[p^{2}+\kappa \widehat{V}(p)-\sqrt{|p|^{4}+2 \kappa|p|^{2} \widehat{V}(p)}\right]+o(1)
$$

- Bogoliubov spectrum of elementary excitations

$$
\sum_{p \in \Lambda_{+}^{*}} n_{p} \sqrt{|p|^{4}+2 \kappa p^{2} \widehat{V}(p)}+o(1), \quad n_{p} \in \mathbb{N}
$$

Further results: [Grech-Seiringer '13],[Lewin-Nam-Serfaty-Solovey '14], [Derezinski-Napiorkovski '14], [Pizzo '15]

Bogoliubov theory in the Gross-Pitaevskii regime

Consider N bosons in a cubic box Λ described by

$$
H_{N}=-\sum_{i=1}^{N} \Delta_{x_{i}}+\kappa \sum_{i<j}^{N} N^{2} V\left(N\left(x_{i}-x_{j}\right)\right), \quad|\Lambda|=1
$$

- If $\kappa V(x)$ has scattering length \mathfrak{a}, then $\kappa N^{2} V\left(N_{x}\right)$ has scattering length $\mathfrak{a} / N \longrightarrow$ dilute regime $\rho a^{3}=N^{-2}$
- since $\mathfrak{a}_{0} / R=\mathcal{O}(\kappa)$ all terms in the Born series of the scattering length contribute to the same order in N : we cannot replace first and second Born approximation with the full scattering length!

Relevance:

- physically relevant for the description of strong and short range interactions among atoms in BEC experiments
- mathematically challenging since correlations among the particles play a crucial role to understand statical and dynamical properties of the system
- H_{N} equivalent to the Hamiltonian for N bosons in a box with $L=N$ interacting through a fixed potential κV, i.e. $\rho=N / L^{3}=N^{-2}$

Bogoliubov theory in the Gross-Pitaevskii regime

N bosons in $\Lambda=[0 ; 1]^{\times 3}$, periodic boundary conditions

$$
H_{N}=\sum_{p \in \Lambda^{*}} p^{2} a_{p}^{*} a_{p}+\frac{\kappa}{2 N} \sum_{p, q, r \in \Lambda^{*}} \widehat{V}(r / N) a_{p+r}^{*} a_{q-r}^{*} a_{p} a_{q}, \quad \Lambda_{*}=2 \pi \mathbb{Z}^{3}
$$

From [Lieb-Seiringer-Yngvason, '00] the ground state energy of H_{N} at leading order is

$$
E_{N}=4 \pi \mathfrak{a} N+o(N)
$$

From [Lieb-Seiringer, '02] the one particle reduced density $\gamma_{N}^{(1)}$ associated to the ground state of H_{N} is such that in trace norm

$$
\gamma_{N}^{(1)} \xrightarrow[N \rightarrow \infty]{ }\left|\varphi_{0}\right\rangle\left\langle\varphi_{0}\right|
$$

where $\varphi_{0}(x)=1$ for all $x \in \Lambda$.

Bogoliubov theory in the Gross-Pitaevskii regime

N bosons in $\Lambda=[0 ; 1]^{\times 3}$, periodic boundary conditions

$$
H_{N}=\sum_{p \in \Lambda^{*}} p^{2} a_{p}^{*} a_{p}+\frac{\kappa}{2 N} \sum_{p, q, r \in \Lambda^{*}} \widehat{V}(r / N) a_{p+r}^{*} a_{q-r}^{*} a_{p} a_{q}, \quad \Lambda_{*}=2 \pi \mathbb{Z}^{3}
$$

From [Lieb-Seiringer-Yngvason, '00] the ground state energy of H_{N} at leading order is

$$
E_{N}=4 \pi \mathfrak{a} N+o(N) \quad 8 \pi \mathfrak{a}=\kappa \int \mathrm{d} x f(x) V(x)
$$

Note that $\left\langle\varphi_{0}^{\otimes N} H_{N} \varphi_{0}^{\otimes N}\right\rangle=\frac{(N-1) \kappa \hat{V}(0)}{2} \gg 4 \pi \mathfrak{a N}$

From [Lieb-Seiringer, '02] the one particle reduced density $\gamma_{N}^{(1)}$ associated to the ground state of H_{N} is such that in trace norm

$$
\gamma_{N}^{(1)} \xrightarrow[N \rightarrow \infty]{ }\left|\varphi_{0}\right\rangle\left\langle\varphi_{0}\right|
$$

where $\varphi_{0}(x)=1$ for all $x \in \Lambda$.

Bogoliubov theory in the Gross-Pitaevskii regime

$$
H_{N}=\sum_{p \in \Lambda^{*}} p^{2} a_{p}^{*} a_{p}+\frac{\kappa}{2 N} \sum_{p, q, r \in \Lambda^{*}} \widehat{V}(r / N) a_{p+r}^{*} a_{q-r}^{*} a_{p} a_{q}, \quad \Lambda^{*}=2 \pi \mathbb{Z}^{3}
$$

Bogoliubov theory in the Gross-Pitaevskii regime

$$
H_{N}=\sum_{p \in \Lambda^{*}} p^{2} a_{p}^{*} a_{p}+\frac{\kappa}{2 N} \sum_{p, q, r \in \Lambda^{*}} \widehat{V}(r / N) a_{p+r}^{*} a_{q-r}^{*} a_{p} a_{q}, \quad \Lambda^{*}=2 \pi \mathbb{Z}^{3}
$$

