
Multiplicative chaos in random matrix theory and
related fields

Christian Webb

Aalto University, Finland
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The GUE eigenvalue counting function.
• Let λ1 ≤ ... ≤ λN be the ordered eigenvalues of a GUE(N) random

matrix – normalized to have limiting spectrum [−1, 1].

• For x ∈ (−1, 1), let

VN(x) =
N∑

k=1

1{λk ≤ x}.

• Consider the stochastic process eγVN (x)

EeγVN (x) for x ∈ (−1, 1) and γ ∈ R.
• Moments converge as N →∞:

Theorem (Charlier 2017)

Let x1, ..., xk ