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Setup: double-dimer loop ensembles in Temperley discretizations on Z2

• Temperley discretizations Ωδ on Z2:
simply connected domains s.t. all corners are
of the same type out of four: B0,B1,W0,W1.

• Dimer ( = domino) model on Ωδ: perfect
matchings, chosen uniformly at random.

• Kasteleyn theorem: Zdimers = detK ,

 

where K : CB → CW is a weighted adjacency matrix ( = discrete ∂ operator on Ωδ ).
[ Temperley domains: nice bijection with UST ! Dirichlet boundary conditions for ∂ ]
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• Double-dimer model: two independent dimer configurations on the same domain.
Configuration Ldbl-d is a fully-packed collection of loops and double-edges,

Zdbl-d =
∑
Ldbl-d

2#loops(Ldbl-d) = det

(
0 K>

K 0

)
= detK, K : (C2)B → (C2)W .



Goal (cf. Kenyon’10, Dubédat’14): conformal invariance, convergence to CLE4

• Random height functions and GFF:
Choosing the orientation of loops γ ∈ Ldbl-d
randomly, one gets a height function hdbl-d.

Kenyon’00: hdbl-d → GFF(Ω) as δ → 0.

• Random loop ensembles and CLE4:
It is a famous prediction (supported by many

 

strong results) that Ldbl-d converges to the nested conformal loop ensemble CLE4(Ω).
[!] The convergence of hdbl-d is not strong enough for the level lines Ldbl-d of hdbl-d.
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Kenyon (2010): SL2(C)-monodromies and Q-determinants for double-dimers

Let ρ : π1(Ω \ {λ1, . . . , λn})→ SL2(C).

Down-to-earth viewpoint: draw cuts from
punctures λk to ∂Ω and choose Ak ∈ SL2(C).

• Kasteleyn’s theorem generalizes as follows:

E
[∏

γ∈Ldbl-d
(12 Tr ρ(γ))

]
=

QdetK(ρ)

detK
,

where K(ρ) : (C2)B → (C2)W is obtained
from K by putting the matrices A±1k on cuts.
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ρ(γ) = A5A1
−1A3A2A1
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A3 A4 A5 

A2 A1 

n(L) = (2,2,2,1,1,1,2,0,1,3,3,1,2)e∈E

Remark: A better viewpoint is to fix a triangulation of Ω \ {λ1, . . . , λn} and
to consider discrete C2-vector bundles and flat SL2(C)-connections on them:

(Fun(π1(Ω \ {λ1, . . . , λn})→ SL2(C)))SL2(C) ' (Fun(SL2(C)E))SL2(C)F .



Dubédat (2014): locally unipotent monodromies and convergence to
Dubédat (2014): the Jimbo–Miwa–Ueno isomonodronic τ -function

Let Ωδ, δ → 0, be a sequence of Temperley approximations to a simply connected
domain Ω ⊂ C. Fix a collection of (pairwise distinct) punctures λ1, . . . , λn ∈ Ω.

Theorem (Dubédat, 2014): Let ρ : π1(Ω \ {λ1, . . . , λn})→ SL2(C) be such
that Trρ([γk ]) = 2 for each of the loops [λk ] surrounding a single puncture λk .

(i) Then E
[∏

γ∈Ldbl-d(12 Tr ρ(γ))
]

=: τ δ(ρ) → τJMU(ρ) as δ → 0.

Remark: In fact, this convergence is uniform on compact subsets of

Xunip ⊂ X := {ρ : π1(Ω \ {λ1, . . . , λn})→ SL2(C)}.

(ii) Moreover, provided that ρ ∈ Xunip is close enough to Id, one has

τJMU(ρ) = τCLE4(ρ) := E
[∏

γ∈LCLE4 (12 Tr ρ(γ))
]
.



Dubédat (2014): locally unipotent monodromies and convergence to
Dubédat (2014): the Jimbo–Miwa–Ueno isomonodronic τ -function

Notation: Lamination L = collection of loops in Ω \ {λ1, . . . , λn} up to homotopies.

pδ
L

:= 2−#loops(L) · P[Ldbl-d 'macro L], fL(ρ) :=
∏
γ∈LTr ρ(γ).

The results of Dubédat give τ δ(ρ) =
∑∑∑

L−macro p
δ
L
fL(ρ)→ τJMU(ρ), ρ ∈ Xunip.

The goal is to deduce the convergence of pδ
L

for each macroscopic lamination L.

Remark: The isomonodronic τ -function can be thought of as : det∂
(ρ)
[Ω;λ1,...,λn] : ,

where ∂
(ρ)

stands for the ∂ operator acting on functions Ω→ C2 with monodromy ρ.

• The function τJMU(ρ) is defined for all ρ ∈ Xunip and is conformally invariant.

• The identity τJMU = τCLE4 is a separate statement (also due to Dubédat’14).



