Tau-Functions À la Dubédat

AND CYLINDRICAL EVENTS

IN THE DOUBLE-DIMER MODEL

Dmitry Chelkak (ÉNS, Paris, \& PDMI, St.Petersburg (on leave)) joint work w/ Mikhail Basok (PDMI \& SPbSU, St.Peterburg)

ICMP 2018, Montreal, 24.07.2018

Setup: double-dimer loop ensembles in Temperley discretizations on \mathbb{Z}^{2}

- Temperley discretizations Ω^{δ} on \mathbb{Z}^{2} : simply connected domains s.t. all corners are of the same type out of four: $B_{0}, B_{1}, W_{0}, W_{1}$.
- $\operatorname{Dimer}\left(=\right.$ domino) model on Ω^{δ} : perfect matchings, chosen uniformly at random.
- Kasteleyn theorem: $\mathcal{Z}^{\text {dimers }}=\operatorname{det} K$,
 where $K: \mathbb{C}^{\mathcal{B}} \rightarrow \mathbb{C}^{\mathcal{W}}$ is a weighted adjacency matrix ($=$ discrete $\bar{\partial}$ operator on Ω^{δ}). [Temperley domains: nice bijection with UST $\leadsto>$ Dirichlet boundary conditions for $\bar{\partial}$]

Setup: double-dimer loop ensembles in Temperley discretizations on \mathbb{Z}^{2}

- Temperley discretizations Ω^{δ} on \mathbb{Z}^{2} : simply connected domains s.t. all corners are of the same type out of four: $B_{0}, B_{1}, W_{0}, W_{1}$.
- $\operatorname{Dimer}\left(=\right.$ domino) model on Ω^{δ} : perfect matchings, chosen uniformly at random.
- Kasteleyn theorem: $\mathcal{Z}^{\text {dimers }}=\operatorname{det} K$,
 where $K: \mathbb{C}^{\mathcal{B}} \rightarrow \mathbb{C}^{\mathcal{W}}$ is a weighted adjacency matrix ($=$ discrete $\bar{\partial}$ operator on Ω^{δ}). [Temperley domains: nice bijection with UST $\leadsto \leadsto$ Dirichlet boundary conditions for $\bar{\partial}$]
- Double-dimer model: two independent dimer configurations on the same domain. Configuration $\mathcal{L}^{\mathrm{dbl}-\mathrm{d}}$ is a fully-packed collection of loops and double-edges,

$$
\mathcal{Z}^{\mathrm{dbl}-\mathrm{d}}=\sum_{\mathcal{L}^{\mathrm{dbl}-\mathrm{d}}} 2^{\# \operatorname{loops}\left(\mathcal{L}^{\mathrm{dbl}-\mathrm{d}}\right)}=\operatorname{det}\left(\begin{array}{cc}
0 & K^{\top} \\
K & 0
\end{array}\right)=\operatorname{det} \mathcal{K}, \quad \mathcal{K}:\left(\mathbb{C}^{2}\right)^{\mathcal{B}} \rightarrow\left(\mathbb{C}^{2}\right)^{\mathcal{W}}
$$

Goal (cf. Kenyon'10, Dubédat'14): conformal invariance, convergence to CLE 4

- Random height functions and GFF:

Choosing the orientation of loops $\gamma \in \mathcal{L}^{\text {dbl-d }}$ randomly, one gets a height function $h^{\mathrm{dbl}-\mathrm{d}}$.
Kenyon'00: $\quad h^{\mathrm{dbl}-\mathrm{d}} \rightarrow \operatorname{GFF}(\Omega)$ as $\delta \rightarrow 0$.

- Random loop ensembles and CLE_{4} :

It is a famous prediction (supported by many

strong results) that $\mathcal{L}^{\mathrm{dbl}-\mathrm{d}}$ converges to the nested conformal loop ensemble $\operatorname{CLE}_{4}(\Omega)$. [!] The convergence of $h^{\mathrm{dbl}-\mathrm{d}}$ is not strong enough for the level lines $\mathcal{L}^{\mathrm{dbl}-\mathrm{d}}$ of $h^{\mathrm{dbl}-\mathrm{d}}$.

