TAU-FUNCTIONS À LA DUBÉDAT

AND CYLINDRICAL EVENTS

IN THE DOUBLE-DIMER MODEL

DMITRY CHELKAK (ÉNS, PARIS, & PDMI, ST.PETERSBURG (ON LEAVE)) JOINT WORK W/ MIKHAIL BASOK (PDMI & SPBSU, ST.PETERBURG)

ICMP 2018, MONTREAL, 24.07.2018

Setup: double-dimer loop ensembles in Temperley discretizations on \mathbb{Z}^2

• Temperley discretizations Ω^{δ} on \mathbb{Z}^2 : simply connected domains s.t. all corners are of the same type out of four: B_0, B_1, W_0, W_1 .

• Dimer (= domino) model on Ω^{δ} : perfect matchings, chosen uniformly at random.

• Kasteleyn theorem: $\mathcal{Z}^{\text{dimers}} = \det K$,

where $K : \mathbb{C}^{\mathcal{B}} \to \mathbb{C}^{\mathcal{W}}$ is a weighted adjacency matrix (= discrete $\overline{\partial}$ operator on Ω^{δ}). [Temperley domains: nice bijection with UST \iff Dirichlet boundary conditions for $\overline{\partial}$]

Setup: double-dimer loop ensembles in Temperley discretizations on \mathbb{Z}^2

• Temperley discretizations Ω^{δ} on \mathbb{Z}^2 : simply connected domains s.t. all corners are of the same type out of four: B_0, B_1, W_0, W_1 .

• Dimer (= domino) model on Ω^{δ} : perfect matchings, chosen uniformly at random.

• Kasteleyn theorem: $\mathcal{Z}^{\text{dimers}} = \det K$,

where $K : \mathbb{C}^{\mathcal{B}} \to \mathbb{C}^{\mathcal{W}}$ is a weighted adjacency matrix (= discrete $\overline{\partial}$ operator on Ω^{δ}). [Temperley domains: nice bijection with UST \iff Dirichlet boundary conditions for $\overline{\partial}$]

• **Double-dimer model:** two independent dimer configurations on the same domain. Configuration \mathcal{L}^{dbl-d} is a fully-packed collection of loops and double-edges,

$$\mathcal{Z}^{\mathrm{dbl-d}} \,=\, \sum_{\mathcal{L}^{\mathrm{dbl-d}}} 2^{\#\mathrm{loops}(\mathcal{L}^{\mathrm{dbl-d}})} \,=\, \det \left(egin{array}{c} 0 & \mathcal{K}^{ op} \ \mathcal{K} & 0 \end{array}
ight) \,=\, \det \mathcal{K}, \qquad \mathcal{K}: (\mathbb{C}^2)^{\mathcal{B}} o (\mathbb{C}^2)^{\mathcal{W}}.$$

Goal (cf. Kenyon'10, Dubédat'14): conformal invariance, convergence to CLE₄

• Random height functions and GFF:

Choosing the orientation of loops $\gamma \in \mathcal{L}^{\text{dbl-d}}$ randomly, one gets a height function $h^{\text{dbl-d}}$.

Kenyon'00: $h^{\text{dbl-d}} \rightarrow \text{GFF}(\Omega)$ as $\delta \rightarrow 0$.

Random loop ensembles and CLE₄: It is a famous prediction (supported by many strong results) that *L*^{dbl-d} converges to the nested conformal loop ensemble CLE₄(Ω). [!] The convergence of *h*^{dbl-d} is not strong enough for the level lines *L*^{dbl-d} of *h*^{dbl-d}.

