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Six—vertex model
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Square grid with O in the vertices
and H on the edges.



Six—vertex model

H EO H O HiO H O Square grid with O in the vertices
H H H 1 and H on the edges.
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Six—vertex model

H o H O—H:i0 H O Square grid with O in the vertices
b b i and H on the edges.

0 H—O—H O—H! O  Finite/infinite domain.

L H H H H L . .

: ; Configurations: possible matchings

!H—0O—H O H—0i H O .. ..

: : of all atoms inside domain into

0 H M H H>O molecules.

iH—O0 H—O—H O—H O o .

: i This is square ice model.

i H Hi H H . ..

: ; Real-world ice has somewhat similar

iH—O H—O: H O H O

(although 3d) structure.



Six—vertex model

H o H O—H:i0 H O Square grid with O in the vertices

b b i and H on the edges.
0 H—O—H O—H! O  Finite/infinite domain.
L H H H H L . .
: ; Configurations: possible matchings
'H—O—H O H—0: H O .. ..
: : of all atoms inside domain into
P H o H H> O molecules.
iH—O0 H—O—H O—H O o .
; i This is square ice model.
i H Hi H H . ..
; Real-world ice has somewhat similar
0 B700H O H O (although 3d) structure.

Also known as six vertex model.
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Six—vertex model: Gibbs measures

H H H
H—O O—H O—H H—O O H—O—H
H H H
aj as b1 bo 1 2

Statistical mechanics starting from (Lieb—67):

O—H# Q—H o—H 0 H—O Assign Gibbs weights
H

H H H H
P IBTDTHEGTIHTOM 0 ) gt (an) () (Be) () (o)
H H Hi H

Z(al7 ar, b17 b27 C1, C2)

i i L : i [ Depends only on ’;12; and 22.
0 iH—0 H—O0—H O—H {0
Hi H H . .
i i i Asymptotic properties of
O {i—0 H—Oi Bi—0 H—O Gibbs measures?



Six—vertex model: Gibbs measures

H H H
H—O  O—H O0—H H—O 0O H—O—H
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ai as b1 by 1 2
i Ho—H O H Assign Gibbs weights
H H H H
ORI £ e U E g o H O afﬁ(al)aj&(ag)bfﬁ(bl)b;&(bg)cl#(cl)cé#(q)
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: Z(al)a27b17b27cluc2)
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H H H Hi H bib
S [ Depends only on 2122 and 12 ]
0 iH—0 H—O—H O—H 0
i i o i Asymptotic properties of
0{f—0 H—O{ Hi—0 H—O Gibbs measures?

Understanding is still very limited.



Question for today

Telegraph equation Six—vertex model
O—H O—H O—H O H—O
H H H H H
—.—‘—'—'—'—‘7 0 iH—0 H—O0—H:0—H O
H H H H H
O iH—O0—H O H—0} H—0
Vi~ Vee—aVe—pV, =V =0 1. o 1w
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Rdx Ldx :
0 {H—0 H—0} H—0 H—0
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Z(a1,az,b1,b2,c1,02)

What do they have in common?



Stochastic six—vertex model

as by b9 cl
H H H
O—H O—H  H—O 0
H

An equivalent representation
Collection of paths on the plane
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Stochastic six—vertex model

1 1 by by 1—b 1—by
H H H

H H H  H—O 0 H—O—H
H H H

Assumption:

(Gwa—Spohn—92) "31 =a=1 bita=1 b+co= 1‘

i _ axtbhb-cc
(Implles A= TS 21)



Stochastic six—vertex model
1 1 b1 bo 1—0b; 1—=b

N

Take arbitrary boundary conditions in the quadrant



Stochastic six—vertex model

1 1 b1 bo 1—0b; 1—=b
Proceed with sequential stochastic sampling
by
choice
1—b



Stochastic six—vertex model
1 1 b1 bo 1—0b; 1—=b

S

Proceed with sequential stochastic sampling

no choice
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Stochastic six—vertex model
1 1 b1 bo 1—0b; 1—=b
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Proceed with sequential stochastic sampling

no choice




Stochastic six—vertex model
1 1 b1 bo 1—0b; 1—=b
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Proceed with sequential stochastic sampling

no choice
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Stochastic six—vertex model

1 1 b1 bo 1—0b; 1—=b
Proceed with sequential stochastic sampling
— bo
choice
| | 1—by



Stochastic six—vertex model
1 1 b1 bo 1—0b; 1—=b
AR R . D .
| o s [

Proceed with sequential stochastic sampling

no choice




Stochastic six—vertex model

1 1 b1 bo 1—0b; 1—=b
Proceed with sequential stochastic sampling
— b
choice
1—10




Stochastic six—vertex model
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Stochastic six—vertex model

1 1 b1 bo 1—0b; 1—=b
Proceed with sequential stochastic sampling
bo

choice
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Stochastic six—vertex model
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b1 bo 1—0b; 1—=b
Proceed with sequential stochastic sampling
b
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1—10




Stochastic six—vertex model

1 1 b1 by 1—0b; 1—=b

+ 4 + -

Until the quadrant is filled
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Stochastic six—vertex model
1 1 b1 by 1—0b; 1—=b
| [ | [

The resulting paths are level lines of the height function

B -2
2 1
® Height is 0 at
the origin,
I ® increases up,
,,,,,,,,,,,,,,, ‘ ® decreases to the
J -1 right.
0 [ —1 [ —2



Domain—wall and fixed weights

é I by b
! 1-b
| | - 4 5 =
, 4 3 2 of 1 3 1-b
. _3 2 2 1 1 1
3 [ H(x; Ly) = b(x,y) =
o 2 Lo 1S B— - 0. 0, x> s
2
(Vsx —\/¥)
I i | | A e < X < 1
) L0 0 1-s = "=y=7
‘ ‘ ‘ ‘ ‘ y — X, f <s
0 1 2 3 4 5

Theorem. (Borodin—Corwin—Gorin-14) For domain—wall boundary
conditions and fixed 0 < b, < by < 1, $H(Lx, Ly) — (x, y) with
fluctuations on L!/3 scale given by the Tracy-Widom distribution.

TW = universal law for the largest eigenvalue of Hermitian matrices
and for particle system in Kardar—Parisi-Zhang class



Domain—wall and fixed weights

é R I by b
| | 1 ,_l-b
, 4 3 2 of 1 T 1-b
3 2 2 ! ! 1
3 [ H(x; Ly) = b(x,y) =
o 2l o 0. 0 0, x> 5L
2
(Vex = V)

: : : : ——— §<{<s
1 = l-s = 77

‘ ‘ ‘ ‘ ‘ y — X, f <s
0 1 2 3 4 5

Theorem. (Borodin—Corwin—Gorin-14) For domain—wall boundary
conditions and fixed 0 < b, < by < 1, $H(Lx, Ly) — (x, y) with
fluctuations on L!/3 scale given by the Tracy-Widom distribution.
px-s+py - (s+(s-1)p)° =0,  p=h
1st—order non-linear PDE (Gwa-Spohn—92) (Reshetikhin-Sridhar-16)



Domain—wall and fixed weights

5 4 J o by bo
| : o 1-b
4 3 2 ol 1 — C1— by
3 2 2 1 1 1
ZH(va Ly) - [](X7)/) =
e S 0, 5 >sh
o . (VaX — V7Y
1 1 1 , s< X<l
e 0 0 1 s <7<
| y =X, T <s
1 2 3 4 5 y

px-5+py-(s+(s—1)p)>=0,  p=hy

® |nstead of by, by, only 5. Where is the second parameter?
® Where is the linear telegraph equation?