- Double-dimer model: two independent dimer configurations on the same domain. Configuration $\mathcal{L}^{\mathrm{dbl}-\mathrm{d}}$ is a fully-packed collection of loops and double-edges,

$$
\mathcal{Z}^{\mathrm{dbl}-\mathrm{d}}=\sum_{\mathcal{L}^{\mathrm{dbl}-\mathrm{d}}} 2^{\# \operatorname{loops}\left(\mathcal{L}^{\mathrm{dbl-d}}\right)}=\operatorname{det}\left(\begin{array}{cc}
0 & K^{\top} \\
K & 0
\end{array}\right)=\operatorname{det} \mathcal{K}, \quad \mathcal{K}:\left(\mathbb{C}^{2}\right)^{\mathcal{B}} \rightarrow\left(\mathbb{C}^{2}\right)^{\mathcal{W}}
$$

Kenyon (2010): $\mathrm{SL}_{2}(\mathbb{C})$-monodromies and Q-determinants for double-dimers Let $\quad \rho: \pi_{1}\left(\Omega \backslash\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}\right) \rightarrow \mathrm{SL}_{2}(\mathbb{C})$.
Down-to-earth viewpoint: draw cuts from punctures λ_{k} to $\partial \Omega$ and choose $A_{k} \in \mathrm{SL}_{2}(\mathbb{C})$.

- Kasteleyn's theorem generalizes as follows:

$$
\mathbb{E}\left[\prod_{\gamma \in \mathcal{L}^{\mathrm{dbl}-\mathrm{d}}}\left(\frac{1}{2} \operatorname{Tr} \rho(\gamma)\right)\right]=\frac{\mathrm{Q} \operatorname{det} \mathcal{K}^{(\rho)}}{\operatorname{det} \mathcal{K}}
$$

where $\mathcal{K}^{(\rho)}:\left(\mathbb{C}^{2}\right)^{\mathcal{B}} \rightarrow\left(\mathbb{C}^{2}\right)^{\mathcal{W}}$ is obtained from \mathcal{K} by putting the matrices $A_{k}^{ \pm 1}$ on cuts.

Kenyon (2010): $\mathrm{SL}_{2}(\mathbb{C})$-monodromies and Q-determinants for double-dimers
Let $\quad \rho: \pi_{1}\left(\Omega \backslash\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}\right) \rightarrow \mathrm{SL}_{2}(\mathbb{C})$.
Down-to-earth viewpoint: draw cuts from punctures λ_{k} to $\partial \Omega$ and choose $A_{k} \in \mathrm{SL}_{2}(\mathbb{C})$.

- Kasteleyn's theorem generalizes as follows:

$$
\mathbb{E}\left[\prod_{\gamma \in \mathcal{L}^{\mathrm{dbl}-\mathrm{d}}}\left(\frac{1}{2} \operatorname{Tr} \rho(\gamma)\right)\right]=\frac{\mathrm{Q} \operatorname{det} \mathcal{K}^{(\rho)}}{\operatorname{det} \mathcal{K}}
$$

where $\mathcal{K}^{(\rho)}:\left(\mathbb{C}^{2}\right)^{\mathcal{B}} \rightarrow\left(\mathbb{C}^{2}\right)^{\mathcal{W}}$ is obtained from \mathcal{K} by putting the matrices $A_{k}^{ \pm 1}$ on cuts.

