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Isolated system in General Relativity

Consider initial data (M3, g,K, µ, J) which are “optimally”
asymptotically flat:

M3 ≈ R3 \ ball 3 ~x

gij = δij +O2(r−
1
2−ε)

Kij = O1(r−
3
2−ε),

µ, J = O0(r−3−ε)

for some ε > 0 and r = |~x| → ∞.
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Expectations of a notion of center of mass
Transforms like a point particle in Special Relativity under change of
observer:
; equivariant transformation behavior under asymptotic boosts

t = 0

t̃ = 0

t = 1

t̃ = 1tt̃

Equivariant transformation under spatial translations and rotations.
Point particle-like evolution under Einstein evolution equations:

d

dt
(E~z ) = ~P

(ADM-energy E, ADM-momentum ~P )

Newtonian limit c→∞ of ~z(c) recovers Newtonian center of mass of
~z limiting Newtonian isolated system
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Status quo

Different definitions of center of mass in the literature:
Definition via Hamiltonian systems:
Regge–Teitelboim ’74, Beig–Ó Murchadha ’87.
; does not transform equivariantly and does not converge in general
Asymptotic foliation definition by Huisken–Yau ’96.
; see below
Several others (Schoen, Corvino–Wu, Chen–Wang–Yau, . . . ).
; do not always converge and/or can not be computed in general
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Excursion: Isolated systems in Newtonian Gravity
Center of mass ~zN ∈ R3 of a mass density ρ and mass mN =

´
R3 ρ dV 6= 0:

~zN = 1
mN

ˆ
R3
ρ ~x dV.

Can be reformulated: U Newtonian potential with U → 0 as r →∞:

4U = 4πρ.
If mN 6= 0: equipotential sets ΣU

foliate neighborhood of infinity.
Recover ~zN from

~zN = lim
U→0

 
ΣU

~x dA. � � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

1 r

H=const
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Excursion: Isolated systems in Newtonian Gravity
Center of mass ~zN ∈ R3 of a mass density ρ and mass mN =

´
R3 ρ dV 6= 0:

~zN = 1
mN

ˆ
R3
ρ ~x dV.

Can be reformulated: U Newtonian potential with U → 0 as r →∞:

4U = 4πρ.
If mN 6= 0: equipotential sets ΣU

foliate neighborhood of infinity.
Recover ~zN from

~zN = lim
U→0

 
ΣU

~x dA. � � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

1 r

H=const

Carla Cederbaum Center of mass in General Relativity ICMP Montréal 2018 5 / 13



Huisken–Yau definition of center of mass I

Theorem (Huisken–Yau ’96;
abstract CoM)
Let (M3, g) be an asymptotically
spherically symmetric Riemannian
manifold of masse m > 0. There
exists an (almost) unique foliation of
a neighborhood of infinity by stable
spheres ΣH of constant mean
curvature H (CMC).

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

1 r

H=const

Asymptotic condition: gij =
(
1 + m

2r

)4
δij +O4( 1

r2 ).
Generalizations: Ye, Metzger, Metzger–Eichmair, Huang, Nerz, . . .
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Huisken–Yau definition of center of mass II
Theorem (Huisken–Yau ’96; coordinate CoM)
Euclidean center ~zH of ΣH and center of mass ~zHY:

~zH :=
 

~x (ΣH)
~x dA, ~zHY := lim

H→0
~zH .

inside

0

~zH1

~zH2

~zH3

xi (ΣH1)

xi (ΣH2)
xi (ΣH3)

R3
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However:
Theorem (C.–Nerz ’14)
Der center of mass ~zHY := limH→0 ~zH does not always converge under the
assumptions of Huisken–Yau.

~x

~a

t

{t = −3}

T (~x)

Figure: Logarithmic plot.

Explicit counterexample:
graphical timeslice in
Schwarzschild spacetime:

T (~x) = ~a · ~x
r

+ sin(ln r),

~a ∈ R3,~a 6= 0

Reason: R ~x /∈ L1 in general, R scalar curvature of g.
Same phenomenon in Newtonian setting by changing coordinates
asymptotically if ρ ~x /∈ L1.
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New development

Theorem (C.–Sakovich ’18)
Let (M3, g,K, µ, J) be initial data. Under optimal asymptotic flatness
conditions and if the ADM-energy E 6= 0, there exists a unique foliation of
a neighborhood of infinity by stable spheres ΣH of constant spacetime mean
curvature H =

√
g( ~H, ~H) (STCMC).

Assuming µ~x ∈ L1, the euclidean center ~zH of ΣH and the center of mass
~z satisfiesa:

~zH :=
 

xi(ΣH)
~x dA, ~z := lim

H→0
~zH.

aUnder a weak additional decay assumption on K which seem technical.

Carla Cederbaum Center of mass in General Relativity ICMP Montréal 2018 9 / 13



Coordinate STCMC-center of mass

inside

0

~zH1

~zH2

~zH3

xi (ΣH1)

xi (ΣH2)
xi (ΣH3)

R3
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New development. . .

Theorem (C.–Sakovich ’18)
The STCMC-center of mass ~z transforms equivariantly under the
asymptotic Poincaré group (in coordinates), i.e. under boosts and
spatial translations and rotations, as well as
point particle-like evolution under the Einstein evolution equations via

d

dt
(E~z ) = ~P .

The counterexample from [C.–Nerz ’14] has a well-defined
STCMC-center of mass ~z = ~0.

Proof: Method of continuity, implicit function theorem in Sobolev spaces,
spectral analysis of new STCMC-stability operator, results by Nerz ’15, ’16,
. . .
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New development. . .

Have explicit formula for difference between ~zHY und new ~z via
BÓM–RT-formula (Huang, Nerz, . . . ).
Agrees with Chen–Wang–Yau center of mass if initial data are
asymptotically harmonic.

Work in progress with Metzger: The extra weak additional decay
assumption on K is not necessary but can be replaced by choosing
suitable center of mass coordinates.
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Open question: Newtonian limit of center of mass. . .
Theorem (C. ’11)
Along each c-dependant family of static isolated systems that has a
Newtonian limit as c→∞, one finds that

~zHY(c) = ~zBÓM–RT(c) = ~zPN(c) → ~zN .

g, h, T,Γ
GR

interest
system of

λλ = 0: Newton Cartan theory

Proof: Ehlers’ frame theory, differential geometry modelling, Kelvin
transformation, weighted Sobolev space analysis, faster fall-off trick [C. ’11],
localization of mass and center of mass via pseudo-Newtonian gravity.
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