[Boccato-Brennecke-C.-Schlein '18] For $\kappa>0$ small enough, the ground state energy of H_{N} is

$$
E_{N}=4 \pi(N-1) \mathfrak{a}_{N}-\frac{1}{2} \sum_{p \in \Lambda_{+}^{*}}\left[p^{2}+8 \pi \mathfrak{a}-\sqrt{|p|^{4}+16 \pi \mathfrak{a} p^{2}}-\frac{(8 \pi \mathfrak{a})^{2}}{2 p^{2}}\right]+\mathcal{O}\left(N^{-1 / 4}\right)
$$

where $\Lambda_{+}^{*}=2 \pi \mathbb{Z}^{3} \backslash\{0\}$ and

$$
8 \pi \mathfrak{a}_{N}
$$

Bogoliubov theory in the Gross-Pitaevskii regime

$$
H_{N}=\sum_{p \in \Lambda^{*}} p^{2} a_{p}^{*} a_{p}+\frac{\kappa}{2 N} \sum_{p, q, r \in \Lambda^{*}} \widehat{V}(r / N) a_{p+r}^{*} a_{q-r}^{*} a_{p} a_{q}, \quad \Lambda^{*}=2 \pi \mathbb{Z}^{3}
$$

[Boccato-Brennecke-C.-Schlein '18] For $\kappa>0$ small enough, the ground state energy of H_{N} is

$$
E_{N}=4 \pi(N-1) \mathfrak{a}_{N}-\frac{1}{2} \sum_{p \in \Lambda_{+}^{*}}\left[p^{2}+8 \pi \mathfrak{a}-\sqrt{|p|^{4}+16 \pi \mathfrak{a} p^{2}}-\frac{(8 \pi \mathfrak{a})^{2}}{2 p^{2}}\right]+\mathcal{O}\left(N^{-1 / 4}\right)
$$

where $\Lambda_{+}^{*}=2 \pi \mathbb{Z}^{3} \backslash\{0\}$ and

$$
\begin{aligned}
8 \pi \mathfrak{a}_{N} & =\kappa \widehat{V}(0)-\frac{1}{2 N} \sum_{p_{1} \in \Lambda_{+}^{*}} \frac{\kappa^{2} \widehat{V}^{2}\left(p_{1} / N\right)}{2 p_{1}^{2}} \\
& +\sum_{m=2}^{+\infty} \frac{(-1)^{m} \kappa^{m}}{(2 N)^{m}} \sum_{p_{1}, \ldots, p_{m} \in \Lambda_{+}^{*}} \frac{\widehat{V}\left(p_{1} / N\right)}{p_{1}^{2}}\left[\prod_{j=1}^{m-1} \frac{\widehat{V}\left(\left(p_{j}-p_{j+1}\right) / N\right.}{p_{j+1}^{2}}\right] \widehat{V}\left(p_{m} / N\right)
\end{aligned}
$$

Bogoliubov theory in the Gross-Pitaevskii regime

$$
H_{N}=\sum_{p \in \Lambda^{*}} p^{2} a_{p}^{*} a_{p}+\frac{\kappa}{2 N} \sum_{p, q, r \in \Lambda^{*}} \widehat{V}(r / N) a_{p+r}^{*} a_{q-r}^{*} a_{p} a_{q}, \quad \Lambda^{*}=2 \pi \mathbb{Z}^{3}
$$

[Boccato-Brennecke-C.-Schlein '18] For $\kappa>0$ small enough, the ground state energy of H_{N} is

$$
E_{N}=4 \pi(N-1) \mathfrak{a}_{N}-\frac{1}{2} \sum_{p \in \Lambda_{+}^{*}}\left[p^{2}+8 \pi \mathfrak{a}-\sqrt{|p|^{4}+16 \pi \mathfrak{a} p^{2}}-\frac{(8 \pi \mathfrak{a})^{2}}{2 p^{2}}\right]+\mathcal{O}\left(N^{-1 / 4}\right)
$$

where $\Lambda_{+}^{*}=2 \pi \mathbb{Z}^{3} \backslash\{0\}$ and

$$
\begin{aligned}
8 \pi \mathfrak{a}_{N} & =\kappa \widehat{V}(0)-\frac{1}{2 N} \sum_{p_{1} \in \Lambda_{+}^{*}} \frac{\kappa^{2} \widehat{V}^{2}\left(p_{1} / N\right)}{2 p_{1}^{2}} \quad\left|4 \pi(N-1) \mathfrak{a}_{N}-4 \pi(N-1) \mathfrak{a}\right| \leq C \\
& +\sum_{m=2}^{+\infty} \frac{(-1)^{m} \kappa^{m}}{(2 N)^{m}} \sum_{p_{1}, \ldots, p_{m} \in \Lambda_{+}^{*}} \frac{\widehat{V}\left(p_{1} / N\right)}{p_{1}^{2}}\left[\prod_{j=1}^{m-1} \frac{\widehat{V}\left(\left(p_{j}-p_{j+1}\right) / N\right.}{p_{j+1}^{2}}\right] \widehat{V}\left(p_{m} / N\right)
\end{aligned}
$$

Bogoliubov theory in the Gross-Pitaevskii regime

$$
H_{N}=\sum_{p \in \Lambda^{*}} p^{2} a_{p}^{*} a_{p}+\frac{\kappa}{2 N} \sum_{p, q, r \in \Lambda^{*}} \widehat{V}(r / N) a_{p+r}^{*} a_{q-r}^{*} a_{p} a_{q}, \quad \Lambda^{*}=2 \pi \mathbb{Z}^{3}
$$

[Boccato-Brennecke-C.-Schlein '18] For $\kappa>0$ small enough, the ground state energy of H_{N} is

$$
E_{N}=4 \pi(N-1) \mathfrak{a}_{N}-\frac{1}{2} \sum_{p \in \Lambda_{+}^{*}}\left[p^{2}+8 \pi \mathfrak{a}-\sqrt{|p|^{4}+16 \pi \mathfrak{a} p^{2}}-\frac{(8 \pi \mathfrak{a})^{2}}{2 p^{2}}\right]+\mathcal{O}\left(N^{-1 / 4}\right)
$$

where $\Lambda_{+}^{*}=2 \pi \mathbb{Z}^{3} \backslash\{0\}$ and

$$
\begin{aligned}
8 \pi \mathfrak{a}_{N} & =\kappa \widehat{V}(0)-\frac{1}{2 N} \sum_{p_{1} \in \Lambda_{+}^{*}} \frac{\kappa^{2} \widehat{V}^{2}\left(p_{1} / N\right)}{2 p_{1}^{2}} \quad\left|4 \pi(N-1) \mathfrak{a}_{N}-4 \pi(N-1) \mathfrak{a}\right| \leq C \\
& +\sum_{m=2}^{+\infty} \frac{(-1)^{m} \kappa^{m}}{(2 N)^{m}} \sum_{p_{1}, \ldots, p_{m} \in \Lambda_{+}^{*}} \frac{\widehat{V}\left(p_{1} / N\right)}{p_{1}^{2}}\left[\prod_{j=1}^{m-1} \frac{\widehat{V}\left(\left(p_{j}-p_{j+1}\right) / N\right.}{p_{j+1}^{2}}\right] \widehat{V}\left(p_{m} / N\right)
\end{aligned}
$$