$n(L)=(2,2,2,1,1,1,2,0,1,3,3,1,2)_{e \in \mathcal{E}}$

Remark: A better viewpoint is to fix a triangulation of $\Omega \backslash\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ and to consider discrete \mathbb{C}^{2}-vector bundles and flat $\mathrm{SL}_{2}(\mathbb{C})$-connections on them:

$$
\left(\operatorname{Fun}\left(\pi_{1}\left(\Omega \backslash\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}\right) \rightarrow \mathrm{SL}_{2}(\mathbb{C})\right)\right)^{\mathrm{SL}_{2}(\mathbb{C})} \simeq\left(\operatorname{Fun}\left(\mathrm{SL}_{2}(\mathbb{C})^{\mathcal{E}}\right)\right)^{\mathrm{SL}_{2}(\mathbb{C})^{\mathcal{F}}}
$$

Dubédat (2014): locally unipotent monodromies and convergence to the Jimbo-Miwa-Ueno isomonodronic $\boldsymbol{\tau}$-function
Let $\Omega^{\delta}, \delta \rightarrow 0$, be a sequence of Temperley approximations to a simply connected domain $\Omega \subset \mathbb{C}$. Fix a collection of (pairwise distinct) punctures $\lambda_{1}, \ldots, \lambda_{n} \in \Omega$.
Theorem (Dubédat, 2014): Let $\rho: \pi_{1}\left(\Omega \backslash\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}\right) \rightarrow \mathrm{SL}_{2}(\mathbb{C})$ be such that $\operatorname{Tr} \rho\left(\left[\gamma_{k}\right]\right)=2$ for each of the loops $\left[\lambda_{k}\right]$ surrounding a single puncture λ_{k}.

$$
\text { (i) Then } \quad \mathbb{E}\left[\prod_{\gamma \in \mathcal{L}^{\mathrm{dbl}-\mathrm{d}}}\left(\frac{1}{2} \operatorname{Tr} \rho(\gamma)\right)\right]=: \boldsymbol{\tau}^{\delta}(\rho) \rightarrow \boldsymbol{\tau}^{\mathrm{JMU}}(\rho) \text { as } \delta \rightarrow 0
$$

Remark: In fact, this convergence is uniform on compact subsets of

$$
X_{\text {unip }} \subset X:=\left\{\rho: \pi_{1}\left(\Omega \backslash\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}\right) \rightarrow \mathrm{SL}_{2}(\mathbb{C})\right\}
$$

(ii) Moreover, provided that $\rho \in X_{\text {unip }}$ is close enough to Id, one has

$$
\left.\tau^{\mathrm{JMU}}(\rho)=\tau^{\mathrm{CLE}_{4}}(\rho):=\mathbb{E}\left[\prod_{\gamma \in \mathcal{L}^{\mathrm{CLE}_{4}}\left(\frac{1}{2} \operatorname{Tr}\right.} \rho(\gamma)\right)\right]
$$

Dubédat (2014): locally unipotent monodromies and convergence to the Jimbo-Miwa-Ueno isomonodronic $\boldsymbol{\tau}$-function
Notation: Lamination $L=$ collection of loops in $\Omega \backslash\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ up to homotopies.

$$
\boldsymbol{p}_{L}^{\delta}:=2^{-\# \operatorname{loops}(L)} \cdot \mathbb{P}\left[\mathcal{L}^{\mathrm{dbl-d}} \simeq_{\text {macro }} L\right], \quad f_{L}(\rho):=\prod_{\gamma \in L} \operatorname{Tr} \rho(\gamma)
$$

The results of Dubédat give $\tau^{\delta}(\rho)=\sum_{L-\operatorname{macro}} \boldsymbol{p}_{L}^{\delta} \boldsymbol{f}_{L}(\rho) \rightarrow \tau^{\mathrm{JMU}}(\rho), \rho \in X_{\text {unip }}$. The goal is to deduce the convergence of $\boldsymbol{p}_{L}^{\delta}$ for each macroscopic lamination L.

Remark: The isomonodronic τ-function can be thought of as : $\operatorname{det} \bar{\partial}_{\left[\Omega ; \lambda_{1}, \ldots, \lambda_{n}\right]}^{(\rho)}$:, where $\bar{\partial}^{(\rho)}$ stands for the $\bar{\partial}$ operator acting on functions $\Omega \rightarrow \mathbb{C}^{2}$ with monodromy ρ.

- The function $\tau^{\operatorname{JMU}}(\rho)$ is defined for all $\rho \in X_{\text {unip }}$ and is conformally invariant.
- The identity $\tau^{\mathrm{JMU}}=\tau^{\mathrm{CLE}_{4}}$ is a separate statement (also due to Dubédat'14).

