Eigenvector Correlations for the Ginibre Ensemble

Nick Crawford; The Technion

July 24, 2018

joint with Ron Rosenthal

The Ginibre Ensemble

Let $(m_{ij})_{i,j\in\mathbb{N}}$ be i.i.d. $\mathcal{N}_{\mathbb{C}}(0,1/N)$ variables. We consider the matrix

$$M_N := (m_{ij})_{i,j \leq N}$$

acting on \mathbb{C}^N .

- What are the statistical properties of this matrix ensemble?
- ▶ **Eigenvalues:** Almost surely, M_N is diagonalizable. With respect to Lebesgue measure $\prod_{i=1}^{N} d^2 \lambda_i$, the density is

$$\frac{\mathrm{d}\mathbb{P}(\underline{\lambda})}{\prod_{i=1}^{N}\mathrm{d}^{2}\lambda_{i}} = \frac{1}{Z_{N}} \prod_{i < j \leq N} |\lambda_{i} - \lambda_{j}|^{2} \prod_{i \leq N} \exp(-N|\lambda_{i}|^{2})$$

▶ Asymptotic density of states is uniform over unit disc $\mathbf{D}_1 \subset \mathbb{C}$.

- Quite a bit is known about asymptotic behavior of eigenvalues in this ensemble and various generalizations. Ginibre '65; Girko '84, '94; Bai 97; Tao, Vu '08, '10; Götze, Tikhomirov '10; Bourgade, Yau, Yin '14a, '14b; Yin '14; Alt, Erdös, Krueger '18.
- ▶ Important fact: $\|(M_N^*M_N)^{-1/2}\|_{\infty} \sim N$, where as eigenvalue spacing is $N^{-1/2}$.
- ▶ In spite of this, much less is understood regarding the eigenvector geometry. Note however Rudelson, Vershynin '15.

- Quite a bit is known about asymptotic behavior of eigenvalues in this ensemble and various generalizations. Ginibre '65; Girko '84, '94; Bai 97; Tao, Vu '08, '10; Götze, Tikhomirov '10; Bourgade, Yau, Yin '14a, '14b; Yin '14; Alt, Erdös, Krueger '18.
- ▶ Important fact: $\|(M_N^*M_N)^{-1/2}\|_{\infty} \sim N$, where as eigenvalue spacing is $N^{-1/2}$.
- In spite of this, much less is understood regarding the eigenvector geometry. Note however Rudelson, Vershynin '15.
- ▶ Which Eigenvectors? Given the eigenvalues $(\lambda_i)_{i=1}^N$, associate TWO bases:

Column vectors: $M_N \cdot r_i = \lambda_i r_i$, Row vectors: $\ell_i \cdot M_N = \lambda_i \ell_i$, Normalization: $\ell_i \cdot r_i = \delta_{i,i}$.

▶ Then with $Q_i = r_i \otimes \ell_i$,

$$M_N = \sum_i \lambda_i Q_i.$$

Statistics of the Q_i 's

Chalker-Mehlig '98:

Let $M_N(0)$, $M_N(1)$ be independent copies of M_N and set

$$M_N(\theta) = \cos(\theta)M_N(0) + \sin(\theta)M_N(1).$$

Then (at $\theta = 0$), eigenvalue trajectories $(\lambda_i(\theta))_{i \leq N}$ satisfy

$$\begin{split} &\mathbb{E}[\partial_{\theta}\lambda_{i}\partial_{\theta}\overline{\lambda_{j}}|\lambda_{i}(0),\lambda_{j}(0)] = \frac{1}{N}\mathbb{E}[\mathrm{Tr}(Q_{i}Q_{j}^{*})|\lambda_{i}(0),\lambda_{j}(0)],\\ &\frac{1}{N}\mathbb{E}[\mathrm{Tr}(Q_{i}\cdot Q_{j}^{*})|\lambda_{i}(0),\lambda_{j}(0)] \sim \begin{cases} 1-|\lambda_{i}|^{2} \text{ if } i=j,\\ \frac{1}{N^{2}}\frac{1-\lambda_{i}\overline{\lambda_{j}}}{|\lambda_{i}-\lambda_{j}|^{4}} \text{ if } i\neq j, \end{cases} \end{split}$$

for typical eigenvalues.