• **Double-dimer model:** two independent dimer configurations on the same domain. Configuration \mathcal{L}^{dbl-d} is a fully-packed collection of loops and double-edges,

$$\mathcal{Z}^{\mathrm{dbl-d}} \,=\, \sum_{\mathcal{L}^{\mathrm{dbl-d}}} 2^{\#\mathrm{loops}(\mathcal{L}^{\mathrm{dbl-d}})} \,=\, \det \left(egin{array}{c} 0 & \mathcal{K}^{ op} \ \mathcal{K} & 0 \end{array}
ight) \,=\, \det \mathcal{K}, \qquad \mathcal{K}: (\mathbb{C}^2)^{\mathcal{B}} o (\mathbb{C}^2)^{\mathcal{W}}.$$

Kenyon (2010): $SL_2(\mathbb{C})$ -monodromies and Q-determinants for double-dimers

Let $\rho : \pi_1(\Omega \setminus \{\lambda_1, \dots, \lambda_n\}) \to \operatorname{SL}_2(\mathbb{C}).$ Down-to-earth viewpoint: draw cuts from punctures λ_k to $\partial\Omega$ and choose $A_k \in \operatorname{SL}_2(\mathbb{C}).$

• Kasteleyn's theorem generalizes as follows: $\mathbb{E}\left[\prod_{\gamma \in \mathcal{L}^{\text{dbl-d}}} \left(\frac{1}{2} \operatorname{Tr} \rho(\gamma)\right)\right] = \frac{\operatorname{Qdet} \mathcal{K}^{(\rho)}}{\det \mathcal{K}},$ where $\mathcal{K}^{(\rho)}$: $(\mathbb{C}^2)^{\mathcal{B}} \to (\mathbb{C}^2)^{\mathcal{W}}$ is obtained from \mathcal{K} by putting the matrices $A_{\iota}^{\pm 1}$ on cuts.

 $\rho(\gamma) = A_5 A_1^{-1} A_3 A_2 A_1$

Kenyon (2010): $SL_2(\mathbb{C})$ -monodromies and Q-determinants for double-dimers

Let $\rho : \pi_1(\Omega \setminus \{\lambda_1, \dots, \lambda_n\}) \to \operatorname{SL}_2(\mathbb{C}).$ Down-to-earth viewpoint: draw cuts from punctures λ_k to $\partial\Omega$ and choose $A_k \in \operatorname{SL}_2(\mathbb{C}).$

• Kasteleyn's theorem generalizes as follows: $\mathbb{E}\left[\prod_{\gamma \in \mathcal{L}^{dbl-d}} (\frac{1}{2} \operatorname{Tr} \rho(\gamma))\right] = \frac{\operatorname{Qdet} \mathcal{K}^{(\rho)}}{\det \mathcal{K}},$

where $\mathcal{K}^{(\rho)}$: $(\mathbb{C}^2)^{\mathcal{B}} \to (\mathbb{C}^2)^{\mathcal{W}}$ is obtained from \mathcal{K} by putting the matrices $A_k^{\pm 1}$ on cuts.

 $n(L) = (2,2,2,1,1,1,2,0,1,3,3,1,2)_{e \in \mathcal{E}}$

Remark: A better viewpoint is to fix a triangulation of $\Omega \setminus \{\lambda_1, \ldots, \lambda_n\}$ and to consider discrete \mathbb{C}^2 -vector bundles and flat $\mathrm{SL}_2(\mathbb{C})$ -connections on them: $(\mathrm{Fun}(\pi_1(\Omega \setminus \{\lambda_1, \ldots, \lambda_n\}) \to \mathrm{SL}_2(\mathbb{C})))^{\mathrm{SL}_2(\mathbb{C})} \simeq (\mathrm{Fun}(\mathrm{SL}_2(\mathbb{C})^{\mathcal{E}}))^{\mathrm{SL}_2(\mathbb{C})^{\mathcal{F}}}.$ Dubédat (2014): locally unipotent monodromies and convergence to the Jimbo–Miwa–Ueno isomonodronic τ -function

Let Ω^{δ} , $\delta \to 0$, be a sequence of Temperley approximations to a simply connected domain $\Omega \subset \mathbb{C}$. Fix a collection of (pairwise distinct) punctures $\lambda_1, \ldots, \lambda_n \in \Omega$.