Main result (joint w/ Mikhail Basok, 2018)

Let \mathbb{D}_{r} denote the "ball of radius R " in $X=\left\{\rho: \pi_{1}\left(\Omega \backslash\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}\right) \rightarrow \mathrm{SL}_{2}(\mathbb{C})\right\}$. [normalization: $\|A\|:=\operatorname{Tr}\left(A A^{*}\right)$, in particular $X \cap \mathbb{D}_{r}=\emptyset$ if $r \leqslant \sqrt{2}$]

Theorem: There exists an absolute constant $k_{0}>1$ such that the following holds:
(i) Let $r>\sqrt{2}, R:=k_{0} r$ and $F: X_{\text {unip }} \cap \overline{\mathbb{D}}_{R} \rightarrow \mathbb{C}$ be a holomorphic function. Then there exist coefficients $p_{L}=O\left(r^{-|n(L)|} \cdot\|F\|_{L^{\infty}\left(\overline{\mathbb{D}}_{R}\right)}\right)$ such that

$$
F(\rho)=\sum_{L-\text { macro }} p_{L} f_{L}(\rho), \quad \rho \in X_{\text {unip }} \cap \mathbb{D}_{r}
$$

(ii) Let $r>k_{0} \sqrt{2}$ and two sets of coefficients $p_{L}, \tilde{p}_{L}=O\left(r^{-|n(L)|}\right)$ be such that

$$
\sum_{L-\text { macro }} p_{L} f_{L}(\rho)=\sum_{L-\text { macro }} \tilde{p}_{L} f_{L}(\rho), \quad \rho \in X_{\text {unip }} \cap \mathbb{D}_{r}
$$

Then $p_{L}=\tilde{p}_{L}$ for all macroscopic laminations L.

Main result (joint w/ Mikhail Basok, 2018)

Corollary: Since the isomonodromic tau-function is holomoprhic on the whole $X_{\text {unip }}$, there exist unique coefficients p_{L}^{JMU} s.t. $\tau^{\mathrm{JMU}}(\rho)=\sum_{L-\text { macro }} p_{L}^{\mathrm{JMU}} f_{L}(\rho), \rho \in X_{\text {unip }}$.

Theorem: There exists an absolute constant $k_{0}>1$ such that the following holds:
(i) Let $r>\sqrt{2}, R:=k_{0} r$ and $F: X_{\text {unip }} \cap \overline{\mathbb{D}}_{R} \rightarrow \mathbb{C}$ be a holomorphic function. Then there exist coefficients $p_{L}=O\left(r^{-|n(L)|} \cdot\|F\|_{L^{\infty}\left(\overline{\mathbb{D}}_{R}\right)}\right)$ such that

$$
F(\rho)=\sum_{L-\text { macro }} p_{L} f_{L}(\rho), \quad \rho \in X_{\text {unip }} \cap \mathbb{D}_{r}
$$

(ii) Let $r>k_{0} \sqrt{2}$ and two sets of coefficients $p_{L}, \tilde{p}_{L}=O\left(r^{-|n(L)|}\right)$ be such that

$$
\sum_{L-\text { macro }} p_{L} f_{L}(\rho)=\sum_{L-\text { macro }} \tilde{p}_{L} f_{L}(\rho), \quad \rho \in X_{\text {unip }} \cap \mathbb{D}_{r}
$$

Then $p_{L}=\tilde{p}_{L}$ for all macroscopic laminations L.

Main result (joint w/ Mikhail Basok, 2018)

Corollary: Since the isomonodromic tau-function is holomoprhic on the whole $X_{\text {unip }}$, there exist unique coefficients p_{L}^{JMU} s.t. $\tau^{\mathrm{JMU}}(\rho)=\sum_{L-\text { macro }} p_{L}^{\mathrm{JMU}} f_{L}(\rho), \rho \in X_{\text {unip }}$.

