Telegraph equation from the six-vertex model

Vadim Gorin
MIT (Cambridge) and IITP (Moscow)

July 2018

Telegraph equation

Resistance R Inductance L Capacitance C Conductance G

Voltage V Current I

$$
\begin{aligned}
& \frac{\partial \mathbf{V}}{\partial x}(x, t)=-L \cdot \frac{\partial \mathbf{I}}{\partial t}(x, t)-R \cdot \mathbf{I}(x, t) \\
& \frac{\partial \mathbf{I}}{\partial x}(x, t)=-C \cdot \frac{\partial \mathbf{V}}{\partial t}(x, t)-G \cdot \mathbf{V}(x, t)
\end{aligned}
$$

or

$$
\underbrace{\mathbf{V}_{x x}-L C \cdot \mathbf{V}_{t t}}_{\text {Wave equation }}-(\underbrace{R C+G L) \cdot \mathbf{V}_{t}-G R \cdot \mathbf{V}=0}_{\text {Effect of losses }}
$$

Six-vertex model

O H	H	O H	H	O H		H	O H	H	O H	Square grid with O in the vertices and H on the edges.
O	H	O	H	O		H	O	H	O	
H		H		H			H		H	
O	H	O	H	O		H	O	H	O	
H		H		H			H		H	
O	H	O	H	O		H	O	H	O	
H		H		H			H		H	
O	H	O	H	O		H	O	H	O	

Six-vertex model

Square grid with O in the vertices and H on the edges.

Finite/infinite domain.

Six-vertex model

Square grid with O in the vertices and H on the edges.

Finite/infinite domain.
Configurations: possible matchings of all atoms inside domain into $\mathrm{H}_{2} \mathrm{O}$ molecules.

This is square ice model.
Real-world ice has somewhat similar (although 3d) structure.

Six-vertex model

Square grid with O in the vertices and H on the edges.

Finite/infinite domain.
Configurations: possible matchings of all atoms inside domain into $\mathrm{H}_{2} \mathrm{O}$ molecules.

This is square ice model.
Real-world ice has somewhat similar (although 3d) structure.

Also known as six vertex model.

Six-vertex model: Gibbs measures

a_{1}
a_{2}

b_{1}

c_{1}
c_{2}

Statistical mechanics starting from (Lieb-67):

Assign Gibbs weights
$\frac{a_{1}^{\#\left(a_{1}\right)} a_{2}^{\#\left(a_{2}\right)} b_{1}^{\#\left(b_{1}\right)} b_{2}^{\#\left(b_{2}\right)} c_{1}^{\#\left(c_{1}\right)} c_{2}^{\#\left(c_{2}\right)}}{Z\left(a_{1}, a_{2}, b_{1}, b_{2}, c_{1}, c_{2}\right)}$
[Depends only on $\frac{b_{1} b_{2}}{a_{1} a_{2}}$ and $\frac{c_{1} c_{2}}{a_{1} a_{2}}$.]

Asymptotic properties of Gibbs measures?

Six-vertex model: Gibbs measures

a_{1}
a_{2}

b_{1}
b_{2}

c_{1}

c_{2}

Assign Gibbs weights

$$
\frac{a_{1}^{\#\left(a_{1}\right)} a_{2}^{\#\left(a_{2}\right)} b_{1}^{\#\left(b_{1}\right)} b_{2}^{\#\left(b_{2}\right)} c_{1}^{\#\left(c_{1}\right)} c_{2}^{\#\left(c_{2}\right)}}{Z\left(a_{1}, a_{2}, b_{1}, b_{2}, c_{1}, c_{2}\right)}
$$

[Depends only on $\frac{b_{1} b_{2}}{a_{1} a_{2}}$ and $\frac{c_{1} c_{2}}{a_{1} a_{2}}$.]
Asymptotic properties of Gibbs measures?

Understanding is still very limited.

