# Recent advances on mean-field spin glasses

## Wei-Kuo Chen University of Minnesota

Joint work with
A. Auffinger, M. Handschy, D. Gamarnik, G. Lerman, D. Panchenko, M. Rahman, A. Sen, Q. Zeng

July, 2018

What are spin glasses?

### What are spin glasses?

- Spin Glasses are alloys with strange magnetic properties. Ex: CuMn
  - In physics: spin + glass
  - In mathematics: quenched disorder + frustration

### What are spin glasses?

- Spin Glasses are alloys with strange magnetic properties. Ex: CuMn
  - In physics: spin + glass
  - In mathematics: quenched disorder + frustration
- Spin glass features appear in many real world problems:
  - Traveling salesman problem.
  - Hopfield neural network.
  - Spike detection and recovery problems.

#### **Edwards-Anderson model**

- Consider a finite graph (V, E) on  $\mathbb{Z}^d$ .
- Hamiltonian: For  $\sigma \in \{-1, 1\}^V$ ,

$$H(\sigma) = \sum_{(i,j)\in E} g_{ij}\sigma_i\sigma_j,$$

where  $g_{ij}$  are i.i.d. N(0, 1).

#### **Edwards-Anderson model**

- Consider a finite graph (V, E) on  $\mathbb{Z}^d$ .
- Hamiltonian: For  $\sigma \in \{-1, 1\}^V$ ,

$$H(\sigma) = \sum_{(i,j)\in E} g_{ij}\sigma_i\sigma_j,$$

where  $g_{ij}$  are i.i.d. N(0, 1).

• Frustration appears when computing  $\max H_N(\sigma)$ .



Figure: Frustration

## Mean field approach: The Sherrington-Kirkpatrick model

• Hamiltonian:

$$H_N(\sigma) = rac{1}{\sqrt{N}} \sum_{i,j=1}^N g_{ij} \sigma_i \sigma_j + h \sum_{i=1}^N \sigma_i$$

for 
$$\sigma \in \{-1, +1\}^N$$
, where  $g_{ij} \stackrel{i.i.d.}{\sim} N(0, 1)$ .

## Mean field approach: The Sherrington-Kirkpatrick model

• Hamiltonian:

$$H_N(\sigma) = rac{1}{\sqrt{N}} \sum_{i,j=1}^N g_{ij} \sigma_i \sigma_j + h \sum_{i=1}^N \sigma_i$$

for 
$$\sigma \in \{-1, +1\}^N$$
, where  $g_{ij} \stackrel{i.i.d.}{\sim} N(0, 1)$ .

Covariance Structure:

$$\mathbb{E}\left(\frac{1}{\sqrt{N}}\sum_{i,i=1}^{N}g_{ij}\sigma_{i}^{1}\sigma_{j}^{1}\right)\left(\frac{1}{\sqrt{N}}\sum_{i,j=1}^{N}g_{ij}\sigma_{i}^{2}\sigma_{j}^{2}\right)=N\left(R(\sigma^{1},\sigma^{2})\right)^{2},$$

where

$$R(\sigma^1, \sigma^2) = \frac{1}{N} \sum_{i=1}^{N} \sigma_i^1 \sigma_i^2.$$

Assign *N* students into two dorms and avoid conflicts.

Assign *N* students into two dorms and avoid conflicts.





Assign *N* students into two dorms and avoid conflicts.



Assign *N* students into two dorms and avoid conflicts.



Dean's problem: Find the optimizer of

$$\max_{\sigma \in \{-1,+1\}^N} \sum_{i,j=1}^N g_{ij} \sigma_i \sigma_j.$$

## A soft approximation: Free energy

• For any  $\beta = \frac{1}{T} > 0$  (inverse temperature), define the free energy

$$F_N(\beta) = \frac{1}{\beta N} \log \sum_{\sigma \in \{-1, +1\}^N} e^{\beta H_N(\sigma)}$$

## A soft approximation: Free energy

• For any  $\beta = \frac{1}{T} > 0$  (inverse temperature), define the free energy

$$F_N(\beta) = \frac{1}{\beta N} \log \sum_{\sigma \in \{-1, +1\}^N} e^{\beta H_N(\sigma)}$$

• Simple observation:

$$\max_{\sigma \in \{-1,+1\}^N} \frac{H_N(\sigma)}{N} \le F_N(\beta) \le \max_{\sigma \in \{-1,+1\}^N} \frac{H_N(\sigma)}{N} + \frac{\log 2}{\beta}$$

## A soft approximation: Free energy

• For any  $\beta = \frac{1}{T} > 0$  (inverse temperature), define the free energy

$$F_N(\beta) = \frac{1}{\beta N} \log \sum_{\sigma \in \{-1, +1\}^N} e^{\beta H_N(\sigma)}$$