Theorem: There exists an absolute constant $k_{0}>1$ such that the following holds:
(i) Let $r>\sqrt{2}, R:=k_{0} r$ and $F: X_{\text {unip }} \cap \overline{\mathbb{D}}_{R} \rightarrow \mathbb{C}$ be a holomorphic function. Then there exist coefficients $p_{L}=O\left(r^{-|n(L)|} \cdot\|F\|_{L^{\infty}\left(\overline{\mathbb{D}}_{R}\right)}\right)$ such that

$$
F(\rho)=\sum_{L-\text { macro }} p_{L} f_{L}(\rho), \quad \rho \in X_{\text {unip }} \cap \mathbb{D}_{r}
$$

Corollary: (a) Uniform boundedness of topological correlators τ^{δ} on $\overline{\mathbb{D}}_{R}$ for all $R>0$ implies the uniform (in δ) estimate $p_{L}^{\delta}=O\left(r^{-|n(L)|}\right)$ for all $r>0$.
(b) Convergence (as $\delta \rightarrow 0$) of topological correlators $\tau^{\delta} \rightarrow \tau^{\mathrm{JMU}}$ on $\overline{\mathbb{D}}_{R}$ implies convergence of coefficients: $p_{L}^{\delta} \rightarrow p_{L}^{J M U}$ for all macroscopic laminations L.

Main result (joint w/ Mikhail Basok, 2018)

Corollary: Since the isomonodromic tau-function is holomoprhic on the whole $X_{\text {unip }}$, there exist unique coefficients p_{L}^{JMU} s.t. $\tau^{\mathrm{JMU}}(\rho)=\sum_{L-\text { macro }} p_{L}^{\mathrm{JMU}} f_{L}(\rho), \rho \in X_{\text {unip }}$.

Warning: It is easy to see that $p_{L}^{\mathrm{CLE}_{4}}=O\left(r_{0}^{-|n(L)|}\right)$ for some $r_{0}>\sqrt{2}$ and Dubédat proved that $\tau^{\mathrm{CLE}_{4}}(\rho)=\tau^{\mathrm{JMU}}(\rho)$ for $\rho \in X_{\text {unip }} \cap \mathbb{D}_{r_{0}}$ ($=$ near Id).
Unfortunately, this does not directly imply $p_{L}^{\mathrm{CLE}_{4}}=p_{L}^{\mathrm{JMU}}$ for all laminations L : we also need a superexponential (in fact, $r_{0}>\sqrt{2} k_{0}$ is enough) decay of $p_{L}^{\mathrm{CLE}_{4}}$.

Corollary: (a) Uniform boundedness of topological correlators τ^{δ} on $\overline{\mathbb{D}}_{R}$ for all $R>0$ implies the uniform (in δ) estimate $p_{L}^{\delta}=O\left(r^{-|n(L)|}\right)$ for all $r>0$.
(b) Convergence (as $\delta \rightarrow 0$) of topological correlators $\tau^{\delta} \rightarrow \tau^{\mathrm{JMU}}$ on $\overline{\mathbb{D}}_{R}$ implies convergence of coefficients: $p_{L}^{\delta} \rightarrow p_{L}^{J M U}$ for all macroscopic laminations L.

Some comments on the proof:

Recall that we are interested in the existence and uniqueness of expansions of holomorphic functions living on the (algebraic) manifold

$$
X_{\text {unip }} \subset X=\left\{\rho: \pi_{1}\left(\Omega \backslash\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}\right) \rightarrow \mathrm{SL}_{2}(\mathbb{C})\right\}
$$

in the basis $f_{L}(\rho):=\prod_{\gamma \in L} \operatorname{Tr}(\rho(\gamma))$. Two problems arise:

- Even on the whole manifold X, the functions f_{L} form a bad basis.
- Passage from $\operatorname{Fun}_{\text {hol }}(X)$ to $\operatorname{Fun}_{\text {hol }}\left(X_{\text {unip }}\right)$ is not trivial.

