Eigenvector Correlations for the Ginibre Ensemble
Nick Crawford; The Technion
July 24, 2018
joint with Ron Rosenthal

The Ginibre Ensemble

Let $\left(m_{i j}\right)_{i, j \in \mathbb{N}}$ be i.i.d. $\mathcal{N}_{\mathbb{C}}(0,1 / N)$ variables. We consider the matrix

$$
M_{N}:=\left(m_{i j}\right)_{i, j \leq N}
$$

acting on \mathbb{C}^{N}.

- What are the statistical properties of this matrix ensemble?
- Eigenvalues: Almost surely, M_{N} is diagonalizable. With respect to Lebesgue measure $\prod_{i=1}^{N} \mathrm{~d}^{2} \lambda_{i}$, the density is

$$
\frac{\mathrm{dP}(\underline{\lambda})}{\prod_{i=1}^{N} \mathrm{~d}^{2} \lambda_{i}}=\frac{1}{Z_{N}} \prod_{i<j \leq N}\left|\lambda_{i}-\lambda_{j}\right|^{2} \prod_{i \leq N} \exp \left(-N\left|\lambda_{i}\right|^{2}\right)
$$

- Asymptotic density of states is uniform over unit disc $\mathbf{D}_{1} \subset \mathbb{C}$.
- Quite a bit is known about asymptotic behavior of eigenvalues in this ensemble and various generalizations.
Ginibre '65; Girko '84, '94; Bai 97; Tao, Vu '08, '10; Götze, Tikhomirov '10; Bourgade, Yau, Yin '14a, '14b; Yin '14; Alt, Erdös, Krueger '18.
- Important fact: $\left\|\left(M_{N}^{*} M_{N}\right)^{-1 / 2}\right\|_{\infty} \sim N$, where as eigenvalue spacing is $N^{-1 / 2}$.
- In spite of this, much less is understood regarding the eigenvector geometry. Note however Rudelson, Vershynin '15.
- Quite a bit is known about asymptotic behavior of eigenvalues in this ensemble and various generalizations.
Ginibre '65; Girko '84, '94; Bai 97; Tao, Vu '08, '10; Götze, Tikhomirov '10; Bourgade, Yau, Yin '14a, '14b; Yin '14; Alt, Erdös, Krueger '18.
- Important fact: $\left\|\left(M_{N}^{*} M_{N}\right)^{-1 / 2}\right\|_{\infty} \sim N$, where as eigenvalue spacing is $N^{-1 / 2}$.
- In spite of this, much less is understood regarding the eigenvector geometry. Note however Rudelson, Vershynin '15.
- Which Eigenvectors? Given the eigenvalues $\left(\lambda_{i}\right)_{i=1}^{N}$, associate TWO bases:

Column vectors: $M_{N} \cdot r_{i}=\lambda_{i} r_{i}$,
Row vectors: $\ell_{i} \cdot M_{N}=\lambda_{i} \ell_{i}$,
Normalization: $\quad \ell_{i} \cdot r_{j}=\delta_{i, j}$.

- Then with $Q_{i}=r_{i} \otimes \ell_{i}$,

$$
M_{N}=\sum_{i} \lambda_{i} Q_{i}
$$

Statistics of the Q_{i} 's

Chalker-Mehlig '98:
Let $M_{N}(0), M_{N}(1)$ be independent copies of M_{N} and set

$$
M_{N}(\theta)=\cos (\theta) M_{N}(0)+\sin (\theta) M_{N}(1)
$$

Then (at $\theta=0$), eigenvalue trajectories $\left(\lambda_{i}(\theta)\right)_{i \leq N}$ satisfy

$$
\begin{aligned}
& \mathbb{E}\left[\partial_{\theta} \lambda_{i} \partial_{\theta} \overline{\lambda_{j}} \mid \lambda_{i}(0), \lambda_{j}(0)\right]=\frac{1}{N} \mathbb{E}\left[\operatorname{Tr}\left(Q_{i} Q_{j}^{*}\right) \mid \lambda_{i}(0), \lambda_{j}(0)\right], \\
& \frac{1}{N} \mathbb{E}\left[\operatorname{Tr}\left(Q_{i} \cdot Q_{j}^{*}\right) \mid \lambda_{i}(0), \lambda_{j}(0)\right] \sim\left\{\begin{array}{l}
1-\left|\lambda_{i}\right|^{2} \text { if } i=j, \\
\frac{1}{N^{2}} \frac{1-\lambda_{i} \lambda_{j}}{\left|\lambda_{i}-\lambda_{j}\right|^{4}} \text { if } i \neq j,
\end{array}\right.
\end{aligned}
$$

for typical eigenvalues.