Simple observation:

$$\max_{\sigma \in \{-1,+1\}^N} \frac{H_N(\sigma)}{N} \le F_N(\beta) \le \max_{\sigma \in \{-1,+1\}^N} \frac{H_N(\sigma)}{N} + \frac{\log 2}{\beta}$$

• Physicists' replica method:

$$\lim_{N\to\infty} \frac{1}{N} \mathbb{E} \log Z_N = \lim_{N\to\infty} \lim_{n\downarrow 0} \frac{\mathbb{E} \log Z_N^n}{nN} \stackrel{?}{=} \lim_{n\downarrow 0} \lim_{N\to\infty} \frac{\log \mathbb{E} Z_N^n}{nN}$$

### Theorem (Parisi formula)

• (Talagrand '06)

$$\lim_{N\to\infty} F_N(\beta) = \inf_{\alpha} \Big( \Phi_{\alpha,\beta}(0,h) - \frac{1}{2} \int_0^1 \beta \alpha(s) s ds \Big), \ a.s.,$$

where for any CDF  $\alpha$  on [0, 1],

$$\partial_s \Phi_{\alpha,\beta} = -\frac{1}{2} \Big( \partial_{xx} \Phi_{\alpha,\beta} + \frac{\beta \alpha}{s} (s) (\partial_x \Phi_{\alpha,\beta})^2 \Big), \forall (s,x) \in [0,1) \times \mathbb{R}$$

with

$$\Phi_{\alpha,\beta}(1,x) = \frac{1}{\beta} \log \cosh(\beta x).$$

- (Guerra' 03) Minimizer exists.
- (Auffinger-C. '14) Minimizer is unique.

Denote this minimizer by  $\alpha_{\beta}$  and call it the Parisi measure.

## Significance of the Parisi measure

### Three major predictions:

(1)  $\alpha_{\beta}$  is the limiting distribution of the overlap:

$$R(\sigma^1, \sigma^2) \stackrel{d}{\Rightarrow} \frac{\alpha_{\beta}}{}$$

where  $\sigma^1, \sigma^2$  are i.i.d. samplings from the Gibbs measure

$$G_N(\sigma) = rac{e^{eta H_N(\sigma)}}{\sum_{\sigma'} e^{eta H_N(\sigma')}}.$$

#### (2) Phase Transition:



Figure: SK model with h = 0

(3) Ultrametricity: with probab. $\approx 1$ , for i.i.d.  $\sigma^1, \sigma^2, \sigma^3 \sim G_N$ ,

$$\|\sigma^1 - \sigma^2\| \le \max(\|\sigma^1 - \sigma^3\|, \|\sigma^2 - \sigma^3\|) + o(1).$$



(3) Ultrametricity: with probab. $\approx 1$ , for i.i.d.  $\sigma^1, \sigma^2, \sigma^3 \sim G_N$ ,

$$\|\sigma^1 - \sigma^2\| \le \max(\|\sigma^1 - \sigma^3\|, \|\sigma^2 - \sigma^3\|) + o(1).$$



Panchenko '11: Ultrametricity holds for the SK model with a vanishing perturbation, but we do not know if it is still true without perturbation.

# Theorem (Auffinger-C.-Zeng '17)

The cardinality of supp $\alpha_{\beta}$  diverges as  $\beta \to \infty$ .

As a consequence: If we add perturbation so that ultrametricity holds, then the total levels of the trees diverge as  $\beta \uparrow \infty$ .

Parisi formula for the maximal energy

## Parisi formula for the maximal energy

For any  $\gamma$  with  $\gamma(s)=\mu([0,s])$  and  $\int_0^1 \gamma(s)ds<\infty$ , consider the PDE solution  $\Psi_\gamma$ ,

$$\begin{split} &\Psi_{\gamma}(1,x) = |x|, \\ &\partial_{s}\Psi_{\gamma} = -\frac{1}{2} \Big( \partial_{xx}\Psi_{\gamma} + \gamma(s) (\partial_{x}\Psi_{\gamma})^{2} \Big), \forall (s,x) \in [0,1) \times \mathbb{R}. \end{split}$$

## Parisi formula for the maximal energy

For any  $\gamma$  with  $\gamma(s)=\mu([0,s])$  and  $\int_0^1 \gamma(s)ds < \infty$ , consider the PDE solution  $\Psi_{\gamma}$ ,

$$\begin{split} &\Psi_{\gamma}(1,x) = |x|, \\ &\partial_{s}\Psi_{\gamma} = -\frac{1}{2} \Big( \partial_{xx}\Psi_{\gamma} + \gamma(s) \big( \partial_{x}\Psi_{\gamma} \big)^{2} \Big), \forall (s,x) \in [0,1) \times \mathbb{R}. \end{split}$$

#### **Theorem**

• (Auffinger-C. '16) Parisi formula at zero temperature:

$$\lim_{N\to\infty}\mathbb{E}\max_{\sigma\in\{-1,+1\}^N}\frac{H_N(\sigma)}{N}=\inf_{\gamma}\Big(\Psi_{\gamma}(0,h)-\frac{1}{2}\int_0^1s\gamma(s)ds\Big)$$

• (C.-Handschy-Lerman '16) Minimizer  $\gamma_P$  exists and is unique.