Some comments: \boldsymbol{f}_{L} is a bad basis (estimate of Fock-Goncharov coefficients)
Theorem (Fock-Goncharov, 2006): There exists another "good" (e.g., orthogonal on $\left.\left(\mathrm{SU}_{2}(\mathbb{C})^{\mathcal{E}}\right)^{\mathrm{SU}_{2}(\mathbb{C})^{\mathcal{F}}}\right)$ basis g_{L} on X such that the change between these bases is given by lower-triangular (with respect to the natural partial order on $n(L)$) matrices.

Consider the following naive example: $\left(g_{n}(z)\right)_{n \geqslant 0}:=\left(1, z, z^{2}, z^{3}, \ldots\right)$

$$
\left(f_{n}(z)\right)_{n \geqslant 0}:=\left(1, z-2, z^{2}-2 z, z^{3}-2 z^{2}, \ldots\right)
$$

Then $\sum_{n \geqslant 0} p_{n} f_{n}(z) \equiv 0$ near $z=0 \Longrightarrow p_{n}=0$ provided that $p_{n}=O\left(\left(\frac{1}{2}-\varepsilon\right)^{n}\right)$ but

$$
f_{0}(z)+\frac{1}{2} f_{1}(z)+\frac{1}{4} f_{2}(z)+\cdots+2^{-n} f_{n}(z)+\cdots=0 \quad \text { for } \quad|z|<2 .
$$

Warning: This can be even worse: for $\left(f_{n}(z)\right)_{n \geqslant 0}:=\left(1, z-2, z^{2}-4 z, z^{3}-8 z^{2}, \ldots\right)$,

$$
f_{0}(z)+\frac{1}{2} f_{1}(z)+\frac{1}{8} f_{2}(z)+\cdots+2^{-\frac{1}{2} n(n+1)} f_{n}(z)+\cdots=0 \quad \text { for all } \quad z
$$

Some comments: f_{L} is a bad basis (estimate of Fock-Goncharov coefficients)

Theorem (Fock-Goncharov, 2006): There exists another "good" (e.g., orthogonal on $\left.\left(\mathrm{SU}_{2}(\mathbb{C})^{\mathcal{E}}\right)^{\mathrm{SU}_{2}(\mathbb{C})^{\mathcal{F}}}\right)$ basis g_{L} on X such that the change between these bases is given by lower-triangular (with respect to the natural partial order on $n(L)$) matrices.

Proposition: Let $g_{L}=\sum_{L^{\prime}: n\left(L^{\prime}\right) \leqslant n(L)} c_{L L^{\prime}} f_{L^{\prime}}$. Then $\left|c_{L L^{\prime}}\right| \leqslant 4^{|n(L)|}$.
Key ingredients: We would like to thank Vladimir Fock for a very helpful discussion.

- existence of monodromies $\rho \in X$ s.t. $\operatorname{Tr}(\rho(\gamma)) \leqslant-2$ for all nontrivial simple loops γ, which can be constructed via Thurston's shear coordinates of hyperbolic structures on $\Omega \backslash\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ (see Chekhov-Fock(1997+) and Bonahon-Wong(2011+));
- D. Thurston's theorem (2014) on the positivity of structure constants of the bracelets basis in the Kauffman skein algebra $\operatorname{Sk}\left(\Omega \backslash\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}, 1\right)$.

Some comments: from $\operatorname{Fun}_{\text {hol }}(\boldsymbol{X})$ to $\operatorname{Fun}_{\text {hol }}\left(\boldsymbol{X}_{\text {unip }}\right)$

Intuition behind the uniqueness: Let $F(\rho):=\sum_{L-\text { macro }} p_{L} f_{L}(\rho)=0$ on $X_{\text {unip }}$.

- Recall that X can be parameterized by collections of matrices $A_{1}, \ldots, A_{n} \in \mathrm{SL}_{2}(\mathbb{C})$ and the subvariety $X_{\text {unip }} \subset X$ is cut of by the conditions $\operatorname{Tr} A_{k}=2, k=1, \ldots, n$.
- Replacing A_{k}^{-1} by A_{k}^{\vee}, one can extend the functions $\operatorname{Tr} \rho_{A_{1}, \ldots, A_{n}}(\gamma)$ to $A_{k} \in \mathbb{C}^{2 \times 2}$.