Theorem (Dubédat, 2014): Let $\rho : \pi_1(\Omega \setminus \{\lambda_1, \ldots, \lambda_n\}) \to SL_2(\mathbb{C})$ be such that $\operatorname{Tr} \rho([\gamma_k]) = 2$ for each of the loops $[\lambda_k]$ surrounding a single puncture λ_k .

(i) Then
$$\mathbb{E}\left[\prod_{\gamma \in \mathcal{L}^{\text{dbl-d}}} (\frac{1}{2} \operatorname{Tr} \rho(\gamma))\right] =: \tau^{\delta}(\rho) \to \tau^{\mathbf{JMU}}(\rho) \text{ as } \delta \to 0.$$

Remark: In fact, this convergence is uniform on compact subsets of $X_{unip} \subset X := \{\rho : \pi_1(\Omega \setminus \{\lambda_1, \dots, \lambda_n\}) \to SL_2(\mathbb{C})\}.$ (ii) Moreover, provided that $\rho \in X_{unip}$ is close enough to Id, one has

 $au^{\mathrm{JMU}}(
ho) = au^{\mathrm{CLE}_4}(
ho) := \mathbb{E}\left[\prod_{\gamma \in \mathcal{L}^{\mathrm{CLE}_4}}(\frac{1}{2}\operatorname{Tr}
ho(\gamma))
ight].$

Dubédat (2014): locally unipotent monodromies and convergence to the Jimbo–Miwa–Ueno isomonodronic τ -function

Notation: Lamination L = collection of loops in $\Omega \setminus \{\lambda_1, \ldots, \lambda_n\}$ up to homotopies.

 $\boldsymbol{p}_{\boldsymbol{L}}^{\boldsymbol{\delta}} := 2^{-\# \text{loops}(\boldsymbol{L})} \cdot \mathbb{P}[\boldsymbol{\mathcal{L}}^{\text{dbl-d}} \simeq_{\text{macro}} \mathbf{L}], \qquad f_{\boldsymbol{L}}(\rho) := \prod_{\gamma \in \boldsymbol{L}} \operatorname{Tr} \rho(\gamma).$

The results of Dubédat give $\tau^{\delta}(\rho) = \sum_{L - \text{macro}} p_{L}^{\delta} f_{L}(\rho) \rightarrow \tau^{\text{JMU}}(\rho), \ \rho \in X_{\text{unip.}}$ **The goal** is to deduce the convergence of p_{L}^{δ} for each macroscopic lamination *L*.

Remark: The isomonodronic τ -function can be thought of as : det $\overline{\partial}_{[\Omega;\lambda_1,...,\lambda_n]}^{(\rho)}$:, where $\overline{\partial}^{(\rho)}$ stands for the $\overline{\partial}$ operator acting on functions $\Omega \to \mathbb{C}^2$ with monodromy ρ .

• The function $\tau^{\text{JMU}}(\rho)$ is defined for all $\rho \in X_{\text{unip}}$ and is conformally invariant.

• The identity $\tau^{JMU} = \tau^{CLE_4}$ is a separate statement (also due to Dubédat'14).

Let \mathbb{D}_r denote the "ball of radius R" in $X = \{\rho : \pi_1(\Omega \setminus \{\lambda_1, \dots, \lambda_n\}) \to \mathrm{SL}_2(\mathbb{C})\}$. [normalization: $||A|| := \mathrm{Tr}(AA^*)$, in particular $X \cap \mathbb{D}_r = \emptyset$ if $r \leq \sqrt{2}$]

Theorem: There exists an absolute constant $k_0 > 1$ such that the following holds: (i) Let $r > \sqrt{2}$, $R := k_0 r$ and $F : X_{unip} \cap \overline{\mathbb{D}}_R \to \mathbb{C}$ be a holomorphic function. Then there exist coefficients $p_L = O(r^{-|n(L)|} \cdot ||F||_{L^{\infty}(\overline{\mathbb{D}}_R)})$ such that

$$F(\rho) = \sum_{L-\text{macro}} p_L f_L(\rho), \quad \rho \in X_{\text{unip}} \cap \mathbb{D}_r.$$

(ii) Let $r > k_0\sqrt{2}$ and two sets of coefficients $p_L, \tilde{p}_L = O(r^{-|n(L)|})$ be such that

$$\sum_{L-\text{macro}} p_L f_L(\rho) = \sum_{L-\text{macro}} \tilde{p}_L f_L(\rho), \quad \rho \in X_{\text{unip}} \cap \mathbb{D}_r.$$

Then $p_L = \tilde{p}_L$ for all macroscopic laminations L.

Corollary: Since the isomonodromic tau-function is holomoprhic on the whole X_{unip} , there exist unique coefficients p_L^{JMU} s.t. $\tau^{\text{JMU}}(\rho) = \sum_{L-\text{macro}} p_L^{\text{JMU}} f_L(\rho)$, $\rho \in X_{\text{unip}}$.

Theorem: There exists an absolute constant $k_0 > 1$ such that the following holds: (i) Let $r > \sqrt{2}$, $R := k_0 r$ and $F : X_{unip} \cap \overline{\mathbb{D}}_R \to \mathbb{C}$ be a holomorphic function. Then there exist coefficients $p_L = O(r^{-|n(L)|} \cdot ||F||_{L^{\infty}(\overline{\mathbb{D}}_R)})$ such that

$$F(\rho) = \sum_{L-\text{macro}} p_L f_L(\rho), \quad \rho \in X_{\text{unip}} \cap \mathbb{D}_r.$$

(ii) Let $r > k_0\sqrt{2}$ and two sets of coefficients $p_L, \tilde{p}_L = O(r^{-|n(L)|})$ be such that

$$\sum_{L-\text{macro}} p_L f_L(\rho) = \sum_{L-\text{macro}} \tilde{p}_L f_L(\rho), \quad \rho \in X_{\text{unip}} \cap \mathbb{D}_r.$$

Then $p_L = \tilde{p}_L$ for all macroscopic laminations L.

Corollary: Since the isomonodromic tau-function is holomoprhic on the whole X_{unip} , there exist unique coefficients p_L^{JMU} s.t. $\tau^{\text{JMU}}(\rho) = \sum_{L-\text{macro}} p_L^{\text{JMU}} f_L(\rho)$, $\rho \in X_{\text{unip}}$.

Theorem: There exists an absolute constant $k_0 > 1$ such that the following holds: (i) Let $r > \sqrt{2}$, $R := k_0 r$ and $F : X_{unip} \cap \overline{\mathbb{D}}_R \to \mathbb{C}$ be a holomorphic function. Then there exist coefficients $p_L = O(r^{-|n(L)|} \cdot ||F||_{L^{\infty}(\overline{\mathbb{D}}_R)})$ such that

$$F(\rho) = \sum_{L-\text{macro}} p_L f_L(\rho), \quad \rho \in X_{\text{unip}} \cap \mathbb{D}_r.$$

Corollary: (a) Uniform boundedness of topological correlators τ^δ on D_R for all R > 0 implies the uniform (in δ) estimate p^δ_L = O(r^{-|n(L)|}) for all r > 0.
 (b) Convergence (as δ → 0) of topological correlators τ^δ → τ^{JMU} on D_R implies convergence of coefficients: p^δ_L → p^{JMU}_L for all macroscopic laminations L.

Corollary: Since the isomonodromic tau-function is holomoprhic on the whole X_{unip} , there exist unique coefficients p_L^{JMU} s.t. $\tau^{\text{JMU}}(\rho) = \sum_{L-\text{macro}} p_L^{\text{JMU}} f_L(\rho)$, $\rho \in X_{\text{unip}}$.

