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What are spin glasses?
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What are spin glasses?

@ Spin Glasses are alloys with strange magnetic properties. Ex:
CuMn

- In physics: spin + glass
- In mathematics: quenched disorder + frustration
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What are spin glasses?

@ Spin Glasses are alloys with strange magnetic properties. Ex:
CuMn
- In physics: spin + glass
- In mathematics: quenched disorder + frustration
@ Spin glass features appear in many real world problems:

- Traveling salesman problem.
- Hopfield neural network.
- Spike detection and recovery problems.
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Edwards-Anderson model

o Consider a finite graph (V, E) on Z.
e Hamiltonian: For o € {—1,1}V,
H(o)= ) goio,
(i) EE

where g;; are i.i.d. N(0, 1).
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Edwards-Anderson model

o Consider a finite graph (V, E) on Z.
e Hamiltonian: For o € {—1,1}V,
H(o)= ) goio,
(i)EE
where g;; are i.i.d. N(0, 1).
@ Frustration appears when computing max Hy (o).

Figure: Frustration
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Mean field approach: The Sherrington-Kirkpatrick model

@ Hamiltonian:

N N
1
HN(O') = ﬁ Zg,-ja,-aj + hzo’;’
ij=1 i=1

iid.

foro € {—1,+1}", where g; "~ N(0, 1).
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Mean field approach: The Sherrington-Kirkpatrick model

@ Hamiltonian:

N N
1
HN(O') = ﬁ Zg,-ja,-aj—l—hZUi
i=1

ij=1

iid.

foro € {—1,+1}", where g; "~ N(0, 1).

@ Covariance Structure:

E(ﬁ igijffil‘?fl) (ﬁ igijgqu) =N(R(o',0%))’,

ij=1 ij=1

where
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Dean’s problem
Assign N students into two dorms and avoid conflicts.
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Dean’s problem
Assign N students into two dorms and avoid conflicts.
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Dean’s problem: Find the optimizer of

E g,,a,a,

o'G{ 1 +1}N
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A soft approximation: Free energy

@ Forany g = % > 0 (inverse temperature), define the free energy

1
Fn(B) = ﬁ—Nlog Z PN ()

ce{—1,+1}V
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A soft approximation: Free energy

@ Forany g = % > 0 (inverse temperature), define the free energy

1
Fu(B)=gyls 3 MO

ce{—1,+1}V

@ Simple observation:

HN(U

max Hy(o)  log2
ce{-1,+1}N N

max +
ce{-1,+1}¥ N B

IN

Fy(B) <

6/17



A soft approximation: Free energy

@ Forany g = % > 0 (inverse temperature), define the free energy

Pu(B) = gylos 30 MO

ce{—1,+1}V

@ Simple observation:

HN(O') HN(O') 10g2
max < F, < ma; +
ce{-1,+1}¥ N T w(B) = oe{—l,}-i(—l}N N B
@ Physicists’ replica method:
hm lIElogZN = lim lim L 1OgZN;lim lim log EZy
o N N—o0 nl0 nN nl0 Nooo  nN
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Theorem (Parisi formula)
o (Talagrand ’06)

lim Fy(B) = inf(@a,g(o,h) — %/] ﬁa(s)sds), as.,
« 0

N— oo
where for any CDF « on [0, 1],
OB = —% (0u®ass + B0(s)(B®a,6)?), ¥(5,3) € [0,1) x R
with

Dy 5(1,x) = % log cosh(Sx).

@ (Guerra’ 03) Minimizer exists.

o (Auffinger-C. ’14) Minimizer is unique.

Denote this minimizer by o3 and call it the Parisi measure.



Significance of the Parisi measure

Three major predictions:

(1) ag is the limiting distribution of the overlap:

R(c',0?) 4 ag,

where 0!, 02 are i.i.d. samplings from the Gibbs measure

eBHN(G)

On (o) = S B

8/17



(2) Phase Transition:

1 ’ R —
\izemann-Lebowitz-Ruelle 587 : E
Toninelli *02 | E |
. . 1 q 1

Replica Symmetric Full Replica Symfhetry Breaking

Figure: SK model with 4 = 0
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(3) Ultrametricity: with probab.~ 1, fori.i.d. o', 02,03 ~ Gy,

= o?|<max(llo! o, [lo® — o) + o(1).