Some comments: from $\operatorname{Fun}_{\text {hol }}(\boldsymbol{X})$ to $\operatorname{Fun}_{\text {hol }}\left(\boldsymbol{X}_{\text {unip }}\right)$

Intuition behind the uniqueness: Let $F(\rho):=\sum_{L-\text { macro }} p_{L} f_{L}(\rho)=0$ on $X_{\text {unip }}$.

- Recall that X can be parameterized by collections of matrices $A_{1}, \ldots, A_{n} \in \mathrm{SL}_{2}(\mathbb{C})$ and the subvariety $X_{\text {unip }} \subset X$ is cut of by the conditions $\operatorname{Tr} A_{k}=2, k=1, \ldots, n$.
- Replacing A_{k}^{-1} by A_{k}^{\vee}, one can extend the functions $\operatorname{Tr} \rho_{A_{1}, \ldots, A_{n}}(\gamma)$ to $A_{k} \in \mathbb{C}^{2 \times 2}$.
- If F were a finite linear combination of f_{L}, then (due to Hilbert's Nullstellensatz):

$$
\begin{aligned}
& F\left(\rho_{A_{1}, \ldots, A_{n}}\right)=\sum_{k=1}^{n} F_{k}\left(A_{1}, \ldots, A_{n}\right)\left(\operatorname{Tr} A_{k}-2\right)+\sum_{k=1}^{n} G_{k}\left(A_{1}, \ldots, A_{n}\right)\left(\operatorname{det} A_{k}-1\right) . \\
& \text { and hence } \quad \sum_{L-\text { macro }} p_{L} f_{L}(\rho)=\sum_{k=1}^{n} F_{k}(\rho)\left(\operatorname{Tr} \rho\left(\left[\lambda_{k}\right]\right)-2\right) \text { on } X .
\end{aligned}
$$

- Since each of F_{k} can be expanded as $\sum_{L} c_{L}^{(k)} f_{L}$ and $f_{L}(\rho) \operatorname{Tr} \rho\left(\left[\lambda_{k}\right]\right)=f_{L \sqcup\left[\lambda_{k}\right]}(\rho)$ this implies $p_{L}=0$ for all L due to the uniqueness of such decompositions on X.

Some comments: from $\operatorname{Fun}_{\text {hol }}(\boldsymbol{X})$ to $\operatorname{Fun}_{\text {hol }}\left(X_{\text {unip }}\right)$

Key ingredients:

- A version of the Nullstellensatz for $\operatorname{Fun}_{\mathrm{hol}}(X)$ instead of $\operatorname{Fun}_{\text {alg }}(X)$.
- A theorem due to Manivel (1993), which allows one to extend holomorphic functions from $X_{\text {unip }}$ to X while controlling the L^{2}-norms of such extensions.
- If F were a finite linear combination of f_{L}, then (due to Hilbert's Nullstellensatz):

$$
\begin{aligned}
& F\left(\rho_{A_{1}, \ldots, A_{n}}\right)=\sum_{k=1}^{n} F_{k}\left(A_{1}, \ldots, A_{n}\right)\left(\operatorname{Tr} A_{k}-2\right)+\sum_{k=1}^{n} G_{k}\left(A_{1}, \ldots, A_{n}\right)\left(\operatorname{det} A_{k}-1\right) . \\
& \text { and hence } \quad \sum_{L-\text { macro }} p_{L} f_{L}(\rho)=\sum_{k=1}^{n} F_{k}(\rho)\left(\operatorname{Tr} \rho\left(\left[\lambda_{k}\right]\right)-2\right) \quad \text { on } X .
\end{aligned}
$$

- Since each of F_{k} can be expanded as $\sum_{L} c_{L}^{(k)} f_{L}$ and $f_{L}(\rho) \operatorname{Tr} \rho\left(\left[\lambda_{k}\right]\right)=f_{L \sqcup\left[\lambda_{k}\right]}(\rho)$ this implies $p_{L}=0$ for all L due to the uniqueness of such decompositions on X.