The spectrum of $H_{N}-E_{N}$ below an energy ζ consists of

$$
\sum_{p \in \Lambda_{+}^{*}} n_{p} \sqrt{|p|^{4}+16 \pi \mathfrak{a}|p|^{2}}+\mathcal{O}\left(N^{-1 / 4}\left(1+\zeta^{3}\right)\right)
$$

with $n_{p} \in \mathbb{N}$ and $n_{p} \neq 0$ for finitely many $p \in \Lambda_{+}^{*}$ only.

Step 1: removing particles in the Bose-Einstein condensate

For $\psi_{N} \in L_{s}^{2}\left(\Lambda^{N}\right)$ and $\varphi_{0} \in L^{2}(\Lambda)$
[Lewin-Nam-Serfaty-Solovej '12]

$$
\psi_{N}=\alpha_{0} \varphi_{0}^{\otimes N}+\alpha_{1} \otimes_{s} \varphi_{0}^{\otimes N-1}+\ldots+\alpha_{j} \otimes_{s} \varphi_{0}^{\otimes N-j}+\ldots+\alpha_{N}
$$

where $\alpha_{j} \in L^{2}(\Lambda)^{\otimes_{s} j}$ and $\alpha_{j} \perp \varphi_{0}$.

Step 1: removing particles in the Bose-Einstein condensate

For $\psi_{N} \in L_{s}^{2}\left(\Lambda^{N}\right)$ and $\varphi_{0} \in L^{2}(\Lambda)$
[Lewin-Nam-Serfaty-Solovej '12]

$$
\psi_{N}=\alpha_{0} \varphi_{0}^{\otimes N}+\alpha_{1} \otimes_{s} \varphi_{0}^{\otimes N-1}+\ldots+\alpha_{j} \otimes_{s} \varphi_{0}^{\otimes N-j}+\ldots+\alpha_{N}
$$

where $\alpha_{j} \in L^{2}(\Lambda)^{\otimes_{s} j}$ and $\alpha_{j} \perp \varphi_{0}$.
Unitary map: $\quad U_{N}\left(\varphi_{0}\right): L_{s}^{2}\left(\Lambda^{N}\right) \longrightarrow \mathcal{F}_{\perp \varphi_{0}}^{\leq N}=\bigoplus_{n=0}^{N} L_{\perp \varphi_{0}}^{2}(\Lambda)^{\otimes_{s} n}$

$$
\psi_{N} \longrightarrow U_{N}\left(\varphi_{0}\right) \psi_{N}=\left\{\alpha_{0}, \alpha_{1}, \ldots, \alpha_{N}, 0,0, \ldots\right\}
$$

Step 1: removing particles in the Bose-Einstein condensate

For $\psi_{N} \in L_{s}^{2}\left(\Lambda^{N}\right)$ and $\varphi_{0} \in L^{2}(\Lambda)$
[Lewin-Nam-Serfaty-Solovej '12]

$$
\psi_{N}=\alpha_{0} \varphi_{0}^{\otimes N}+\alpha_{1} \otimes_{s} \varphi_{0}^{\otimes N-1}+\ldots+\alpha_{j} \otimes_{s} \varphi_{0}^{\otimes N-j}+\ldots+\alpha_{N}
$$

where $\alpha_{j} \in L^{2}(\Lambda)^{\otimes_{s} j}$ and $\alpha_{j} \perp \varphi_{0}$.
Unitary map: $\quad U_{N}\left(\varphi_{0}\right): L_{s}^{2}\left(\Lambda^{N}\right) \longrightarrow \mathcal{F}_{\perp \varphi_{0}}^{\leq N}=\bigoplus_{n=0}^{N} L_{\perp \varphi_{0}}^{2}(\Lambda)^{\otimes_{s} n}$

$$
\psi_{N} \longrightarrow U_{N}\left(\varphi_{0}\right) \psi_{N}=\left\{\alpha_{0}, \alpha_{1}, \ldots, \alpha_{N}, 0,0, \ldots\right\}
$$

In the homogeneous case $\varphi_{0}(x)=1$ for all $x \in \Lambda$, hence $U_{N}: L_{s}^{2}\left(\mathbb{R}^{3 N}\right) \rightarrow \mathcal{F}_{+}^{\leq N}$

Step 1: removing particles in the Bose-Einstein condensate

For $\psi_{N} \in L_{s}^{2}\left(\Lambda^{N}\right)$ and $\varphi_{0} \in L^{2}(\Lambda)$
[Lewin-Nam-Serfaty-Solovej '12]

$$
\psi_{N}=\alpha_{0} \varphi_{0}^{\otimes N}+\alpha_{1} \otimes_{s} \varphi_{0}^{\otimes N-1}+\ldots+\alpha_{j} \otimes_{s} \varphi_{0}^{\otimes N-j}+\ldots+\alpha_{N},
$$

where $\alpha_{j} \in L^{2}(\Lambda)^{\otimes_{s} j}$ and $\alpha_{j} \perp \varphi_{0}$.
Unitary map: $\quad U_{N}\left(\varphi_{0}\right): L_{s}^{2}\left(\Lambda^{N}\right) \longrightarrow \mathcal{F}_{\perp \varphi_{0}}^{\leq N}=\bigoplus_{n=0}^{N} L_{\perp \varphi_{0}}^{2}(\Lambda)^{\otimes_{s} n}$

$$
\psi_{N} \longrightarrow U_{N}\left(\varphi_{0}\right) \psi_{N}=\left\{\alpha_{0}, \alpha_{1}, \ldots, \alpha_{N}, 0,0, \ldots\right\}
$$