Subsequent Work

- "Polish Group": Burda, Nowak et al. ('99), Burda, Grela, Nowak et al. ('14), Belinshi, Nowak, et al. ('16);
- ▶ Starr, Walters ('14). Corrections to **CM-'98** at ∂ **D**₁.
- ▶ Fyodorov ('17); Bourgade, Dubach ('18). Conditional on λ_i in bulk,

$$\frac{1}{\textit{N}(1-|\lambda_i^2|)}\mathrm{Tr}[\textit{Q}_i\textit{Q}_i^*]$$

scales to $1/\Gamma(2)$.

Higher Order Correlations

- ▶ Given $A \subset \mathbb{N}$, let S_A be the permutation group on A.
- ▶ If $\mathcal{L} \in \mathcal{S}_A$ is a cycle let

$$\hat{
ho}(\mathcal{L}) = \mathsf{N}^{|A|-1} \mathrm{Tr} \left[\prod_{j \in A} Q_{2j-1}^* Q_{2j}
ight].$$

with cycle order imposed.

▶ For $\sigma \in \mathcal{S}_k$ set

$$\hat{
ho}(\sigma) = \prod_{\mathcal{L} \text{ cycles of } \sigma} \hat{
ho}(\mathcal{L}).$$

Finally given $\mathbf{u}, \mathbf{v} \in \mathbf{D^k}$,

$$\rho_N(\sigma) = \mathbb{E}[\hat{\rho}(\sigma)|\lambda_{2j-1} = u_j, \lambda_{2j} = v_j \text{ for } j \in \{1, \dots k\}].$$

Figure: Schematic for $Tr[Q_1^*Q_2Q_3^*Q_4Q_5^*Q_6]$ and $\rho_N(123; \mathbf{u}, \mathbf{v})$

Figure: Schematic for $Tr[Q_1^*Q_2Q_3^*Q_4Q_5^*Q_6]$ and $\rho_N(123; \mathbf{u}, \mathbf{v})$

Figure: Schematic for ${
m Tr}[Q_1^*Q_2Q_3^*Q_4Q_5^*Q_6]$ and $ho_N(123;{f u},{f v})$

Figure: Schematic for ${
m Tr}[Q_1^*Q_2Q_3^*Q_4Q_5^*Q_6]$ and $ho_N(123;{f u},{f v})$

Figure: Schematic for $Tr[Q_1^*Q_2Q_3^*Q_4Q_5^*Q_6]$ and $\rho_N(123; \mathbf{u}, \mathbf{v})$

Figure: Schematic for ${
m Tr}[Q_1^*Q_2Q_3^*Q_4Q_5^*Q_6]$ and $\rho_N(123;{f u},{f v})$

Figure: Schematic for ${
m Tr}[Q_1^*Q_2Q_3^*Q_4Q_5^*Q_6]$ and $\rho_N(123;{f u},{f v})$

Figure: Schematic for $Tr[Q_1^*Q_2Q_3^*Q_4Q_5^*Q_6]$ and $\rho_N(132; \mathbf{u}, \mathbf{v})$

Macroscopic Factorization

For $\mathbf{u}, \mathbf{v} \in \mathbf{D}_1^k$, define

Theorem

For every $\sigma \in \mathcal{S}_k$ and every $\mathbf{u}, \mathbf{v} \in \mathbf{D}_1^k$ such that $\mathrm{Dist}(\mathbf{u}, \mathbf{v}) > 0$, the limit

$$\rho(\sigma; \mathbf{u}, \mathbf{v}) := \lim_{N \to \infty} \rho_N(\sigma; \mathbf{u}, \mathbf{v})$$

exists. If $\sigma = \{\mathcal{L}_j\}_{j=1}^{|\sigma|}$ with \mathcal{L}_j the cycles of σ

$$\rho(\sigma; \mathbf{u}, \mathbf{v}) = \prod_{j=1}^{|\sigma|} \rho(\mathcal{L}_j; \mathbf{u}|_{\mathcal{V}(\mathcal{L}_j)}, \mathbf{v}|_{\mathcal{V}(\mathcal{L}_j)}).$$

From now on $C_k = (12 \cdots k)$.