Conclusions: double-dimer loop ensembles in Temperley domains

- The results of Dubédat (uniform convergence $\tau^{\delta}(\rho) \rightarrow \tau^{\mathrm{JMU}}(\rho)$ on big compact subsets of $X_{\text {unip }}$) do imply the convergence of probabilities of cylindrical events:

$$
p_{L}^{\delta} \rightarrow p_{L}^{\mathrm{JMU}} \text { as } \delta \rightarrow 0 \text { for all macroscopic laminations } L .
$$

The limits p_{L}^{JMU} are conformally invariant ($\sum_{L-\text { macro }} p_{L}^{\mathrm{JMU}} f_{L}=\tau^{\mathrm{JMU}}$ on $X_{\text {unip }}$).

- This statement does not require any RSW theory for double-dimers:
a uniform (super)exponential decay of p_{L}^{δ} as $|n(L)| \rightarrow \infty$ follows from the uniform boundedness of topological correlators $\tau^{\delta}(\rho)$ on big compact subsets of $X_{\text {unip }}$.

Conclusions: double-dimer loop ensembles in Temperley domains

- The results of Dubédat (uniform convergence $\tau^{\delta}(\rho) \rightarrow \tau^{\mathrm{JMU}}(\rho)$ on big compact subsets of $X_{\text {unip }}$) do imply the convergence of probabilities of cylindrical events:

$$
p_{L}^{\delta} \rightarrow p_{L}^{\mathrm{JMU}} \text { as } \delta \rightarrow 0 \text { for all macroscopic laminations } L .
$$

The limits p_{L}^{JMU} are conformally invariant ($\sum_{L-\text { macro }} p_{L}^{\mathrm{JMU}} f_{L}=\tau^{\mathrm{JMU}}$ on $X_{\text {unip }}$).

- This statement does not require any RSW theory for double-dimers:
a uniform (super)exponential decay of p_{L}^{δ} as $|n(L)| \rightarrow \infty$ follows from the uniform boundedness of topological correlators $\tau^{\delta}(\rho)$ on big compact subsets of $X_{\text {unip }}$.
- To conclude that $p_{L}^{\mathrm{JMU}}=p_{L}^{\mathrm{CLE}_{4}}$ one needs $p_{L}^{\mathrm{CLE}_{4}}=O\left(r^{-|n(L)|}\right)$ for all $r>0$.
- To claim the convergence of double-dimer loop ensembles to CLE 4 (in any reasonable topology) it is enough to prove the tightness of those (\sim RSW).

Conclusions: double-dimer loop ensembles in Temperley domains

- The results of Dubédat (uniform convergence $\tau^{\delta}(\rho) \rightarrow \tau^{\mathrm{JMU}}(\rho)$ on big compact subsets of $X_{\text {unip }}$) do imply the convergence of probabilities of cylindrical events:

$$
p_{L}^{\delta} \rightarrow p_{L}^{\mathrm{JMU}} \text { as } \delta \rightarrow 0 \text { for all macroscopic laminations } L .
$$

The limits p_{L}^{JMU} are conformally invariant $\left(\sum_{L-\text { macro }} p_{L}^{\mathrm{JMU}} f_{L}=\tau^{\mathrm{JMU}}\right.$ on $\left.X_{\text {unip }}\right)$.

- This statement does not require any RSW theory for double-dimers:
a uniform (super)exponential decay of p_{L}^{δ} as $|n(L)| \rightarrow \infty$ follows from the uniform boundedness of topological correlators $\tau^{\delta}(\rho)$ on big compact subsets of $X_{\text {unip }}$.
- Question: Is there a natural interpretation of $\left.\tau(\rho):=\mathbb{E}\left[\prod_{\gamma \in \mathcal{L}^{\mathrm{CLE}_{4}}\left(\frac{1}{2} \operatorname{Tr}\right.} \operatorname{\rho }(\gamma)\right)\right]$ with Tr replaced by a quantum trace and CLE_{4} replaced by $\mathrm{CLE}_{\kappa}, \kappa \neq 4$?

Thank you for your attention!