Main result (joint w/ Mikhail Basok, 2018)

Let Dr denote the “ball of radius R” in X = {ρ : π1(Ω \ {λ1, . . . , λn})→ SL2(C)}.
[ normalization: ‖A‖ := Tr(AA∗), in particular X ∩ Dr = ∅ if r 6

√
2 ]

Theorem: There exists an absolute constant k0 > 1 such that the following holds:

(i) Let r >
√

2, R := k0r and F : Xunip ∩ DR → C be a holomorphic function.
(i) Then there exist coefficients pL = O

(
r−|n(L)| · ‖F‖L∞(DR)

)
such that

F (ρ) =
∑

L−macro
pLfL(ρ), ρ ∈ Xunip ∩ Dr .

(ii) Let r > k0
√

2 and two sets of coefficients pL, p̃L = O(r−|n(L)|) be such that∑
L−macro

pLfL(ρ) =
∑

L−macro
p̃LfL(ρ), ρ ∈ Xunip ∩ Dr .

(ii) Then pL = p̃L for all macroscopic laminations L.
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Corollary: Since the isomonodromic tau-function is holomoprhic on the whole Xunip,
there exist unique coefficients pJMU
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∑

L−macro p
JMU
L fL(ρ), ρ ∈ Xunip.

Theorem: There exists an absolute constant k0 > 1 such that the following holds:

(i) Let r >
√

2, R := k0r and F : Xunip ∩ DR → C be a holomorphic function.
(i) Then there exist coefficients pL = O

(
r−|n(L)| · ‖F‖L∞(DR)

)
such that

F (ρ) =
∑

L−macro
pLfL(ρ), ρ ∈ Xunip ∩ Dr .

(ii) Let r > k0
√

2 and two sets of coefficients pL, p̃L = O(r−|n(L)|) be such that∑
L−macro

pLfL(ρ) =
∑

L−macro
p̃LfL(ρ), ρ ∈ Xunip ∩ Dr .

(ii) Then pL = p̃L for all macroscopic laminations L.



Main result (joint w/ Mikhail Basok, 2018)

Corollary: Since the isomonodromic tau-function is holomoprhic on the whole Xunip,
there exist unique coefficients pJMU

L s.t. τJMU(ρ) =
∑

L−macro p
JMU
L fL(ρ), ρ ∈ Xunip.

Theorem: There exists an absolute constant k0 > 1 such that the following holds:

(i) Let r >
√

2, R := k0r and F : Xunip ∩ DR → C be a holomorphic function.
(i) Then there exist coefficients pL = O

(
r−|n(L)| · ‖F‖L∞(DR)

)
such that

F (ρ) =
∑

L−macro
pLfL(ρ), ρ ∈ Xunip ∩ Dr .

Corollary: (a) Uniform boundedness of topological correlators τ δ on DR for all R > 0
Corollary: (a) implies the uniform (in δ) estimate pδL = O(r−|n(L)|) for all r > 0.

(b) Convergence (as δ → 0) of topological correlators τ δ → τJMU on DR implies
(b) convergence of coefficients: pδL → pJMU

L for all macroscopic laminations L.



Main result (joint w/ Mikhail Basok, 2018)

Corollary: Since the isomonodromic tau-function is holomoprhic on the whole Xunip,
there exist unique coefficients pJMU

L s.t. τJMU(ρ) =
∑
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Warning: It is easy to see that pCLE4
L = O(r

−|n(L)|
0 ) for some r0 >

√
2 and

Warning: Dubédat proved that τCLE4(ρ) = τJMU(ρ) for ρ ∈ Xunip ∩ Dr0 (= near Id).

Unfortunately, this does not directly imply pCLE4
L = pJMU

L for all laminations L:

we also need a superexponential (in fact, r0 >
√

2k0 is enough) decay of pCLE4
L .

Corollary: (a) Uniform boundedness of topological correlators τ δ on DR for all R > 0
Corollary: (a) implies the uniform (in δ) estimate pδL = O(r−|n(L)|) for all r > 0.

(b) Convergence (as δ → 0) of topological correlators τ δ → τJMU on DR implies
(b) convergence of coefficients: pδL → pJMU

L for all macroscopic laminations L.



Some comments on the proof:

Recall that we are interested in the existence and uniqueness of expansions of
holomorphic functions living on the (algebraic) manifold

Xunip ⊂ X = {ρ : π1(Ω \ {λ1, . . . , λn})→ SL2(C)}

in the basis fL(ρ) :=
∏
γ∈LTr(ρ(γ)). Two problems arise:

• Even on the whole manifold X , the functions fL form a bad basis.

• Passage from Funhol(X ) to Funhol(Xunip) is not trivial.



Some comments: fL is a bad basis (estimate of Fock–Goncharov coefficients)

Theorem (Fock–Goncharov, 2006): There exists another “good” (e.g., orthogonal

on (SU2(C)E)SU2(C)F ) basis gL on X such that the change between these bases is
given by lower-triangular (with respect to the natural partial order on n(L)) matrices.

Consider the following naive example: (gn(z))n>0 := (1 , z , z2 , z3 , . . . )
Consider the following naive example: (fn(z))n>0 := (1 , z−2 , z2−2z , z3−2z2 , . . . )

Then
∑

n>0 pnfn(z) ≡ 0 near z = 0 =⇒ pn = 0 provided that pn = O((12 − ε)n) but

f0(z) + 1
2 f1(z) + 1

4 f2(z) + · · ·+ 2−nfn(z) + · · · = 0 for |z | < 2.

Warning: This can be even worse: for (fn(z))n>0 := (1 , z−2 , z2−4z , z3−8z2 , . . . ),

f0(z) + 1
2 f1(z) + 1

8 f2(z) + · · ·+ 2− 1
2
n(n+1)fn(z) + · · · = 0 for all z .



Some comments: fL is a bad basis (estimate of Fock–Goncharov coefficients)

Theorem (Fock–Goncharov, 2006): There exists another “good” (e.g., orthogonal

on (SU2(C)E)SU2(C)F ) basis gL on X such that the change between these bases is
given by lower-triangular (with respect to the natural partial order on n(L)) matrices.

Proposition: Let gL =
∑

L′:n(L′)6n(L) cLL′fL′ . Then |cLL′ | 6 4|n(L)|.

Key ingredients: We would like to thank Vladimir Fock for a very helpful discussion.

• existence of monodromies ρ ∈ X s.t. Tr(ρ(γ)) 6 −2 for all nontrivial simple loops γ,
• which can be constructed via Thurston’s shear coordinates of hyperbolic structures
• on Ω \ {λ1, . . . , λn} (see Chekhov–Fock(1997+) and Bonahon–Wong(2011+));

• D. Thurston’s theorem (2014) on the positivity of structure constants of
• the bracelets basis in the Kauffman skein algebra Sk(Ω \ {λ1, . . . , λn}, 1).



Some comments: from Funhol(X) to Funhol(Xunip)

Intuition behind the uniqueness: Let F (ρ) :=
∑

L−macro pLfL(ρ) = 0 on Xunip.

− Recall that X can be parameterized by collections of matrices A1, . . . ,An ∈ SL2(C)
and the subvariety Xunip ⊂ X is cut of by the conditions TrAk = 2, k = 1, . . . , n.

− Replacing A−1k by A∨k , one can extend the functions Tr ρA1,...,An(γ) to Ak ∈ C2×2.
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− If F were a finite linear combination of fL, then (due to Hilbert’s Nullstellensatz):

F (ρA1,...,An) =
∑n

k=1 Fk(A1, . . . ,An)(TrAk − 2) +
∑n

k=1 Gk(A1, . . . ,An)(detAk − 1).

and hence
∑

L−macro pLfL(ρ) =
∑n

k=1 Fk(ρ)(Tr ρ([λk ])− 2) on X .

− Since each of Fk can be expanded as
∑

L c
(k)
L fL and fL(ρ)Tr ρ([λk ]) = fLt[λk ](ρ)

this implies pL = 0 for all L due to the uniqueness of such decompositions on X .



Some comments: from Funhol(X) to Funhol(Xunip)

Key ingredients:

• A version of the Nullstellensatz for Funhol(X ) instead of Funalg(X ).

• A theorem due to Manivel (1993), which allows one to extend holomorphic
• functions from Xunip to X while controlling the L2-norms of such extensions.
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Conclusions: double-dimer loop ensembles in Temperley domains

• The results of Dubédat (uniform convergence τ δ(ρ)→ τJMU(ρ) on big compact
• subsets of Xunip) do imply the convergence of probabilities of cylindrical events:

pδL → pJMU
L as δ → 0 for all macroscopic laminations L.

• The limits pJMU
L are conformally invariant (

∑
L−macro p

JMU
L fL = τJMU on Xunip).

• This statement does not require any RSW theory for double-dimers:
• a uniform (super)exponential decay of pδL as |n(L)| → ∞ follows from the uniform
• boundedness of topological correlators τ δ(ρ) on big compact subsets of Xunip.
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• The results of Dubédat (uniform convergence τ δ(ρ)→ τJMU(ρ) on big compact
• subsets of Xunip) do imply the convergence of probabilities of cylindrical events:

pδL → pJMU
L as δ → 0 for all macroscopic laminations L.

• The limits pJMU
L are conformally invariant (

∑
L−macro p

JMU
L fL = τJMU on Xunip).

• This statement does not require any RSW theory for double-dimers:
• a uniform (super)exponential decay of pδL as |n(L)| → ∞ follows from the uniform
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• To conclude that pJMU
L = pCLE4

L one needs pCLE4
L = O(r−|n(L)|) for all r > 0.

• To claim the convergence of double-dimer loop ensembles to CLE4 (in any
• reasonable topology) it is enough to prove the tightness of those (∼ RSW).
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• This statement does not require any RSW theory for double-dimers:
• a uniform (super)exponential decay of pδL as |n(L)| → ∞ follows from the uniform
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• Question: Is there a natural interpretation of τ(ρ) := E
[∏

γ∈LCLE4 (12 Tr ρ(γ))
]

with Tr replaced by a quantum trace and CLE4 replaced by CLEκ, κ 6=4 ?

Thank you for your attention!