Domain—wall and fixed weights

é R I by b
! 1-—bH
| ! ] 5=
, 4 3 2 of 1 3 1-b
3 2 2 1 ! 1
3 [ H(x; Ly) = b(x,y) =
. NN S - 0 £>s7t
: : ‘ ‘ 2
(Vex = V)
< X <6l
. 1 1 1: 777777 0 0 1_ s » 8§78
‘ y — X, 5 <s
0 1 2 3 4 5

px-5+py-(s+(s—1)p)>=0,  p=hy

® |nstead of by, by, only 5. Where is the second parameter?
® Where is the linear telegraph equation?

(Borodin—Gorin—18): One needs to rescale weights by, bo.



Rescaled weights: Law of Large Numbers

3 P
5 : J J ””””””” b1 bg
2 1
3 10 Low density of corners
b oo ()
2 b2 = exp ( 52)

ol T
0 1 2 3 4 5 o
Theorem. (Borodin—-Gorin—18) For arbitrary boundary conditions and

rescaled weights, }H(Lx, Ly) — h(x,y) with
92 0
h(x,y (x¥) h(x.y)) —
8Xay(q +628 ( )+B1 (a") =0,

xX(x), a"ON =y(y).
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Rescaled weights: Law of Large Numbers

SN

************ b b
) 1 ! 2
Low density of corners
bl b0 : 8
| o by = exp ( )
b2 = exp ( /32)

(qb(x,y)) + 8 ( 7y)) + B (qb(x’y))y -0

"0 = x(x),  q"®) =(y).
® Int=x+y, z=x—y, a version of the Telegraph equation.
e Characteristic Cauchy problem has a unique solution.



Rescaled weights: Law of Large Numbers

R P2 b by
E R 1
4 — ——— | {
3 I ,,,,,,,,,,,,,,,, W Low density of corners

| | : by = exp ( 51)
P i IRREREE —

L by = exp <—/if)
1 | : L
0 1= =) — (22) _ BB

0 1 2 3 4 5 1

(qh(va)) + B, ( 7y)) + B (qh(x’y))y -0

2nd order hyperbolic limit shape equation is strange:
e Diffusions: parabolic equations (e.g. Brownian motion)
e Interacting particle systems: 1st order equations (e.g. TASEP)
® 2 statistical mechanics: 2nd order elliptic Euler—Lagrange equations
through variational principles (e.g. random tilings)



Rescaled weights: Fluctuations

: 3 2 b1 bo

i |

5o 0 b1 B2

2 by = exp (_L> by, = exp <_L>
-1

' O 2 q= by _ /L

o 1 2 3 4 5 by

1
ZH(va Ly) - h(va)
What about fluctuations H(Lx, Ly) — EH(Lx, Ly)?

Reminder. For fixed by, by, they were Tracy-Widom on L1/3 scale.



Rescaled weights: Fluctuations

: 3 2 by by
, 3
3 1 0 B 51 B 8
, by eXP<—L> bz—exp< L)
-1
1 by 1/L
0o -1 9 _ b _
0 1 D 3 4 5 o q bl q
Claim. H(Lx,Ly) — EH(Lx, Ly) ~ L1/2 % Gaussian.



Rescaled weights: Fluctuations

: 3 2 by bo

, 3

5o 0 b1 B2

2 b1 = exp <_L> by = exp <_L
-1

' 0o |- ) q= @ _ 41/L

o 1 2 3 4 5 - b1

Claim. H(Lx, Ly) — EH(Lx, Ly) ~ LY/? x Gaussian.
Theorem. (Borodin—-Gorin—18, Shen—Tsai-18)
Llim V0L (qH(LX’Ly) — EqH(LX’LY)) solves Stochastic Telegraph
— 00

¢xy + /82¢X + 61¢y = W V V(Xay)

V(x,y) = (81 + B2)ala) + (B2 — £1)B2a"q — (B2 — B1)B1a )

R.H.S.=2d white noise x non-linear functional of the limit shape
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Six—vertex and Telegraph

Stochastic six—vertex model in the
quadrant in low corner density
asymptotic regime.