# **Energy landscape: multiple peaks**

Overlap 
$$R(\sigma, \sigma') = \frac{1}{N} \sum_{i=1}^{N} \sigma_i \sigma'_i$$
.

# **Energy landscape: multiple peaks**

Overlap 
$$R(\sigma, \sigma') = \frac{1}{N} \sum_{i=1}^{N} \sigma_i \sigma'_i$$
.

# Theorem (Multiple peaks, C.-Handschy-Lerman '16)

Assume h = 0. For any  $\varepsilon > 0$ , there exists a constant K > 0 s.t. for any  $N \ge 1$ , with probability at least  $1 - Ke^{-N/K}$ ,  $\exists S_N \subset \{-1, +1\}^N$  such that

- (i)  $|S_N| \geq e^{N/K}$ .
- (ii)  $\forall \sigma \in S_N$ ,  $\left| \frac{H_N(\sigma)}{N} \max_{\sigma' \in \Sigma_N} \frac{H_N(\sigma')}{N} \right| < \varepsilon$ .
- (iii)  $\forall \sigma, \sigma' \in S_N \text{ with } \sigma \neq \sigma', |R(\sigma, \sigma')| < \varepsilon.$

## **Energy landscape: multiple peaks**

Overlap 
$$R(\sigma, \sigma') = \frac{1}{N} \sum_{i=1}^{N} \sigma_i \sigma'_i$$
.

## Theorem (Multiple peaks, C.-Handschy-Lerman '16)

Assume h = 0. For any  $\varepsilon > 0$ , there exists a constant K > 0 s.t. for any  $N \ge 1$ , with probability at least  $1 - Ke^{-N/K}$ ,  $\exists S_N \subset \{-1, +1\}^N$  such that

- $(i) |S_N| \geq e^{N/K}.$
- (ii)  $\forall \sigma \in S_N$ ,  $\left| \frac{H_N(\sigma)}{N} \max_{\sigma' \in \Sigma_N} \frac{H_N(\sigma')}{N} \right| < \varepsilon$ .
- (iii)  $\forall \sigma, \sigma' \in S_N \text{ with } \sigma \neq \sigma', |R(\sigma, \sigma')| < \varepsilon.$ 
  - Chatterjee '09:  $|S_N| \ge (\log N)^c$ .
  - Ding-Eldan-Zhai '14:  $|S_N| \ge N^c$ .

## Pure *p*-spin model for $p \ge 3$ : Overlap gap property

Hamiltonian:

$$H_N(\sigma) = rac{1}{N^{(p-1)/2}} \sum_{1 \leq i_1, \ldots, i_p \leq N} g_{i_1, \ldots, i_p} \sigma_{i_1} \cdots \sigma_{i_p}.$$

• (Overlap gap property) There exist c, C > 0 such that with overwhelming probability, any two near ground states  $\sigma^1$  and  $\sigma^2$  satisfy

$$|R(\sigma^1, \sigma^2)| \notin [c, C].$$

• Computational hardness:

## • Computational hardness:

- Suppose  $\sigma^1$  is a near ground state and  $\sigma^2$  is the ground state so that

$$|R(\sigma^1, \sigma^2)| \le c.$$

#### Computational hardness:

- Suppose  $\sigma^1$  is a near ground state and  $\sigma^2$  is the ground state so that

$$|R(\sigma^1, \sigma^2)| \le c.$$

- Locally update algorithms take exponential time to find the ground state since

$$|R(\sigma^1,\sigma(n))| \notin [c,C].$$

### Computational hardness:

- Suppose  $\sigma^1$  is a near ground state and  $\sigma^2$  is the ground state so that

$$|R(\sigma^1, \sigma^2)| \le c.$$

Locally update algorithms take exponential time to find the ground state since

$$|R(\sigma^1, \sigma(n))| \notin [c, C].$$

- Results:
  - C.-Gamarnik-Rahman-Panchenko '17
  - Jagannath-Ben Arous '17

### **New challenges**

Bipartite SK model: Let  $N_1 = cN$  and  $N_2 = (1 - c)N$ .

$$H_N(\sigma) = \frac{1}{\sqrt{N}} \sum_{i=1}^{N_1} \sum_{j=1}^{N_2} g_{ij} \tau_i \rho_j$$

for 
$$\sigma = (\tau, \rho) \in \{-1, +1\}^{N_1} \times \{-1, +1\}^{N_2}$$
. Note 
$$\mathbb{E} H_N(\sigma) H_N(\sigma') = c(1-c) NR(\tau, \tau') R(\rho, \rho').$$

### Questions:

- Free energy?
- Ground state energy?
- Energy landscape?

Thank you for your attention.