In the homogeneous case $\varphi_{0}(x)=1$ for all $x \in \Lambda$, hence $U_{N}: L_{s}^{2}\left(\mathbb{R}^{3 N}\right) \rightarrow \mathcal{F}_{+}^{\leq N}$
Conjugation with U_{N} reminds of Bogoliubov approximation

$$
\begin{array}{lll}
U_{N} a_{0}^{*} a_{0} U_{N}^{*}=N-\mathcal{N}_{+} & U_{N} a_{0}^{*} a_{p} U_{N}^{*}=\sqrt{N-\mathcal{N}_{+}} a_{p} \\
U_{N} a_{p}^{*} a_{q} U_{N}^{*}=a_{p}^{*} a_{q} & U_{N} a_{p}^{*} a_{0} U_{N}^{*}=a_{p}^{*} \sqrt{N-\mathcal{N}_{+}}
\end{array} \quad \mathcal{N}_{+}=\sum_{p \in \Lambda^{*} \backslash\{0\}} a_{p}^{*} a_{p}
$$

Step 1: removing particles in the Bose-Einstein condensate

$$
H_{N}=\sum_{p \in \Lambda^{*}} p^{2} a_{p}^{*} a_{p}+\frac{\kappa}{2 N} \sum_{p, q, r \in \Lambda^{*}} \widehat{V}(r / N) a_{p+r}^{*} a_{q-r}^{*} a_{p} a_{q}, \quad \Lambda^{*}=2 \pi \mathbb{Z}^{3}
$$

Excitation Hamiltonian: $\mathcal{L}_{N}=U_{N} H_{N} U_{N}^{*}: \mathcal{F}_{+}^{\leq N} \rightarrow \mathcal{F}_{+}^{\leq N}$

$$
\begin{aligned}
\mathcal{L}_{N}= & \frac{N-1}{2 N} \kappa \widehat{V}(0)\left(N-\mathcal{N}_{+}\right)+\frac{\kappa \widehat{V}(0)}{2 N} \mathcal{N}_{+}\left(N-\mathcal{N}_{+}\right) \\
& +\sum_{p \in \Lambda_{+}^{*}} p^{2} a_{p}^{*} a_{p}+\sum_{p \in \Lambda_{+}^{*}} \kappa \widehat{V}(p / N) a_{p}^{*}\left(\frac{N-1-\mathcal{N}_{+}}{N}\right) a_{p} \\
& +\frac{\kappa}{2} \sum_{p \in \Lambda_{+}^{*}} \widehat{V}(p / N)\left[a_{p}^{*} \frac{\left(N-\mathcal{N}_{+}\right)\left(N-1-\mathcal{N}_{+}\right)}{N^{2}} a_{-p}^{*}+\text { h.c. }\right] \\
& +\frac{\kappa}{\sqrt{N}} \sum_{p, q \in \Lambda_{+}^{*}: p+q \neq 0} \widehat{V}(p / N)\left[b_{p+q}^{*} a_{-p}^{*} a_{q}+a_{q}^{*} a_{-p} b_{p+q}\right] \\
& +\frac{\kappa}{2 N} \sum_{p, q \in \Lambda_{+}^{*}, r \in \Lambda^{*}: r \neq-p,-q} \widehat{V}(r / N) a_{p+r}^{*} a_{q}^{*} a_{p} a_{q+r}
\end{aligned}
$$

Step 1: removing particles in the Bose-Einstein condensate

$$
H_{N}=\sum_{p \in \Lambda^{*}} p^{2} a_{p}^{*} a_{p}+\frac{\kappa}{2 N} \sum_{p, q, r \in \Lambda^{*}} \widehat{V}(r / N) a_{p+r}^{*} a_{q-r}^{*} a_{p} a_{q}, \quad \Lambda^{*}=2 \pi \mathbb{Z}^{3}
$$

Excitation Hamiltonian: $\mathcal{L}_{N}=U_{N} H_{N} U_{N}^{*}: \mathcal{F}_{+}^{\leq N} \rightarrow \mathcal{F}_{+}^{\leq N}$

$$
\begin{aligned}
\mathcal{L}_{N}= & \frac{N-1}{2 N} \kappa \widehat{V}(0)\left(N-\mathcal{N}_{+}\right)+\frac{\kappa \widehat{V}(0)}{2 N} \mathcal{N}_{+}\left(N-\mathcal{N}_{+}\right) \\
& +\sum_{p \in \Lambda_{+}^{*}} p^{2} a_{p}^{*} a_{p}+\sum_{p \in \Lambda_{+}^{*}} \kappa \widehat{V}(p / N) a_{p}^{*}\left(\frac{N-1-\mathcal{N}_{+}}{N}\right) a_{p} \\
& +\frac{\kappa}{2} \sum_{p \in \Lambda_{+}^{*}} \widehat{V}(p / N)\left[a_{p}^{*} \frac{\left(N-\mathcal{N}_{+}\right)\left(N-1-\mathcal{N}_{+}\right)}{N^{2}} a_{-p}^{*}+\text { h.c. }\right] \\
& +\frac{\kappa}{\sqrt{N}} \sum_{p, q \in \Lambda_{+}^{*}: p+q \neq 0} \widehat{V}(p / N)\left[b_{p+q}^{*} a_{-p}^{*} a_{q}+a_{q}^{*} a_{-p} b_{p+q}\right] \\
& +\frac{\kappa}{2 N} \sum_{p, q \in \Lambda_{+}^{*}, r \in \Lambda^{*}: r \neq-p,-q} \widehat{V}(r / N) a_{p+r}^{*} a_{q}^{*} a_{p} a_{q+r}
\end{aligned}
$$

Key fact: cubic and quartic terms cannot be neglected for $N \rightarrow \infty$

Step 2: include correlations between condensate and excitation pairs

Conjugation with U_{N} factors out products of the condensate wave function!