The whole space Q
e
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(3) Ultrametricity: with probab.~ 1, fori.i.d. o', 02,03 ~ Gy,

o —

The whole space @

o’||<max(|lo’ —o°|l, lo* — o7|]) + o(1).

b
=

Pure States
(no further structure

CLCL

Panchenko *11: Ultrametricity holds for the SK model with a
vanishing perturbation, but we do not know if it is still true
without perturbation.
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Theorem (Auffinger-C.-Zeng *17)
The cardinality of suppcg diverges as 3 — 0.

As a consequence: If we add perturbation so that ultrametricity holds,
then the total levels of the trees diverge as 5 T co.
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Parisi formula for the maximal energy
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Parisi formula for the maximal energy

For any  with y(s) = ([0, s]) and fol ~(s)ds < oo, consider the PDE
solution ¥,

‘IJ’Y(LX) = |X‘,

1
oW, = —5 (aﬂxy7 + ’y(s)(ax\llv)z) ¥(s,x) € [0,1) x R.

12/17



Parisi formula for the maximal energy

For any  with y(s) = ([0, s]) and fol ~(s)ds < oo, consider the PDE
solution ¥,

‘IJ’Y(LX) = |X‘,

1
oW, = —5 (aanv n ’y(s)(ax\lfv)z) ¥(s,x) € [0,1) x R.

Theorem
o (Auffinger-C. ’16) Parisi formula at zero temperature:

HA;\(]U) = i{ylf(\llv(O, h) — %/0] s'y(s)ds)

lim E max
N—oo  ge{—1,+1}V¥

o (C.-Handschy-Lerman ’16) Minimizer yp exists and is unique.
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Energy landscape: multiple peaks

Overlap R(0,0’) = & SV ool

13/17



Energy landscape: multiple peaks

Overlap R(0,0’) = & SV ool

Theorem (Multiple peaks, C.-Handschy-Lerman ’16)

Assume h = 0. For any € > 0, there exists a constant K > 0 s.t. for
any N > 1, with probability at least | — Ke=N/K, 38y  {—1,+1}V
such that

(i) |Sn| > VK.

!
(ii) Yo € Sy, HNA(,U) — mMaXy/exy HNIE,U) <e.

(iii) Yo,0' € Sy with o # o', |[R(0,0")| < e.
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Energy landscape: multiple peaks

Overlap R(0,0’) = & SV ool

Theorem (Multiple peaks, C.-Handschy-Lerman ’16)

Assume h = 0. For any € > 0, there exists a constant K > 0 s.t. for
any N > 1, with probability at least | — Ke=N/K, 38y  {—1,+1}V
such that

(i) |Sn| > VK.

!/
(ii) Yo € Sy, HNA(,U) — mMaXy/exy HNIE,U) <e.

(iii) Yo,0' € Sy with o # o', |[R(0,0")| < e.

e Chatterjee *09: |Sy| > (log N)¢.
e Ding-Eldan-Zhai *14: |Sy| > N¢.
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Pure p-spin model for p > 3: Overlap gap property

@ Hamiltonian:

1
HN(U) = W Z 8it,eeyipTiy =" " Oy -

1<i}.nsip <N

@ (Overlap gap property) There exist ¢, C > 0 such that with
overwhelming probability, any two near ground states o' and o
satisfy

R(e",0%)| ¢ [e, C).
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e Computational hardness:
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e Computational hardness:

!'is a near ground state and o? is the ground state so

- Suppose o
that

R(o",0%)| <.
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e Computational hardness:

1

- Suppose ¢! is a near ground state and o2 is the ground state so

that
\R(Jl, 02)| <c.

- Locally update algorithms take exponential time to find the
ground state since

R(e", o(m))| & [c, C].

15717



e Computational hardness:

1

- Suppose ¢! is a near ground state and o2 is the ground state so

that
\R(Jl, 02)| <c.

- Locally update algorithms take exponential time to find the
ground state since

R(e", o(m))| & [c, C].

@ Results:

- C.-Gamarnik-Rahman-Panchenko ’17
- Jagannath-Ben Arous *17
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New challenges

Bipartite SK model: Let Ny = ¢N and N, = (1 — ¢)N.

N Ny

Hy(o) = % Z Zg::/Tin

i=1 j=1
foro = (1,p) € {—1,+1}"1 x {—1,+1}2. Note
EHy(0)H(0") = ¢(1 — )NR(r, 7 )R(p, p').
Questions:
- Free energy?

- Ground state energy?

- Energy landscape?
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Thank you for your attention.