Warning: It is easy to see that $p_L^{\text{CLE}_4} = O(r_0^{-|n(L)|})$ for some $r_0 > \sqrt{2}$ and Dubédat proved that $\tau^{\text{CLE}_4}(\rho) = \tau^{\text{JMU}}(\rho)$ for $\rho \in X_{\text{unip}} \cap \mathbb{D}_{r_0}$ (= near Id).

Unfortunately, this does not directly imply $p_L^{\text{CLE}_4} = p_L^{\text{JMU}}$ for all laminations *L*: we also need a superexponential (in fact, $r_0 > \sqrt{2}k_0$ is enough) decay of $p_L^{\text{CLE}_4}$.

Corollary: (a) Uniform boundedness of topological correlators τ^δ on D_R for all R > 0 implies the uniform (in δ) estimate p^δ_L = O(r^{-|n(L)|}) for all r > 0.
(b) Convergence (as δ → 0) of topological correlators τ^δ → τ^{JMU} on D_R implies convergence of coefficients: p^δ_L → p^{JMU}_L for all macroscopic laminations L.

Some comments on the proof:

Recall that we are interested in the existence and uniqueness of expansions of holomorphic functions living on the (algebraic) manifold

$$X_{ ext{unip}} \subset X = \{ \rho : \pi_1(\Omega \setminus \{\lambda_1, \dots, \lambda_n\}) \to \operatorname{SL}_2(\mathbb{C}) \}$$

in the basis $f_L(\rho) := \prod_{\gamma \in L} \operatorname{Tr}(\rho(\gamma))$. Two problems arise:

- Even on the whole manifold X, the functions f_L form a bad basis.
- Passage from $\operatorname{Fun}_{\operatorname{hol}}(X)$ to $\operatorname{Fun}_{\operatorname{hol}}(X_{\operatorname{unip}})$ is not trivial.

Some comments: f_L is a bad basis (estimate of Fock–Goncharov coefficients)

Theorem (Fock–Goncharov, 2006): There exists another "good" (e.g., orthogonal on $(SU_2(\mathbb{C})^{\mathcal{E}})^{SU_2(\mathbb{C})^{\mathcal{F}}})$ basis g_L on X such that the change between these bases is given by lower-triangular (with respect to the natural partial order on n(L)) matrices.

Consider the following naive example: $(g_n(z))_{n \ge 0} := (1, z, z^2, z^3, ...)$ $(f_n(z))_{n \ge 0} := (1, z-2, z^2-2z, z^3-2z^2, ...)$ Then $\sum_{n \ge 0} p_n f_n(z) \equiv 0$ near $z = 0 \implies p_n = 0$ provided that $p_n = O((\frac{1}{2} - \varepsilon)^n)$ but $f_0(z) + \frac{1}{2}f_1(z) + \frac{1}{4}f_2(z) + \dots + 2^{-n}f_n(z) + \dots = 0$ for |z| < 2.

Warning: This can be even worse: for $(f_n(z))_{n \ge 0} := (1, z-2, z^2-4z, z^3-8z^2, ...),$

$$f_0(z) + \frac{1}{2}f_1(z) + \frac{1}{8}f_2(z) + \dots + 2^{-\frac{1}{2}n(n+1)}f_n(z) + \dots = 0$$
 for all z .

Some comments: f_L is a bad basis (estimate of Fock–Goncharov coefficients)

Theorem (Fock–Goncharov, 2006): There exists another "good" (e.g., orthogonal on $(SU_2(\mathbb{C})^{\mathcal{E}})^{SU_2(\mathbb{C})^{\mathcal{F}}}$) basis g_L on X such that the change between these bases is given by lower-triangular (with respect to the natural partial order on n(L)) matrices.

Proposition: Let $g_L = \sum_{L':n(L') \leq n(L)} c_{LL'} f_{L'}$. Then $|c_{LL'}| \leq 4^{|n(L)|}$.

Key ingredients: We would like to thank Vladimir Fock for a very helpful discussion.