States with small energy in the Gross-Pitaevskii limit are characterized by a correlation structure on length scales of order N^{-1} which we model by the solution of the Neumann problem

$$
\left(-\Delta+\frac{\kappa}{2} N^{2} V(N x)\right) f_{\ell, N}(x)=\lambda_{\ell, N} f_{N, \ell}(x)
$$

on the ball $|x| \leq \ell<1 / 2$, with

$$
f_{N, \ell}(x)=1 \quad \text { and } \quad \partial_{|x|} f_{N, \ell}(x)=0 \quad \text { for }|x|=\ell
$$

One has

$$
|\underbrace{\kappa \int N^{3} V(N x) f_{\ell, N}(x) d x}_{\left(\kappa \widehat{V}(\cdot / N) \times \widehat{f}_{\ell, N}\right)_{0}}-8 \pi \mathfrak{a}| \leq \frac{C \kappa}{N \ell}
$$

Step 2: include correlations between condensate and excitation pairs

Inspired by [Brennecke-Schlein '17] we describe correlations in $\mathcal{F}_{+}^{\leq N}$ using

$$
T(\eta)=\exp \left[\frac{1}{2} \sum_{p \in \Lambda_{+}^{*}} \eta_{p}\left(b_{p}^{*} b_{-p}^{*}-b_{p} b_{-p}\right)\right]: \mathcal{F}_{+}^{\leq N} \rightarrow \mathcal{F}_{+}^{\leq N}
$$

with

$$
\eta_{p}=-\frac{1}{N^{2}}\left(\widehat{1-f_{N, \ell}}\right)(p / N)
$$

and modified creation and annihilation operators

$$
\begin{array}{lll}
b_{p}^{*}=a_{p}^{*} \sqrt{\frac{N-\mathcal{N}}{N}}, & b_{p}=\sqrt{\frac{N-\mathcal{N}}{N}} a_{p} & : \mathcal{F}_{+}^{\leq N} \longrightarrow \mathcal{F}_{+}^{\leq N} \\
U_{N}^{*} b_{p}^{*} U_{N}=a_{p}^{*} \frac{a_{0}}{\sqrt{N}}, & U_{N}^{*} b_{p} U_{N}=\frac{a_{0}^{*}}{\sqrt{N}} a_{p} & : L^{2}\left(\Lambda^{N}\right) \longrightarrow L^{2}\left(\Lambda^{N}\right)
\end{array}
$$

Remark: the operators b_{p}^{*} and b_{p} create and annihilate excitations, but do not change the total number of particles.

Step 2: include correlations between condensate and excitation pairs

Inspired by [Brennecke-Schlein '17] we describe correlations in $\mathcal{F}_{+}^{\leq N}$ using

$$
T(\eta)=\exp \left[\frac{1}{2} \sum_{p \in \Lambda_{+}^{*}} \eta_{p}\left(b_{p}^{*} b_{-p}^{*}-b_{p} b_{-p}\right)\right]: \mathcal{F}_{+}^{\leq N} \rightarrow \mathcal{F}_{+}^{\leq N}
$$

with

$$
\eta_{p}=-\frac{1}{N^{2}}\left(\widehat{1-f_{N, \ell}}\right)(p / N)
$$

$$
\begin{aligned}
& \left|\eta_{p}\right| \leq C \frac{\kappa}{p^{2}} e^{-|p| / N} \\
& \|\eta\|_{2} \leq C \kappa,\|\eta\|_{H^{1}} \leq C \kappa \sqrt{N}
\end{aligned}
$$

and modified creation and annihilation operators

$$
\begin{array}{lll}
b_{p}^{*}=a_{p}^{*} \sqrt{\frac{N-\mathcal{N}}{N}}, & b_{p}=\sqrt{\frac{N-\mathcal{N}}{N}} a_{p} & : \mathcal{F}_{+}^{\leq N} \longrightarrow \mathcal{F}_{+}^{\leq N} \\
U_{N}^{*} b_{p}^{*} U_{N}=a_{p}^{*} \frac{a_{0}}{\sqrt{N}}, & U_{N}^{*} b_{p} U_{N}=\frac{a_{0}^{*}}{\sqrt{N}} a_{p} & : L^{2}\left(\Lambda^{N}\right) \longrightarrow L^{2}\left(\Lambda^{N}\right)
\end{array}
$$

Remark: the operators b_{p}^{*} and b_{p} create and annihilate excitations, but do not change the total number of particles.

Step 2: include correlations between condensate and excitation pairs

Define the renormalized excitation Hamiltonian

$$
\mathcal{G}_{N}=T^{*}(\eta) U_{N} H_{N} U_{N}^{*} T(\eta): \mathcal{F}_{+}^{\leq N} \rightarrow \mathcal{F}_{+}^{\leq N}
$$

Then

$$
\mathcal{G}_{N}=4 \pi \mathfrak{a} N+\mathcal{H}_{N}+\theta_{N}, \quad \pm \theta_{N} \leq \delta \mathcal{H}_{N}+C \kappa\left(\mathcal{N}_{+}+1\right)
$$

with $\quad \mathcal{H}_{N}=\sum_{p \in \Lambda_{+}^{*}} p^{2} a_{p}^{*} a_{p}+\frac{\kappa}{2 N} \sum_{\substack{p, q \in \Lambda_{+}^{*} \\ r \in \Lambda^{*}: r \neq-p,-q}} \widehat{V}(r / N) a_{p+r}^{*} a_{q}^{*} a_{p} a_{q+r}=\mathcal{K}+\mathcal{V}_{N}$