Question for today

Telegraph equation

$\mathbf{V}_{x x}-\mathbf{V}_{t t}-\alpha \mathbf{V}_{t}-\beta \mathbf{V}_{x}-\gamma \mathbf{V}=0$

Six-vertex model

What do they have in common?

Stochastic six-vertex model

Stochastic six-vertex model

Assumption:
(Gwa-Spohn-92)

$$
a_{1}=a_{2}=1, \quad b_{1}+c_{1}=1, \quad b_{2}+c_{2}=1
$$

(Implies $\quad \Delta=\frac{a_{1} a_{2}+b_{1} b_{2}-c_{1} c_{2}}{2 \sqrt{a_{1} a_{2} b_{1} b_{2}}} \geq 1$)

Stochastic six-vertex model

Take arbitrary boundary conditions in the quadrant

5 -

$$
4
$$

—

$$
3
$$

$$
2
$$

$$
1-
$$

$\begin{array}{lllll}0 & 1 & 2 & 3 & 4\end{array}$

Stochastic six-vertex model

Proceed with sequential stochastic sampling

$5-$

$3-\cdots$

2

$1-b_{1}$

Stochastic six-vertex model

Proceed with sequential stochastic sampling

Stochastic six-vertex model

Stochastic six-vertex model

The resulting paths are level lines of the height function

- Height is 0 at the origin,
- increases up,
- decreases to the right.

Domain-wall and fixed weights

Theorem. (Borodin-Corwin-Gorin-14) For domain-wall boundary conditions and fixed $0<b_{2}<b_{1}<1, \frac{1}{L} H(L x, L y) \rightarrow \mathfrak{h}(x, y)$ with fluctuations on $L^{1 / 3}$ scale given by the Tracy-Widom distribution.

TW = universal law for the largest eigenvalue of Hermitian matrices and for particle system in Kardar-Parisi-Zhang class

Domain-wall and fixed weights

$$
\begin{aligned}
& b_{1} \quad b_{2} \\
& \begin{array}{l:l|l}
& & \\
\hline \vdots & -\cdots
\end{array} \\
& \mathfrak{s}=\frac{1-b_{1}}{1-b_{2}} \\
& \frac{1}{L} H(L x, L y) \rightarrow \mathfrak{h}(x, y)= \\
& \begin{cases}0, & \frac{x}{y}>\mathfrak{s}^{-1}, \\
\frac{(\sqrt{\mathfrak{s} x}-\sqrt{y})^{2}}{1-\mathfrak{s}}, & \mathfrak{s} \leq \frac{x}{y} \leq \mathfrak{s}^{-1} \\
y-x, & \frac{x}{y}<\mathfrak{s} .\end{cases}
\end{aligned}
$$

Theorem. (Borodin-Corwin-Gorin-14) For domain-wall boundary conditions and fixed $0<b_{2}<b_{1}<1, \frac{1}{L} H(L x, L y) \rightarrow \mathfrak{h}(x, y)$ with fluctuations on $L^{1 / 3}$ scale given by the Tracy-Widom distribution.

$$
\rho_{x} \cdot \mathfrak{s}+\rho_{y} \cdot(\mathfrak{s}+(\mathfrak{s}-1) \rho)^{2}=0, \quad \rho=\mathfrak{h}_{x} .
$$

1st-order non-linear PDE (Gwa-Spohn-92) (Reshetikhin-Sridhar-16)

Domain-wall and fixed weights

- Instead of b_{1}, b_{2}, only \mathfrak{s}. Where is the second parameter?
- Where is the linear telegraph equation?

Domain-wall and fixed weights

- Instead of b_{1}, b_{2}, only \mathfrak{s}. Where is the second parameter?
- Where is the linear telegraph equation?
(Borodin-Gorin-18): One needs to rescale weights b_{1}, b_{2}.

