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Telegraph equation
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Voltage V Current I

∂V

∂x
(x , t) = − L · ∂I

∂t
(x , t) − R · I(x , t)

∂I

∂x
(x , t) =− C · ∂V

∂t
(x , t)− G · V(x , t)

or

Vxx − LC · Vtt − (RC + GL) · Vt − GR · V = 0︸ ︷︷ ︸
Wave equation

︸ ︷︷ ︸
Effect of losses
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Square grid with O in the vertices
and H on the edges.

Finite/infinite domain.

Configurations: possible matchings
of all atoms inside domain into
H2O molecules.

This is square ice model.
Real-world ice has somewhat similar
(although 3d) structure.

Also known as six vertex model.
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Six–vertex model: Gibbs measures

O OO H HH H OO H OH

H

H H

H H

a1 a2

H

b1 b2 c1 c2

Statistical mechanics starting from (Lieb–67):
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Assign Gibbs weights

a
#(a1)
1 a

#(a2)
2 b

#(b1)
1 b

#(b2)
2 c

#(c1)
1 c

#(c2)
2

Z (a1, a2, b1, b2, c1, c2)

[ Depends only on b1b2

a1a2
and c1c2

a1a2
.]

Asymptotic properties of
Gibbs measures?

Understanding is still very limited.
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Question for today

Telegraph equation

Vxx − Vtt − αVt − βVx − γV = 0��������� ���
Six–vertex model
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a
#(a1)
1 a

#(a2)
2 b

#(b1)
1 b

#(b2)
2 c

#(c1)
1 c

#(c2)
2

Z(a1,a2,b1,b2,c1,c2)

What do they have in common?



Stochastic six–vertex model
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a1 a2 b1 b2 c1 c2

An equivalent representation
Collection of paths on the plane

Assumption:
(Gwa–Spohn–92) a1 = a2 = 1, b1 + c1 = 1, b2 + c2 = 1

(
Implies ∆ = a1a2+b1b2−c1c2

2
√
a1a2b1b2

≥ 1
)
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Stochastic six–vertex model
1 1 b1 b2 1− b1 1− b2

Take arbitrary boundary conditions in the quadrant
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Stochastic six–vertex model
1 1 b1 b2 1− b1 1− b2

Until the quadrant is filled
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Stochastic six–vertex model
1 1 b1 b2 1− b1 1− b2

The resulting paths are level lines of the height function
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• Height is 0 at
the origin,
• increases up,
• decreases to the

right.



Domain–wall and fixed weights
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1 1 0 0

0 01 1

1 12 2

22 13

5
4 3 2 25 b1 b2

s =
1− b1

1− b2

1

L
H(Lx , Ly)→ h(x , y) =

0, x
y > s−1,

(
√
sx −√y)2

1− s
, s ≤ x

y ≤ s−1

y − x , x
y < s.

Theorem. (Borodin–Corwin–Gorin-14) For domain–wall boundary
conditions and fixed 0 < b2 < b1 < 1, 1

LH(Lx , Ly)→ h(x , y) with
fluctuations on L1/3 scale given by the Tracy–Widom distribution.

TW = universal law for the largest eigenvalue of Hermitian matrices
and for particle system in Kardar–Parisi–Zhang class

ρx · s + ρy · (s + (s− 1)ρ)2 = 0, ρ = hx .

1st–order non-linear PDE (Gwa–Spohn–92) (Reshetikhin–Sridhar–16)
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• Instead of b1, b2, only s. Where is the second parameter?
• Where is the linear telegraph equation?

(Borodin–Gorin–18): One needs to rescale weights b1, b2.
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Rescaled weights: Law of Large Numbers
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b1 b2

Low density of corners
b1 = exp

(
−β1

L

)
b2 = exp

(
−β2

L

)
q =

(
b2
b1

)L
= eβ1−β2

Theorem. (Borodin–Gorin–18) For arbitrary boundary conditions and
rescaled weights, 1

LH(Lx , Ly)→ h(x , y) with

∂2

∂x∂y

(
qh(x ,y)

)
+ β2

∂

∂x

(
qh(x ,y)

)
+ β1

∂

∂y

(
qh(x ,y)

)
= 0,

qh(x ,0) = χ(x), qh(0,y) = ψ(y).
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)
xy
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(
qh(x ,y)

)
x

+ β1

(
qh(x ,y)

)
y

= 0

qh(x ,0) = χ(x), qh(0,y) = ψ(y).

• In t = x + y , z = x − y , a version of the Telegraph equation.
• Characteristic Cauchy problem has a unique solution.