Step 2: include correlations between condensate and excitation pairs

Define the renormalized excitation Hamiltonian

$$
\mathcal{G}_{N}=T^{*}(\eta) U_{N} H_{N} U_{N}^{*} T(\eta): \mathcal{F}_{+}^{\leq N} \rightarrow \mathcal{F}_{+}^{\leq N}
$$

Then

$$
\mathcal{G}_{N}=4 \pi \mathfrak{a} N+\mathcal{H}_{N}+\theta_{N}, \quad \pm \theta_{N} \leq \delta \mathcal{H}_{N}+C \kappa\left(\mathcal{N}_{+}+1\right)
$$

with $\quad \mathcal{H}_{N}=\sum_{p \in \Lambda_{+}^{*}} p^{2} a_{p}^{*} a_{p}+\frac{\kappa}{2 N} \sum_{\substack{p, q \in \Lambda_{+}^{*} \\ r \in \Lambda^{*}: r \neq-p,-q}} \widehat{V}(r / N) a_{p+r}^{*} a_{q}^{*} a_{p} a_{q+r}=\mathcal{K}+\mathcal{V}_{N}$
With this bound we prove that states s.t. $\left\langle\psi_{N}, H_{N} \psi_{N}\right\rangle \leq 4 \pi \mathfrak{a} N+K$
can be written as $\quad \psi_{N}=U_{N}^{*} T(\eta) \xi_{N} \quad$ with $\quad\left\langle\xi_{N}, \mathcal{N}_{+} \xi_{N}\right\rangle \leq C(K+1)$

Step 2: include correlations between condensate and excitation pairs

Define the renormalized excitation Hamiltonian

$$
\mathcal{G}_{N}=T^{*}(\eta) U_{N} H_{N} U_{N}^{*} T(\eta): \mathcal{F}_{+}^{\leq N} \rightarrow \mathcal{F}_{+}^{\leq N}
$$

Then

$$
\mathcal{G}_{N}=4 \pi \mathfrak{a} N+\mathcal{H}_{N}+\theta_{N}, \quad \pm \theta_{N} \leq \delta \mathcal{H}_{N}+C \kappa\left(\mathcal{N}_{+}+1\right)
$$

with $\quad \mathcal{H}_{N}=\sum_{p \in \Lambda_{+}^{*}} p^{2} a_{p}^{*} a_{p}+\frac{\kappa}{2 N} \sum_{\substack{p, q \in \Lambda_{+}^{*} \\ r \in \Lambda^{*}: r \neq-p,-q}} \widehat{V}(r / N) a_{p+r}^{*} a_{q}^{*} a_{p} a_{q+r}=\mathcal{K}+\mathcal{V}_{N}$
With this bound we prove that states s.t. $\left\langle\psi_{N}, H_{N} \psi_{N}\right\rangle \leq 4 \pi \mathfrak{a} N+K$
can be written as $\quad \psi_{N}=U_{N}^{*} T(\eta) \xi_{N} \quad$ with $\quad\left\langle\xi_{N}, \mathcal{N}_{+} \xi_{N}\right\rangle \leq C(K+1)$

Refined bound: excitations associated to $\psi_{N}=\chi\left(H_{N} \leq 4 \pi \mathfrak{a} N+K\right) \psi_{N}$ satisfy

$$
\left\langle\xi_{N},\left[\left(\mathcal{N}_{+}+1\right)\left(\mathcal{H}_{N}+1\right)+\left(\mathcal{N}_{+}+1\right)^{3}\right] \xi_{N}\right\rangle \leq C(K+1)
$$

Step 2: include correlations between condensate and excitation pairs

Define the renormalized excitation Hamiltonian

$$
\mathcal{G}_{N}=T^{*}(\eta) U_{N} H_{N} U_{N}^{*} T(\eta): \mathcal{F}_{+}^{\leq N} \rightarrow \mathcal{F}_{+}^{\leq N}
$$

Then

$$
\mathcal{G}_{N}=4 \pi \mathfrak{a} N+\mathcal{H}_{N}+\theta_{N}, \quad \pm \theta_{N} \leq \delta \mathcal{H}_{N}+C \kappa\left(\mathcal{N}_{+}+1\right)
$$

with

$$
\mathcal{H}_{N}=\sum_{p \in \Lambda_{+}^{*}} p^{2} a_{p}^{*} a_{p}+\frac{\kappa}{2 N} \sum_{\substack{p, q \in \Lambda_{+}^{*} \\ r \in \Lambda^{*}: r \neq-p,-q}} \widehat{V}(r / N) a_{p+r}^{*} a_{q}^{*} a_{p} a_{q+r}=\mathcal{K}+\mathcal{V}_{N}
$$

Moreover,
$\mathcal{G}_{N}=C_{\mathcal{G}_{N}}+\mathcal{Q}_{\mathcal{G}_{N}}+\mathcal{C}_{N}+\mathcal{V}_{N}+\mathcal{E}_{\mathcal{G}_{N}}, \quad \pm \mathcal{E}_{\mathcal{G}_{N}} \leq C N^{-1 / 2}\left(\mathcal{H}_{N}+\mathcal{N}_{+}^{2}+1\right)\left(\mathcal{N}_{+}+1\right)$
with

$$
\mathcal{C}_{N}=\frac{\kappa}{\sqrt{N}} \sum_{p, q \in \Lambda_{+}^{*}: p+q \neq 0} \widehat{V}(p / N)\left(b_{p+q}^{*} a_{-p}^{*} a_{q}+\text { h.c. }\right)
$$

Refined bound: excitations associated to $\psi_{N}=\chi\left(H_{N} \leq 4 \pi \mathfrak{a} N+K\right) \psi_{N}$ satisfy

$$
\left\langle\xi_{N},\left[\left(\mathcal{N}_{+}+1\right)\left(\mathcal{H}_{N}+1\right)+\left(\mathcal{N}_{+}+1\right)^{3}\right] \xi_{N}\right\rangle \leq C(K+1)
$$