Rescaled weights: Law of Large Numbers

Low density of corners

$$
\begin{gathered}
b_{1}=\exp \left(-\frac{\beta_{1}}{L}\right) \\
b_{2}=\exp \left(-\frac{\beta_{2}}{L}\right) \\
\mathfrak{q}=\left(\frac{b_{2}}{b_{1}}\right)^{L}=e^{\beta_{1}-\beta_{2}}
\end{gathered}
$$ rescaled weights, $\frac{1}{L} H(L x, L y) \rightarrow \mathfrak{h}(x, y)$ with

$$
\begin{gathered}
\frac{\partial^{2}}{\partial x \partial y}\left(\mathfrak{q}^{\mathfrak{h}(x, y)}\right)+\beta_{2} \frac{\partial}{\partial x}\left(\mathfrak{q}^{\mathfrak{h}(x, y)}\right)+\beta_{1} \frac{\partial}{\partial y}\left(\mathfrak{q}^{\mathfrak{h}(x, y)}\right)=0, \\
\mathfrak{q}^{\mathfrak{h}(x, 0)}=\chi(x), \quad \mathfrak{q}^{\mathfrak{h}(0, y)}=\psi(y) .
\end{gathered}
$$

Rescaled weights: Law of Large Numbers

| \vdots | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 5 | | | | | |

Low density of corners

$$
\begin{gathered}
b_{1}=\exp \left(-\frac{\beta_{1}}{L}\right) \\
b_{2}=\exp \left(-\frac{\beta_{2}}{L}\right) \\
\mathfrak{q}=\left(\frac{b_{2}}{b_{1}}\right)^{L}=e^{\beta_{1}-\beta_{2}}
\end{gathered}
$$

$$
\begin{gathered}
\left(\mathfrak{q}^{\mathfrak{h}(x, y)}\right)_{x y}+\beta_{2}\left(\mathfrak{q}^{\mathfrak{h}(x, y)}\right)_{x}+\beta_{1}\left(\mathfrak{q}^{\mathfrak{h}(x, y)}\right)_{y}=0 \\
\mathfrak{q}^{\mathfrak{h}(x, 0)}=\chi(x), \quad \mathfrak{q}^{\mathfrak{h}(0, y)}=\psi(y) .
\end{gathered}
$$

- In $t=x+y, z=x-y$, a version of the Telegraph equation.
- Characteristic Cauchy problem has a unique solution.

Rescaled weights: Law of Large Numbers

$b_{1} \quad b_{2}$

Low density of corners $b_{1}=\exp \left(-\frac{\beta_{1}}{L}\right)$ $b_{2}=\exp \left(-\frac{\beta_{2}}{L}\right)$
$\mathfrak{q}=\left(\frac{b_{2}}{b_{1}}\right)^{L}=e^{\beta_{1}-\beta_{2}}$

$$
\left(\mathfrak{q}^{\mathfrak{h}(x, y)}\right)_{x y}+\beta_{2}\left(\mathfrak{q}^{\mathfrak{h}(x, y)}\right)_{x}+\beta_{1}\left(\mathfrak{q}^{\mathfrak{h}(x, y)}\right)_{y}=0
$$

2nd order hyperbolic limit shape equation is strange:

- Diffusions: parabolic equations (e.g. Brownian motion)
- Interacting particle systems: 1st order equations (e.g. TASEP)
- $2 d$ statistical mechanics: 2nd order elliptic Euler-Lagrange equations through variational principles (e.g. random tilings)

Rescaled weights: Fluctuations

$$
\begin{gathered}
b_{1} \\
b_{1}=\exp \left(-\frac{\beta_{1}}{L}\right) \quad b_{2}=\exp \left(-\frac{\beta_{2}}{L}\right) \\
q=\frac{b_{2}}{b_{1}}=\mathfrak{q}^{1 / L} \\
\frac{1}{L} H(L x, L y) \rightarrow \mathfrak{h}(x, y) .
\end{gathered}
$$

What about fluctuations $H(L x, L y)-\mathbb{E} H(L x, L y)$?
Reminder. For fixed b_{1}, b_{2}, they were Tracy-Widom on $L^{1 / 3}$ scale.