- existence of monodromies $\rho \in X$ s.t. $\operatorname{Tr}(\rho(\gamma)) \leq -2$ for all nontrivial simple loops γ , which can be constructed via Thurston's *shear coordinates of hyperbolic structures* on $\Omega \setminus \{\lambda_1, \ldots, \lambda_n\}$ (see Chekhov–Fock(1997+) and Bonahon–Wong(2011+));
- D. Thurston's theorem (2014) on the positivity of structure constants of the bracelets basis in the Kauffman skein algebra Sk(Ω \ {λ₁,...,λ_n}, 1).

Some comments: from $\operatorname{Fun}_{\operatorname{hol}}(X)$ to $\operatorname{Fun}_{\operatorname{hol}}(X_{\operatorname{unip}})$

Intuition behind the uniqueness: Let $F(\rho) := \sum_{L - \text{macro}} p_L f_L(\rho) = 0$ on X_{unip} .

- Recall that X can be parameterized by collections of matrices $A_1, \ldots, A_n \in SL_2(\mathbb{C})$ and the subvariety $X_{unip} \subset X$ is cut of by the conditions $\operatorname{Tr} A_k = 2, \ k = 1, \ldots, n$.
- Replacing A_k^{-1} by A_k^{\vee} , one can extend the functions $\operatorname{Tr} \rho_{A_1,\ldots,A_n}(\gamma)$ to $A_k \in \mathbb{C}^{2 \times 2}$.

Some comments: from $\operatorname{Fun}_{\operatorname{hol}}(X)$ to $\operatorname{Fun}_{\operatorname{hol}}(X_{\operatorname{unip}})$

Intuition behind the uniqueness: Let $F(\rho) := \sum_{L - \text{macro}} p_L f_L(\rho) = 0$ on X_{unip} .

- Recall that X can be parameterized by collections of matrices $A_1, \ldots, A_n \in SL_2(\mathbb{C})$ and the subvariety $X_{unip} \subset X$ is cut of by the conditions $\operatorname{Tr} A_k = 2, \ k = 1, \ldots, n$.

- Replacing A_k^{-1} by A_k^{\vee} , one can extend the functions $\operatorname{Tr} \rho_{A_1,\ldots,A_n}(\gamma)$ to $A_k \in \mathbb{C}^{2 \times 2}$.

- If F were a *finite* linear combination of f_L , then (due to *Hilbert's Nullstellensatz*):

$$F(\rho_{A_1,...,A_n}) = \sum_{k=1}^n F_k(A_1,...,A_n)(\operatorname{Tr} A_k - 2) + \sum_{k=1}^n G_k(A_1,...,A_n)(\det A_k - 1).$$

and hence $\sum_{L-\text{macro}} p_L f_L(\rho) = \sum_{k=1}^n F_k(\rho)(\text{Tr }\rho([\lambda_k]) - 2)$ on X.

- Since each of F_k can be expanded as $\sum_L c_L^{(k)} f_L$ and $f_L(\rho) \operatorname{Tr} \rho([\lambda_k]) = f_{L \sqcup [\lambda_k]}(\rho)$ this implies $p_L = 0$ for all L due to the uniqueness of such decompositions on X.

Some comments: from $\operatorname{Fun}_{\operatorname{hol}}(X)$ to $\operatorname{Fun}_{\operatorname{hol}}(X_{\operatorname{unip}})$

Key ingredients:

- A version of the Nullstellensatz for $\operatorname{Fun}_{\operatorname{hol}}(X)$ instead of $\operatorname{Fun}_{\operatorname{alg}}(X)$.
- A theorem due to Manivel (1993), which allows one to extend holomorphic functions from X_{unip} to X while controlling the L²-norms of such extensions.

- If F were a *finite* linear combination of f_L , then (due to *Hilbert's Nullstellensatz*):

$$F(\rho_{A_1,...,A_n}) = \sum_{k=1}^n F_k(A_1,...,A_n)(\operatorname{Tr} A_k - 2) + \sum_{k=1}^n G_k(A_1,...,A_n)(\det A_k - 1).$$

and hence $\sum_{L-\text{macro}} p_L f_L(\rho) = \sum_{k=1}^n F_k(\rho)(\text{Tr } \rho([\lambda_k]) - 2)$ on X.