Step 2: include correlations between condensate and excitation pairs

Define the renormalized excitation Hamiltonian

$$
\mathcal{G}_{N}=T^{*}(\eta) U_{N} H_{N} U_{N}^{*} T(\eta): \mathcal{F}_{+}^{\leq N} \rightarrow \mathcal{F}_{+}^{\leq N}
$$

Then

$$
\mathcal{G}_{N}=4 \pi \mathfrak{a} N+\mathcal{H}_{N}+\theta_{N}, \quad \pm \theta_{N} \leq \delta \mathcal{H}_{N}+C \kappa\left(\mathcal{N}_{+}+1\right)
$$

with

$$
\begin{array}{rr}
\mathcal{H}_{N}=\sum_{p \in \Lambda_{+}^{*}} p^{2} a_{p}^{*} a_{p}+\frac{\kappa}{2 N} \sum_{\substack{p, q \in \Lambda_{+}^{*} \\
r \in \Lambda^{*}: r \neq-p,-q}} \widehat{V}(r / N) a_{p+r}^{*} a_{q}^{*} a_{p} a_{q+r}=\mathcal{K}+\mathcal{V}_{N} \\
\psi_{N}=U_{N}^{*} T(\eta) \xi
\end{array}
$$

Moreover,
$\mathcal{G}_{N}=C_{\mathcal{G}_{N}}+\mathcal{Q}_{\mathcal{G}_{N}}+\mathcal{C}_{N}+\mathcal{V}_{N}+\mathcal{E}_{\mathcal{G}_{N}}, \quad \pm \mathcal{E}_{\mathcal{G}_{N}} \leq C N^{-1 / 2}\left(\mathcal{H}_{N}+\mathcal{N}_{+}^{2}+1\right)\left(\mathcal{N}_{+}+1\right)$
with

$$
\mathcal{C}_{N}=\frac{\kappa}{\sqrt{N}} \sum_{p, q \in \Lambda_{+}^{*}: p+q \neq 0} \widehat{V}(p / N)\left(b_{p+q}^{*} a_{-p}^{*} a_{q}+\text { h.c. }\right)
$$

Not surprising! Quasi-free states can only approximate the ground state energy up to errors of order one [Erdoes-Schlein-Yau '08], [Napiorkovski-Reuvers-Solovej '15]. From RG perspective: quadratic and cubic terms are relevant in the ultraviolet.

Step 3: include correlations due to triplets

To extract the large term from \mathcal{C}_{N} and \mathcal{V}_{N} we consider the cubic operator

$$
A=\frac{\kappa}{\sqrt{N}} \sum_{r \in P_{H}, v \in P_{L}} \eta_{r}\left[b_{r+v}^{*} b_{-r}^{*}\left(\cosh (\eta)_{v} b_{v}+\sinh (\eta)_{v} b_{-v}^{*}\right)-\text { h.c. }\right]
$$

with

(1/R)

Step 3: include correlations due to triplets

To extract the large term from \mathcal{C}_{N} and \mathcal{V}_{N} we consider the cubic operator

$$
A=\frac{\kappa}{\sqrt{N}} \sum_{r \in P_{H}, v \in P_{L}} \eta_{r}\left[b_{r+v}^{*} b_{-r}^{*}\left(\cosh (\eta)_{v} b_{v}+\sinh (\eta)_{v} b_{-v}^{*}\right)-\text { h.c. }\right]
$$

with

($1 / R$)
Hence, we define the renormalized excitation Hamiltonian

$$
\mathcal{J}_{N}=e^{-A(\eta)} \mathcal{G}_{N} e^{A(\eta)}=e^{-A(\eta)} T^{*}(\eta) U_{N} H_{N} U_{N}^{*} T(\eta) e^{A(\eta)}: \mathcal{F}_{+}^{\leq N} \rightarrow \mathcal{F}_{+}^{\leq N}
$$

Step 3: include correlations due to triplets

To extract the large term from \mathcal{C}_{N} and \mathcal{V}_{N} we consider the cubic operator

$$
A=\frac{\kappa}{\sqrt{N}} \sum_{r \in P_{H}, v \in P_{L}} \eta_{r}\left[b_{r+v}^{*} b_{-r}^{*}\left(\cosh (\eta)_{v} b_{v}+\sinh (\eta)_{v} b_{-v}^{*}\right)-\text { h.c. }\right]
$$

with

$(1 / R)$
Hence, we define the renormalized excitation Hamiltonian

$$
\mathcal{J}_{N}=e^{-A(\eta)} \mathcal{G}_{N} e^{A(\eta)}=e^{-A(\eta)} T^{*}(\eta) U_{N} H_{N} U_{N}^{*} T(\eta) e^{A(\eta)}: \mathcal{F}_{+}^{\leq N} \rightarrow \mathcal{F}_{+}^{\leq N}
$$

Now,

$$
\mathcal{J}_{\mathcal{N}}=\underbrace{C_{\mathcal{J}_{N}}+\mathcal{Q}_{\mathcal{J}_{N}}}_{\begin{array}{c}
\text { determine the } \\
\text { low energy spectrum }
\end{array}}+\mathcal{V}_{N}+\mathcal{E}_{\mathcal{J}_{N}}, \quad \pm \mathcal{E}_{\mathcal{J}_{N}} \leq C N^{-1 / 4}\left(\mathcal{H}_{N}+\mathcal{N}_{+}^{2}+1\right)\left(\mathcal{N}_{+}+1\right)
$$