Let π_1, π_2 be cyclic permutations on disjoint subsets A, B of [k]. We say they are *crossing* if there exists $\alpha \in A$ and $\beta \in B$ such that $(\alpha, \pi_1(\alpha), \beta, \pi_2(\beta))$ is not the ordering of these vertices in C_k . Otherwise, we call them *noncrossing*.

From now on $C_k = (12 \cdots k)$.

Let π_1, π_2 be cyclic permutations on disjoint subsets A, B of [k]. We say they are *crossing* if there exists $\alpha \in A$ and $\beta \in B$ such that $(\alpha, \pi_1(\alpha), \beta, \pi_2(\beta))$ is not the ordering of these vertices in C_k . Otherwise, we call them *noncrossing*.

- ▶ Say that $\pi \in \mathcal{S}_k$ is *noncrossing* if its cycles are pair-wise noncrossing. Denote this property by $\pi \trianglelefteq C_k$.
- ▶ Let $V_k(\mathbf{v})$ be the Vandermonde determinant $\prod_{\alpha,\beta\in[k], \alpha<\beta}(v_\beta-v_\alpha)$.

Correlation Structure of a Cycle

Theorem

There are two families of polynomials $(\mathfrak{R}_{\pi},\mathfrak{L}_{\pi})_{\pi\in\mathcal{S}}$ in $\mathbf{u},\mathbf{v}\in\mathbb{C}^k\times\mathbb{C}^k$, homogeneous of degree of degree $\binom{k-1}{2}$, so that

$$\rho(C_k; \mathbf{u}, \mathbf{v}) = \sum_{\substack{\pi \leq C_k \\ \mathcal{V}(\pi) = [k]}} \frac{\mathfrak{R}_{\pi}(\overline{\mathbf{u}}, \mathbf{v}) \mathfrak{L}_{\sigma \circ \pi^{-1}}(\overline{\mathbf{u}}, \pi^{-1}(\mathbf{v}))}{V_k(\overline{\mathbf{u}})^2 V_k(\mathbf{v})^2} \prod_{\alpha \in \mathcal{V}(\pi)} \rho_2(u_\alpha, v_{\pi^{-1}(\alpha)}),$$

where

$$\rho_2(z,w) = \frac{1 - \overline{z}w}{|z - w|^4}$$

Example:

$$\begin{split} & \rho_4(\nu_1, \nu_2, \nu_3, \nu_4) = \\ & \frac{1}{(\nu_2 - \nu_4)^2 (\overline{\nu_1} - \overline{\nu_3})^2} \Big[\rho_2(\nu_1, \nu_2) \rho_2(\nu_3, \nu_4) - \rho_2(\nu_1, \nu_4) \rho_2(\nu_3, \nu_2) \Big] \,. \end{split}$$

Origin of the Polynomials

- ▶ For $\sigma, \tau \in \mathcal{S}_k$ say $\sigma \leq \tau$ if $\mathcal{V}(\sigma) \subset \mathcal{V}(\tau)$, every cycle of σ is a subcycle of τ and all but at most one of the cycles of τ are also cycles in σ .
- ▶ Let

$$h(u,v) = \frac{1}{\pi} \int_{\mathbf{D}_1} \frac{1}{(\overline{\nu} - \overline{u})(\nu - v)} d^2 \nu = \log \left(\frac{1 - \overline{u}v}{|u - v|^2} \right).$$

and note that
$$\partial_u \partial_{\overline{\nu}} h(u,v) = \rho_2(u,v) = \frac{1-u\overline{\nu}}{|u-v|^4}$$
.

Let

$$h(\pi) = \sum_{\alpha=1}^k h(u_\alpha, v_{\pi^{-1}(\alpha)}).$$

Theorem

There is a matrix $\mathfrak{N}: \mathbb{C}^{\mathcal{S}_k} \to \mathbb{C}^{\mathcal{S}_k}$, parametrized by $\mathbf{u}, \mathbf{v} \in \mathbf{D}_1^k$, and upper triangular w.r.t. \leq so that:

- 1. $\rho(\sigma) = \partial_{\mathbf{u}} \partial_{\overline{\mathbf{v}}} e^{\mathfrak{N}}(Id, \sigma),$
- 2. The eigenvalues of \mathfrak{N} are $h(\pi)'s$ and the eigenvector components are rational in $\overline{\mathbf{u}}, \mathbf{v}$ (!).