Rescaled weights: Fluctuations

$$
\begin{gathered}
b_{1}=\exp \left(-\frac{\beta_{1}}{L}\right) \quad b_{2}=\exp \left(-\frac{\beta_{2}}{L}\right) \\
q=\frac{b_{2}}{b_{1}}=\mathfrak{q}^{1 / L}
\end{gathered}
$$

Claim. $H(L x, L y)-\mathbb{E} H(L x, L y) \approx L^{1 / 2} \times$ Gaussian.

$$
\begin{aligned}
& \text { Rescaled weights: Fluctuations } \\
& b_{1}=\exp \left(-\frac{\beta_{1}}{L}\right) \quad b_{2}=\exp \left(-\frac{\beta_{2}}{L}\right) \\
& q=\frac{b_{2}}{b_{1}}=\mathfrak{q}^{1 / L}
\end{aligned}
$$

Claim. $H(L x, L y)-\mathbb{E} H(L x, L y) \approx L^{1 / 2} \times$ Gaussian.
Theorem. (Borodin-Gorin-18, Shen-Tsai-18)
$\lim _{L \rightarrow \infty} \sqrt{L}\left(q^{H(L x, L y)}-\mathbb{E} q^{H(L x, L y)}\right)$ solves Stochastic Telegraph

$$
\begin{gathered}
\phi_{x y}+\beta_{2} \phi_{x}+\beta_{1} \phi_{y}=\dot{W} \sqrt{V(x, y)} \\
V(x, y)=\left(\beta_{1}+\beta_{2}\right) \mathfrak{q}_{x}^{\mathfrak{h}} \mathfrak{q}_{y}^{\mathfrak{h}}+\left(\beta_{2}-\beta_{1}\right) \beta_{2} \mathfrak{q}^{\mathfrak{h}} \mathfrak{q}_{x}^{\mathfrak{h}}-\left(\beta_{2}-\beta_{1}\right) \beta_{1} \mathfrak{q}^{\mathfrak{h}} \mathfrak{q}_{y}^{\mathfrak{h}}
\end{gathered}
$$

R.H.S. $=2 d$ white noise \times non-linear functional of the limit shape

Six-vertex and Telegraph

Stochastic six-vertex model in the quadrant in low corner density asymptotic regime.

- Deterministic limit (LLN) for $q^{H(x, y)}$ is given by the homogeneous Telegraph equation.
- Gaussian fluctuations (CLT) are given by Stochastic Telegraph equation.

Why?

Feynman-Kac for Heat equation

For a second, switch to (parabolic) Heat equation.

$$
H_{t}=\frac{1}{2} H_{x x}, t \geq 0, \quad H(0, x)=f(x) .
$$

The Feynman-Kac formula expresses the solution:

$$
H(t, x)=\mathbb{E} f\left(B_{t}\right),
$$

where B_{t} is the Brownian motion started at $B_{0}=x$.

Similar representation is possible for the Telegraph equation!

Feynman-Kac for Telegraph

Persistent random walk.

$\sqrt{\text { intensity } \beta_{1}}$
intensity β_{2}

Turns down/to the left at Poisson random times.

Feynman-Kac for Telegraph

Turns down/to the left at Poisson random times.

Theorem. (Borodin-Gorin-18; following Goldstein-51, Kac-74)

$$
\phi_{x y}+\beta_{2} \phi_{x}+\beta_{1} \phi_{y}=u, \quad x, y>0 ; \quad \phi(x, 0)=\chi(x), \phi(0, y)=\psi(y)
$$

Then random characteristics solve the inhomogeneous Telegraph:

$$
\phi(X, Y)=\mathbb{E} \chi(\hat{\mathbf{x}})+\mathbb{E} \psi(\hat{\mathbf{y}})+\mathbb{E}\left[\int_{0}^{X} \int_{0}^{Y} \mathcal{I}_{\text {between }}^{ \pm}(x, y) u(x, y) d x d y\right]
$$

Six-vertex and persistent random walks

$b_{1} \quad b_{2}$

$b_{1}=\exp \left(-\frac{\beta_{1}}{L}\right) \quad b_{2}=\exp \left(-\frac{\beta_{2}}{L}\right)$

If paths are rare (low density limit), then each of them becomes a persistent random walk. They are essentially independent.