Step 3: include correlations due to triplets

Conjugation with the quadratic and cubic operators renormalizes the interaction, leading to the appearance of the scattering length:

$$
\mathcal{J}_{\mathcal{N}}=\underbrace{C_{\mathcal{J}_{N}}+\mathcal{Q}_{\mathcal{J}_{N}}}_{\begin{array}{c}
\text { determine the } \\
\text { low energy spectrum }
\end{array}}+\mathcal{V}_{N}+\mathcal{E}_{\mathcal{J}_{N}}, \quad \pm \mathcal{E}_{\mathcal{J}_{N}} \leq C N^{-1 / 4}\left(\mathcal{N}_{+}+1\right)\left(\mathcal{H}_{N}+1\right)
$$

where

$$
\mathcal{Q}_{\mathcal{J}_{N}}=\sum_{p \in \Lambda_{+}^{*}}\left[F_{p} b_{p}^{*} b_{p}+\frac{1}{2} G_{p}\left(b_{p}^{*} b_{-p}^{*}+b_{p} b_{-p}\right)\right]
$$

with

$$
\begin{aligned}
& F_{p}=p^{2}\left(\sinh ^{2} \eta_{p}+\cosh ^{2} \eta_{p}\right)+\kappa\left(\widehat{V}(\cdot / N) \star \widehat{f}_{N, \ell}\right)_{p}\left(\sinh \eta_{p}+\cosh \eta_{p}\right)^{2} \\
& G_{p}=2 p^{2} \sinh \eta_{p} \cosh \eta_{p}+\kappa\left(\widehat{V}(/ / N) \star \widehat{f}_{N, \ell}\right)_{p}\left(\sinh \eta_{p}+\cosh \eta_{p}\right)^{2}
\end{aligned}
$$

Step 3: include correlations due to triplets

Conjugation with the quadratic and cubic operators renormalizes the interaction, leading to the appearance of the scattering length:

$$
\mathcal{J}_{\mathcal{N}}=\underbrace{\mathcal{C}_{\mathcal{J}_{N}}+\mathcal{Q}_{\mathcal{J}_{N}}}_{\begin{array}{c}
\text { determine the } \\
\text { low energy spectrum }
\end{array}}+\mathcal{V}_{N}+\mathcal{E}_{\mathcal{J}_{N}}, \quad \pm \mathcal{E}_{\mathcal{J}_{N}} \leq C N^{-1 / 4}\left(\mathcal{N}_{+}+1\right)\left(\mathcal{H}_{N}+1\right)
$$

where

$$
\mathcal{Q}_{\mathcal{J}_{N}}=\sum_{p \in \Lambda_{+}^{*}}\left[F_{p} b_{p}^{*} b_{p}+\frac{1}{2} G_{p}\left(b_{p}^{*} b_{-p}^{*}+b_{p} b_{-p}\right)\right]
$$

with

$$
\begin{aligned}
& F_{p}=p^{2}\left(\sinh ^{2} \eta_{p}+\cosh ^{2} \eta_{p}\right)+\kappa\left(\widehat{V}(\cdot / N) \star \widehat{f}_{N, \ell}\right)_{p}\left(\sinh \eta_{p}+\cosh \eta_{p}\right)^{2} \simeq p^{2} \\
& G_{p}=2 p^{2} \sinh \eta_{p} \cosh \eta_{p}+\kappa\left(\widehat{V}(/ / N) \star \widehat{f}_{N, \ell}\right)_{p}\left(\sinh \eta_{p}+\cosh \eta_{p}\right)^{2} \simeq \frac{1}{p^{2}}
\end{aligned}
$$

The operator $\mathcal{Q}_{\mathcal{J}_{N}}$ may be diagonalized using

$$
T(\tau)=\exp \left[\frac{1}{2} \sum_{p \in \Lambda_{+}^{*}} \tau_{p}\left(b_{p}^{*} b_{-p}^{*}-b_{p} b_{-} p\right)\right], \quad \tanh \left(2 \tau_{p}\right)=-\frac{G_{p}}{F_{p}} \quad\left|\tau_{p}\right| \simeq|p|^{-4}
$$

Step4: diagonalization

Let $\mathcal{M}_{N}=T^{*}(\tau) \mathcal{J}_{N} T(\tau): \mathcal{F}_{+}^{\leq N} \rightarrow \mathcal{F}_{+}^{\leq N}$, then

$$
\mathcal{M}_{N}=E_{N}+\sum_{p \in \Lambda_{+}^{*}} \sqrt{|p|^{4}+16 \pi \mathfrak{a}|p|^{2}} a_{p}^{*} a_{p}+\mathcal{E}_{\mathcal{M}_{N}}
$$

with

$$
E_{N}=4 \pi(N-1) \mathfrak{a}_{N}-\frac{1}{2} \sum_{p \in \Lambda_{+}^{*}}\left[p^{2}+8 \pi \mathfrak{a}-\sqrt{|p|^{4}++16 \pi \mathfrak{a}|p|^{2}}+\frac{(8 \pi \mathfrak{a})^{2}}{2 p^{2}}\right]
$$

and

$$
\mathcal{E}_{\mathcal{M}_{N}} \leq C N^{-1 / 4}\left(\mathcal{H}_{N}+\mathcal{N}_{+}^{2}+1\right)\left(\mathcal{N}_{+}+1\right)
$$

Finally, we use of the min-max principle to compare the eigenvalues λ_{m} of $\mathcal{M}_{N}-E_{N}$ (i.e. the eigenvalues of $H_{N}-E_{N}$) with the eigenvalues $\tilde{\lambda}_{m}$ of

$$
\mathcal{D}_{N}=\sum_{p \in \Lambda_{+}^{*}} \sqrt{|p|^{4}++16 \pi \mathfrak{a}|p|^{2}} a_{p}^{*} a_{p}
$$

showing that below an energy ζ

$$
\left|\lambda_{m}-\tilde{\lambda}_{m}\right| \leq C N^{-1}\left(1+\zeta^{3}\right)
$$

Perspectives

- Condensation and Bogoliubov theory in the Gross-Pitaevskii regime without the smallness condition on the interaction
- Extend the results to non-translation-invariant bosonic systems trapped by confining external fields
- Next term in the ground state energy expansion ?
- Validity of Bogoliubov predictions for dilute Bose gases in the thermodynamic limit
- Connection with Renormalization Group methods

Gran Sasso Quantum Meetings @ GSSI

FROM MANY PARTICLE SYSTEMS TO QUANTUM FLUIDS

