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Introduction

In this talk we discuss the spectrum σ(HV ) of a Schrödinger
operator HV = −∆ + V in L2(Rd).

If the potential V vanishes identically, then the spectrum is a
half-line, σ(H0) = [0,∞).

If the potential V is periodic, then the spectrum σ(HV ) is a union
of non-degenerate intervals.

If either of these cases is perturbed by a perturbation vanishing at
infinity, the spectrum may additionally have isolated points.
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Introduction

Notice that in the scenarios above, the spectrum consists of
intervals and isolated points.

In one of the major developments in the spectral theory of
Schrödinger operators in the 1980’s it was realized that (even for
quite reasonable potentials), the spectrum can be such that it
neither has any isolated points nor contains any intervals — i.e., it
is a (generalized) Cantor set.

Let us present and elucidate some recent results that go further in
the direction of “thin spectra.”

All of these results concern the one-dimensional case, i.e. operators
of the form HV = − d2

dx2
+ V in L2(R).
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Zero-Measure Spectrum via a Fibonacci Structure

The (discrete) Fibonacci Hamiltonian is the bounded self-adjoint
operator

[H
(Fib)
λ,ω ψ](n) = ψ(n+1)+ψ(n−1)+λχ[1−α,1)(nα+ω mod 1)ψ(n)

in `2(Z), with the coupling constant λ > 0 and the phase ω ∈ T.

The frequency is given by α =
√
5−1
2 . This operator has been

studied in a large number of papers since the early 1980’s.

Theorem (Sütő 1989)

For every λ > 0, the ω-independent spectrum of H
(Fib)
λ,ω is a Cantor

set of zero Lebesgue measure.
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The Spectrum in the Discrete Case



Outline Introduction Fibonacci-Type Potentials Limit Periodic Potentials

The Continuum Fibonacci Hamiltonian

The continuum counterpart was studied by Damanik, Fillman and
Gorodetski in a 2014 AHP paper. It replaces the two-valued
sequence by an analogous sequence of “bumps” of two types, f0
and f1:

· · ·

f1 f0 f1 f1 f0

x

V (x)

· · ·

1
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The Continuum Fibonacci Hamiltonian

We need to assume a non-degeneracy condition, such as the
aperiodicity of the resulting continuum potential V .

Theorem (D.-Fillman-Gorodetski 2014)

Under the non-degeneracy assumption, the spectrum of HV is a
generalized Cantor set of zero Lebesgue measure.

Remarks. (a) By a generalized Cantor set we mean a closed
nowhere dense set without isolated points.

(b) The non-degeneracy assumption clearly cannot be dropped.

(c) The proof gives information about the (local and global)
Hausdorff dimension of the spectrum.
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The Trace Map Formalism

The key to this result (and in particular to some of its quantitative
companion results not discussed explicitly here) is a sophisticated
application of hyperbolic dynamics to the study of the Fibonacci
trace map, which is given by

T : R3 → R3, T (x , y , z) = (2xy − z , x , y)

The function

I (x , y , z) = x2 + y2 + z2 − 2xyz − 1

is invariant under the action of T and hence T preserves the
surfaces

SI =
{

(x , y , z) ∈ R3 : I (x , y , z) = I
}
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The Surface S0.5
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The Surface S0.2
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The Surface S0.1
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The Trace Map as a Surface Diffeomorphism

It is therefore natural to consider the restriction TI of the trace
map T to the invariant surface SI . That is, TI : SI → SI ,
TI = T |SI .
We denote by ΛI the set of points in SI whose full orbits under TI

are bounded.

Denote by `λ the line

`λ =

{(
E − λ

2
,
E

2
, 1

)
: E ∈ R

}
It is easy to check that `λ ⊂ Sλ2

4

.
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Spectrum and Bounded Trace Map Orbits

The key to the fundamental connection between the spectral
properties of the Fibonacci Hamiltonian and the dynamics of the
trace map is the following result:

Proposition (Sütő 1987)

An energy E ∈ R belongs to the spectrum of the discrete Fibonacci

Hamiltonian H
(Fib)
λ,ω if and only if the positive semiorbit of the point

(E−λ2 , E2 , 1) under iterates of the trace map T is bounded.
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Λλ is a Locally Maximal Hyperbolic Set

Let us recall that an invariant closed set Λ of a diffeomorphism
f : M → M is hyperbolic if there exists a splitting of the tangent
space TxM = E s

x ⊕ Eu
x at every point x ∈ Λ such that this splitting

is invariant under Df , the differential Df exponentially contracts
vectors from the stable subspaces {E s

x }, and the differential of the
inverse, Df −1, exponentially contracts vectors from the unstable
subspaces {Eu

x }.
A hyperbolic set Λ of a diffeomorphism f : M → M is locally
maximal if there exists a neighborhood U of Λ such that

Λ =
⋂
n∈Z

f n(U)

It is known (Casdagli 1986, Damanik-Gorodetski 2009, Cantat
2009) that for I > 0, the set ΛI is a locally maximal hyperbolic set
of TI : SI → SI .
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The Continuum Case

The existence of the trace map (and as a consequence, the
existence of the invariant, the restrictions to invariant surfaces, and
the Markov partitions) is solely a consequence of the self-similarity
of the discrete Fibonacci sequence.