Six-vertex and persistent random walks

$$
\begin{gathered}
b_{1} \\
b_{1}=\exp \left(-\frac{\beta_{1}}{L}\right) \\
b_{2}=\exp \left(-\frac{\beta_{2}}{L}\right)
\end{gathered}
$$

If paths are rare (low density limit), then each of them becomes a persistent random walk. They are essentially independent.

Conclusion. LLN/CLT for the height at low density is the same as LLN/CLT for a family of independent persistent random walks. Hence, connection to the Telegraph equation.

Six-vertex and persistent random walks

$$
\begin{gathered}
b_{1} \\
b_{2} \\
b_{1}=\exp \left(-\frac{\beta_{1}}{L}\right) \\
b_{2}=\exp \left(-\frac{\beta_{2}}{L}\right)
\end{gathered}
$$

If paths are rare (low density limit), then each of them becomes a persistent random walk. They are essentially independent.

Conclusion. LLN/CLT for the height at low density is the same as LLN/CLT for a family of independent persistent random walks. Hence, connection to the Telegraph equation.

How to explain the same connection at high densities and the appearance of $q^{H(x, y)}$?

Summary

$\phi_{x y}+\beta_{2} \phi_{x}+\beta_{1} \phi_{y}=\dot{W} \sqrt{V}$

- Stochastic six-vertex model in the rare corners regime unexpectedly connects to hyperbolic PDEs.
- $\lim q^{H(L x, L y)}$ solves $L \rightarrow \infty$ Telegraph equation.
- $\mathfrak{q} \rightarrow 0$: fixed weights 1st order nonlinear PDE for LLN.
- $\lim _{L \rightarrow \infty} \sqrt{L}\left(q^{H}-\mathbb{E} q^{H}\right)-$ Stochastic Telegraph.
- Links to persistent random walks - Feynman-Kac formula for Telegraph.

Main tool: four point relation

Proofs rely on exact discrete analogue of stochastic Telegraph.

1	1	b_{1}	b_{2}	$1-b_{1}$	$1-b_{2}$	
H	H	$H+1$	H	H	H	
H	H	H	$H-1$	$\frac{H}{H}$	$H-1$	$H+1$
H	$H-1$		H		$H-1$	

Theorem. (Borodin-Gorin-18; with help of Wheeler) For the stochastic six-vertex model in the quadrant with arbitrary boundary conditions, and each $x, y=1,2, \ldots$, set for $q=\frac{b_{2}}{b_{1}}$:
$\xi(x, y)=q^{H(x, y)}-b_{1} q^{H(x-1, y)}-b_{2} q^{H(x, y-1)}+\left(b_{1}+b_{2}-1\right) q^{H(x-1, y-1)}$.
Then ξ is a martingale with explicit variance:

$$
\begin{aligned}
& \text { 1. } \mathbb{E}[\xi(x, y) \mid H(u, v), u<x \text { or } v<y]=0 \text {. } \\
& \text { 2. } \mathbb{E}\left[\xi^{2}(x, y) \mid H(u, v), u<x \text { or } v<y\right]= \\
& \left(b_{1}\left(1-b_{1}\right)+b_{1}\left(1-b_{2}\right)\right) \Delta_{x} \Delta_{y}+b_{1}\left(1-b_{2}\right)(1-q) q^{H(x, y)} \Delta_{x}-b_{1}\left(1-b_{1}\right)(1-q) q^{H(x, y)} \Delta_{y}, \\
& \text { with } \quad \Delta_{x}=q^{H(x, y-1)}-q^{H(x-1, y-1)}, \quad \Delta_{y}=q^{H(x-1, y)}-q^{H(x-1, y-1)}
\end{aligned}
$$