- Since each of F_k can be expanded as $\sum_L c_L^{(k)} f_L$ and $f_L(\rho) \operatorname{Tr} \rho([\lambda_k]) = f_{L \sqcup [\lambda_k]}(\rho)$ this implies $p_L = 0$ for all L due to the uniqueness of such decompositions on X.

Conclusions: double-dimer loop ensembles in Temperley domains

 The results of Dubédat (uniform convergence τ^δ(ρ) → τ^{JMU}(ρ) on big compact subsets of X_{unip}) do imply the convergence of probabilities of cylindrical events:

 $p_L^{\delta} \rightarrow p_L^{\text{JMU}}$ as $\delta \rightarrow 0$ for all macroscopic laminations L.

The limits p_L^{JMU} are conformally invariant $(\sum_{L-\text{macro}} p_L^{\text{JMU}} f_L = \tau^{\text{JMU}}$ on $X_{\text{unip}})$.

• This statement does not require any RSW theory for double-dimers: a uniform (super)exponential decay of p_L^{δ} as $|n(L)| \to \infty$ follows from the uniform boundedness of topological correlators $\tau^{\delta}(\rho)$ on big compact subsets of X_{unip} .

Conclusions: double-dimer loop ensembles in Temperley domains

 The results of Dubédat (uniform convergence τ^δ(ρ) → τ^{JMU}(ρ) on big compact subsets of X_{unip}) do imply the convergence of probabilities of cylindrical events:

 $p_L^{\delta} \rightarrow p_L^{\text{JMU}}$ as $\delta \rightarrow 0$ for all macroscopic laminations L.

The limits p_L^{JMU} are conformally invariant $(\sum_{L-\text{macro}} p_L^{\text{JMU}} f_L = \tau^{\text{JMU}}$ on $X_{\text{unip}})$.

- This statement does not require any RSW theory for double-dimers:

 a uniform (super)exponential decay of p^δ_L as |n(L)| → ∞ follows from the uniform boundedness of topological correlators τ^δ(ρ) on big compact subsets of X_{unip}.
- To conclude that $p_L^{\text{JMU}} = p_L^{\text{CLE}_4}$ one needs $p_L^{\text{CLE}_4} = O(r^{-|n(L)|})$ for all r > 0.
- To claim the convergence of double-dimer loop ensembles to CLE_4 (in any reasonable topology) it is enough to prove the tightness of those ($\sim RSW$).

Conclusions: double-dimer loop ensembles in Temperley domains

 The results of Dubédat (uniform convergence τ^δ(ρ) → τ^{JMU}(ρ) on big compact subsets of X_{unip}) do imply the convergence of probabilities of cylindrical events:

 $p_L^{\delta} \rightarrow p_L^{\text{JMU}}$ as $\delta \rightarrow 0$ for all macroscopic laminations L.

The limits p_L^{JMU} are conformally invariant $(\sum_{L-\text{macro}} p_L^{\text{JMU}} f_L = \tau^{\text{JMU}}$ on $X_{\text{unip}})$.

• This statement does not require any RSW theory for double-dimers: a uniform (super)exponential decay of p_L^{δ} as $|n(L)| \to \infty$ follows from the uniform boundedness of topological correlators $\tau^{\delta}(\rho)$ on big compact subsets of X_{unip} .

• QUESTION: Is there a natural interpretation of $\tau(\rho) := \mathbb{E}\left[\prod_{\gamma \in \mathcal{L}^{CLE_4}} (\frac{1}{2} \operatorname{Tr} \rho(\gamma))\right]$ with Tr replaced by a quantum trace and CLE₄ replaced by CLE_{κ}, $\kappa \neq 4$?

THANK YOU FOR YOUR ATTENTION!