Since the continuum potential inherits this self-similarity, all the
resulting objects continue to exist and are the same as before.

The primary difference between the discrete and the continuum
case is seen in the curve of initial conditions (which is given by the
line `λ in the discrete case). Let us recall how the line `λ arises
and what it is replaced with in the continuum case.
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The Continuum Case

The continuum model depends on choices of lengths `0, `1 > 0 and
real-valued functions f0 ∈ L2(0, `0) and f1 ∈ L2(0, `1), the local
potentials.

Then the potential of the Schrödinger operator H in question is
obtained by piecing together translates of the local potentials
according to the Fibonacci sequence

vF (n) = χ[1−α,1)(nα mod 1); n ∈ Z, α =

√
5− 1

2

Recall that we impose a non-degeneracy assumption.
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The Curve of Initial Conditions

Consider the solutions of the differential equation

−u′′(x) + f0(x)u(x) = Eu(x)

for real energy E .

Denote the solution obeying u(0) = 0, u′(0) = 1 (resp., u(0) = 1,
u′(0) = 0) by u0,D(·,E ) (resp., u0,N(·,E )). Similarly, by replacing
f0 with f1, we define u1,D(·,E ) and u1,N(·,E ).

Then, we set

M0(E ) =

(
u0,N(`0,E ) u0,D(`0,E )
u′0,N(`0,E ) u′0,D(`0,E )

)
M1(E ) =

(
u1,N(`1,E ) u1,D(`1,E )
u′1,N(`1,E ) u′1,D(`1,E )

)
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The Curve of Initial Conditions

Moreover, let

x0(E ) =
1

2
tr (M0(E ))

x1(E ) =
1

2
tr (M1(E ))

x2(E ) =
1

2
tr (M0(E )M1(E ))

The map E 7→ (x2(E ), x1(E ), x0(E )) will be called the curve of
initial conditions, and this is the continuum replacement of the line
of initial conditions that played a key role in the discrete case.
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Spectrum and Dynamical Spectrum

The points T n(x2(E ), x1(E ), x0(E )) lie on the surface SI (E), where
(with some abuse of notation) we set

I (E ) = I (x2(E ), x1(E ), x0(E ))

The dynamical spectrum B is defined by

B = {E ∈ R : {T n(x2(E ), x1(E ), x0(E ))}n∈Z+ is bounded}

and it was shown to coincide with the spectrum of the continuum
Fibonacci Hamiltonian by DFG:

Theorem (D.-Fillman-Gorodetski 2014)

We have σ(HV ) = B, and the Lebesgue measure of this set is zero.
Moreover, we have I (E ) ≥ 0 for every E ∈ σ(HV ).
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Hausdorff Dimension of the Spectrum

The value of the invariant I (E ) = I (x2(E ), x1(E ), x0(E ))
completely determines the local Hausdorff dimension of the
spectrum at an energy E ∈ σ(HV ).

Theorem (D.-Fillman-Gorodetski 2014)

There is a continuous map D : [0,∞)→ (0, 1] with the following
properties:
(i) dimloc(σ(HV ),E ) = D(I (E )) for every E ∈ σ(HV ).
(ii) We have D(0) = 1 and 1− D(I ) �

√
I as I ↓ 0.

(iii) We have

lim
I→∞

D(I ) · log I = 2 log(1 +
√

2)

(iv) D is real analytic in (0,∞).
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Hausdorff Dimension of the Spectrum

Remarks. (a) It follows immediately that the global Hausdorff
dimension of the spectrum is always strictly positive.
(b) It was shown in a follow-up work by Jake Fillman and May Mei
(AHP 2018) that the local Hausdorff dimension tends to one in
both the weak-coupling limit and the high-energy limit. Thus, the
global Hausdorff dimension of the spectrum is in fact equal to one.
(c) In the Kronig-Penney model, where the local bump functions
are replaced by local point interactions, the local Hausdorff
dimension of the spectrum can be equal to one for a sequence of
energies tending to infinity. This can be seen via explicit
calculations carried out in the DFG paper. For example, if
`a = `b = 1 and fa(x) = λδ(x), fb(x) = 0, we have

I (E ) = λ2

4E sin2
√
E . This observation explains the occurrence of

so-called pseudo bands in the spectrum that had been pointed out
earlier in the physics literature.
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Zero Hausdorff Dimension via Limit Periodicity

A potential V : R→ R is called limit-periodic if it is a uniform
limit of continuous periodic functions on R.

Denote the set of limit-periodic potentials by LP. It is naturally
equipped with the L∞ norm.

Theorem (D.-Fillman-Lukic 2017)

There is a dense set H ⊆ LP such that for all V ∈ H and all
λ > 0, σ(HλV ) has Hausdorff dimension zero.

This result also has a “discrete precursor”: a 2009 paper by Avila.
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