Rescaled weights: Law of Large Numbers
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2nd order hyperbolic limit shape equation is strange:
• Diffusions: parabolic equations (e.g. Brownian motion)
• Interacting particle systems: 1st order equations (e.g. TASEP)
• 2d statistical mechanics: 2nd order elliptic Euler–Lagrange equations

through variational principles (e.g. random tilings)



Rescaled weights: Fluctuations
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b1 = exp

(
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b2 = exp

(
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q =
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b1
= q1/L

1

L
H(Lx , Ly)→ h(x , y).

What about fluctuations H(Lx , Ly)− EH(Lx , Ly)?

Reminder. For fixed b1, b2, they were Tracy–Widom on L1/3 scale.



Rescaled weights: Fluctuations
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(
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(
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L
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q =
b2

b1
= q1/L

Claim. H(Lx , Ly)− EH(Lx , Ly) ≈ L1/2 × Gaussian.

Theorem. (Borodin–Gorin–18, Shen–Tsai–18)
lim
L→∞

√
L
(
qH(Lx ,Ly) − EqH(Lx ,Ly)

)
solves Stochastic Telegraph

φxy + β2φx + β1φy = Ẇ
√
V (x , y)

V (x , y) = (β1 + β2)qhxq
h
y + (β2 − β1)β2q

hqhx − (β2 − β1)β1q
hqhy

R.H.S.=2d white noise × non-linear functional of the limit shape
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Six–vertex and Telegraph

l
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Stochastic six–vertex model in the
quadrant in low corner density
asymptotic regime.

• Deterministic limit (LLN) for
qH(x ,y) is given by the
homogeneous Telegraph
equation.

• Gaussian fluctuations (CLT)
are given by Stochastic
Telegraph equation.

Why?



Feynman–Kac for Heat equation

For a second, switch to (parabolic) Heat equation.

Ht =
1

2
Hxx , t ≥ 0, H(0, x) = f (x).

The Feynman–Kac formula expresses the solution:

H(t, x) = Ef (Bt),

where Bt is the Brownian motion started at B0 = x .

Similar representation is possible for the Telegraph equation!



Feynman–Kac for Telegraph

Persistent random walk.

intensity β1

intensity β2

Turns down/to the left at Poisson
random times.

(X, Y )

x̂

ŷ

+

+

−

Theorem. (Borodin–Gorin–18; following Goldstein–51, Kac–74)

φxy + β2φx + β1φy = u, x , y > 0; φ(x , 0) = χ(x), φ(0, y) = ψ(y).

Then random characteristics solve the inhomogeneous Telegraph:

φ(X ,Y ) = Eχ(x̂) + Eψ(ŷ) + E
[∫ X

0

∫ Y

0
I±between(x , y)u(x , y)dxdy

]
.
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Six–vertex and persistent random walks
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b1 b2

b1 = exp

(
−β1

L

)
b2 = exp

(
−β2

L

)

If paths are rare (low density limit), then each of them becomes a
persistent random walk. They are essentially independent.

Conclusion. LLN/CLT for the height at low density is the same as
LLN/CLT for a family of independent persistent random walks. Hence,
connection to the Telegraph equation.

How to explain the same connection at high densities and the
appearance of qH(x ,y)?
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Summary
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• Stochastic six–vertex model
in the rare corners regime
unexpectedly connects to
hyperbolic PDEs.

• lim
L→∞

qH(Lx ,Ly) solves

Telegraph equation.

• q→ 0: fixed weights 1st order
nonlinear PDE for LLN.

• lim
L→∞

√
L(qH − EqH) —

Stochastic Telegraph.

• Links to persistent random
walks — Feynman–Kac
formula for Telegraph.



Main tool: four point relation

Proofs rely on exact discrete analogue of stochastic Telegraph.
1 1 b1 b2 1− b1 1− b2

H

H

H

H H

HH + 1

H − 1

H + 1

H

H + 1

HH − 1H

H

H − 1

H H − 1

Theorem. (Borodin–Gorin–18; with help of Wheeler) For the stochastic
six–vertex model in the quadrant with arbitrary boundary conditions, and
each x , y = 1, 2, . . . , set for q = b2

b1
:

ξ(x , y) = qH(x ,y)− b1q
H(x−1,y)− b2q

H(x ,y−1) + (b1 + b2− 1)qH(x−1,y−1).

Then ξ is a martingale with explicit variance:
1. E [ξ(x , y) | H(u, v), u < x or v < y ] = 0.
2. E

[
ξ2(x , y) | H(u, v), u < x or v < y

]
=(

b1(1− b1) + b1(1− b2)
)
∆x∆y + b1(1− b2)(1− q)qH(x,y)∆x − b1(1− b1)(1− q)qH(x,y)∆y ,

with ∆x = qH(x,y−1) − qH(x−1,y−1), ∆y = qH(x−1,y) − qH(x−1,y−1)