® Deterministic limit (LLN) for
g"¥) is given by the
homogeneous Telegraph
equation.

® Gaussian fluctuations (CLT)
are given by Stochastic
Telegraph equation.

Why?



Feynman—Kac for Heat equation

For a second, switch to (parabolic) Heat equation.

1
H: = EHXX’ t >0, H(0, x) = f(x).
The Feynman—Kac formula expresses the solution:

H(t,x) = Ef(B:),

where B; is the Brownian motion started at By = x.

Similar representation is possible for the Telegraph equation!



Feynman—Kac for Telegraph

Persistent random walk.

intensity /35

{ intensity /31

Turns down/to the left at Poisson
random times.



Feynman—Kac for Telegraph

Persistent random walk. !

intensity /35

{ intensity /31

Turns down/to the left at Poisson
dom times. y
random times \\\\\\

X

Theorem. (Borodin—Gorin—18; following Goldstein—51, Kac-74)
¢Xy+ﬂ2¢x+ﬁl¢y =u, x,y>0 ¢(X70) :X(X)a QS(O’.V) :¢(Y)

Then random characteristics solve the inhomogeneous Telegraph:

o(X,Y)=Ex(x) +Ey(y) + E {/ / between(x y)u(x,y)dxdy| .
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Six—vertex and persistent random walks

If paths are rare (low density limit), then each of them becomes a
persistent random walk. They are essentially independent.



Six—vertex and persistent random walks
2

2 1 b by

0 1 2 3 4 5

If paths are rare (low density limit), then each of them becomes a
persistent random walk. They are essentially independent.

Conclusion. LLN/CLT for the height at low density is the same as
LLN/CLT for a family of independent persistent random walks. Hence,
connection to the Telegraph equation.



Six—vertex and persistent random walks
2

2 1 b by

0 1 2 3 4 5

If paths are rare (low density limit), then each of them becomes a
persistent random walk. They are essentially independent.

Conclusion. LLN/CLT for the height at low density is the same as
LLN/CLT for a family of independent persistent random walks. Hence,
connection to the Telegraph equation.

How to explain the same connection at high densities and the
appearance of g"(¥)?



Summary

¢xy + ﬁ2¢x + Bl¢y - W\/V

by

[

P

3 choice

| . 1=

Stochastic six—vertex model
in the rare corners regime
unexpectedly connects to
hyperbolic PDEs.

lim gM(toly) solves
L—o0

Telegraph equation.

q — 0: fixed weights 1st order
nonlinear PDE for LLN.

lim VL(g" —Eqg") —
L—o0

Stochastic Telegraph.
Links to persistent random

walks — Feynman—Kac
formula for Telegraph.



Main tool: four point relation

Proofs rely on exact discrete analogue of stochastic Telegraph.
1 1 by by 11— 1—by

H ' H H + H
: II + H|H-1 H+1

H | H H[_—l Ho H|H-1 [_1

Theorem. (Borodin—Gorin—18; with help of Wheeler) For the stochastic
six—vertex model in the quadrant with arbitrary boundary conditions, and
each x,y =1,2,..., set for g = Z—i:

E(x,y) = q"9) — by gH0T1) — pgHler=1) 4 (by + by — 1)gH0— 1y 1),

Then £ is a martingale with explicit variance:
1. E[¢(x,y) | H(u,v),u < xorv<y]=0.
2. E[&(x,y) | H(u,v),u < xorv<y] =

(b1(1 = b1) + bi(1 — b2)) AxAy + bi(1 — b2)(1 — q) g Ay — bi(1 — b1)(1 — q)g"¥)A,,
with A, = gHloy=1) — gHx=1y-1), Ay = gHx—=1y) _ gH(x=1y-1)