Subsequent Work

- "Polish Group": Burda, Nowak et al. ('99), Burda, Grela, Nowak et al. ('14), Belinshi, Nowak, et al. ('16);
- Starr, Walters ('14). Corrections to CM-'98 at $\partial \mathbf{D}_{1}$.
- Fyodorov ('17); Bourgade, Dubach ('18). Conditional on λ_{i} in bulk,

$$
\frac{1}{N\left(1-\left|\lambda_{i}^{2}\right|\right)} \operatorname{Tr}\left[Q_{i} Q_{i}^{*}\right]
$$

scales to $1 / \Gamma(2)$.

Higher Order Correlations

- Given $A \subset \mathbb{N}$, let \mathcal{S}_{A} be the permutation group on A.
- If $\mathcal{L} \in \mathcal{S}_{A}$ is a cycle let

$$
\hat{\rho}(\mathcal{L})=N^{|A|-1} \operatorname{Tr}\left[\prod_{j \in A} Q_{2 j-1}^{*} Q_{2 j}\right]
$$

with cycle order imposed.

- For $\sigma \in \mathcal{S}_{k}$ set

$$
\hat{\rho}(\sigma)=\prod_{\mathcal{L} \text { cycles of } \sigma} \hat{\rho}(\mathcal{L}) .
$$

Finally given $\mathbf{u}, \mathbf{v} \in \mathbf{D}^{\mathbf{k}}$,

$$
\rho_{N}(\sigma)=\mathbb{E}\left[\hat{\rho}(\sigma) \mid \lambda_{2 j-1}=u_{j}, \lambda_{2 j}=v_{j} \text { for } j \in\{1, \ldots k\}\right] .
$$

Figure: Schematic for $\operatorname{Tr}\left[Q_{1}^{*} Q_{2} Q_{3}^{*} Q_{4} Q_{5}^{*} Q_{6}\right]$ and $\rho_{N}(123 ; \mathbf{u}, \mathbf{v})$

Figure: Schematic for $\operatorname{Tr}\left[Q_{1}^{*} Q_{2} Q_{3}^{*} Q_{4} Q_{5}^{*} Q_{6}\right]$ and $\rho_{N}(123 ; \mathbf{u}, \mathbf{v})$

Figure: Schematic for $\operatorname{Tr}\left[Q_{1}^{*} Q_{2} Q_{3}^{*} Q_{4} Q_{5}^{*} Q_{6}\right]$ and $\rho_{N}(123 ; \mathbf{u}, \mathbf{v})$

Figure: Schematic for $\operatorname{Tr}\left[Q_{1}^{*} Q_{2} Q_{3}^{*} Q_{4} Q_{5}^{*} Q_{6}\right]$ and $\rho_{N}(123 ; \mathbf{u}, \mathbf{v})$

Figure: Schematic for $\operatorname{Tr}\left[Q_{1}^{*} Q_{2} Q_{3}^{*} Q_{4} Q_{5}^{*} Q_{6}\right]$ and $\rho_{N}(123 ; \mathbf{u}, \mathbf{v})$

Figure: Schematic for $\operatorname{Tr}\left[Q_{1}^{*} Q_{2} Q_{3}^{*} Q_{4} Q_{5}^{*} Q_{6}\right]$ and $\rho_{N}(123 ; \mathbf{u}, \mathbf{v})$

Figure: Schematic for $\operatorname{Tr}\left[Q_{1}^{*} Q_{2} Q_{3}^{*} Q_{4} Q_{5}^{*} Q_{6}\right]$ and $\rho_{N}(123 ; \mathbf{u}, \mathbf{v})$

Figure: Schematic for $\operatorname{Tr}\left[Q_{1}^{*} Q_{2} Q_{3}^{*} Q_{4} Q_{5}^{*} Q_{6}\right]$ and $\rho_{N}(132 ; \mathbf{u}, \mathbf{v})$

Macroscopic Factorization

For $\mathbf{u}, \mathbf{v} \in \mathbf{D}_{1}^{k}$, define

$$
\begin{array}{r}
\operatorname{Dist}(\mathbf{u}, \mathbf{v}):=\min _{\alpha, \beta \in[k]}\left\{\left|u_{\alpha}-v_{\beta}\right|\right\} \wedge \\
\min _{\alpha, \beta \in[k], \alpha \neq \beta}\left\{\left|u_{\alpha}-u_{\beta}\right|,\left|v_{\alpha}-v_{\beta}\right|\right\} \wedge \tag{1}\\
\min _{\alpha \in[k]}\left\{1-\left|u_{\alpha}\right|, 1-\left|v_{\alpha}\right|\right\} .
\end{array}
$$

Theorem
For every $\sigma \in \mathcal{S}_{k}$ and every $\mathbf{u}, \mathbf{v} \in \mathbf{D}_{1}^{k}$ such that $\operatorname{Dist}(\mathbf{u}, \mathbf{v})>0$, the limit

$$
\rho(\sigma ; \mathbf{u}, \mathbf{v}):=\lim _{N \rightarrow \infty} \rho_{N}(\sigma ; \mathbf{u}, \mathbf{v})
$$

exists. If $\sigma=\left\{\mathcal{L}_{j}\right\}_{j=1}^{|\sigma|}$ with \mathcal{L}_{j} the cycles of σ

$$
\rho(\sigma ; \mathbf{u}, \mathbf{v})=\prod_{j=1}^{|\sigma|} \rho\left(\mathcal{L}_{j} ;\left.\mathbf{u}\right|_{\mathcal{V}\left(\mathcal{L}_{j}\right)},\left.\mathbf{v}\right|_{\mathcal{V}\left(\mathcal{L}_{j}\right)}\right)
$$

From now on $C_{k}=(12 \cdots k)$.

- Let π_{1}, π_{2} be cyclic permutations on disjoint subsets A, B of [k]. We say they are crossing if there exists $\alpha \in A$ and $\beta \in B$ such that $\left(\alpha, \pi_{1}(\alpha), \beta, \pi_{2}(\beta)\right)$ is not the ordering of these vertices in C_{k}. Otherwise, we call them noncrossing.

From now on $C_{k}=(12 \cdots k)$.

- Let π_{1}, π_{2} be cyclic permutations on disjoint subsets A, B of [k]. We say they are crossing if there exists $\alpha \in A$ and $\beta \in B$ such that $\left(\alpha, \pi_{1}(\alpha), \beta, \pi_{2}(\beta)\right)$ is not the ordering of these vertices in C_{k}. Otherwise, we call them noncrossing.

- Say that $\pi \in \mathcal{S}_{k}$ is noncrossing if its cycles are pair-wise noncrossing. Denote this property by $\pi \unlhd C_{k}$.
- Let $\mathrm{V}_{k}(\mathbf{v})$ be the Vandermonde determinant $\prod_{\alpha, \beta \in[k], \alpha<\beta}\left(v_{\beta}-v_{\alpha}\right)$.

Correlation Structure of a Cycle

Theorem

There are two families of polynomials $\left(\mathfrak{R}_{\pi}, \mathfrak{L}_{\pi}\right)_{\pi \in \mathcal{S}}$ in
$\mathbf{u}, \mathbf{v} \in \mathbb{C}^{k} \times \mathbb{C}^{k}$, homogeneous of degree of degree $\binom{k-1}{2}$, so that
where

$$
\rho_{2}(z, w)=\frac{1-\bar{z} w}{|z-w|^{4}}
$$

Example:

$$
\begin{aligned}
& \rho_{4}\left(\nu_{1}, \nu_{2}, \nu_{3}, \nu_{4}\right)= \\
& \frac{1}{\left(\nu_{2}-\nu_{4}\right)^{2}\left(\overline{\nu_{1}}-\overline{\nu_{3}}\right)^{2}}\left[\rho_{2}\left(\nu_{1}, \nu_{2}\right) \rho_{2}\left(\nu_{3}, \nu_{4}\right)-\rho_{2}\left(\nu_{1}, \nu_{4}\right) \rho_{2}\left(\nu_{3}, \nu_{2}\right)\right] .
\end{aligned}
$$

Origin of the Polynomials

- For $\sigma, \tau \in \mathcal{S}_{k}$ say $\sigma \preceq \tau$ if $\mathcal{V}(\sigma) \subset \mathcal{V}(\tau)$, every cycle of σ is a subcycle of τ and all but at most one of the cycles of τ are also cycles in σ.
- Let

$$
h(u, v)=\frac{1}{\pi} \int_{\mathbf{D}_{1}} \frac{1}{(\bar{\nu}-\bar{u})(\nu-v)} \mathrm{d}^{2} \nu=\log \left(\frac{1-\bar{u} v}{|u-v|^{2}}\right) .
$$

and note that $\partial_{u} \partial_{\bar{v}} h(u, v)=\rho_{2}(u, v)=\frac{1-u \bar{v}}{|u-v|^{4}}$.

Let

$$
h(\pi)=\sum_{\alpha=1}^{k} h\left(u_{\alpha}, v_{\pi^{-1}(\alpha)}\right)
$$

Theorem

There is a matrix $\mathfrak{N}: \mathbb{C}^{\mathcal{S}_{k}} \rightarrow \mathbb{C}^{\mathcal{S}_{k}}$, parametrized by $\mathbf{u}, \mathbf{v} \in \mathbf{D}_{1}^{k}$, and upper triangular w.r.t. \preceq so that:

1. $\rho(\sigma)=\partial_{\mathbf{u}} \partial_{\overline{\mathbf{v}}} e^{\mathfrak{N}}(I d, \sigma)$,
2. The eigenvalues of \mathfrak{N} are $h(\pi)^{\prime} s$ and the eigenvector components are rational in $\overline{\mathbf{u}}, \mathbf{v}$ (!).
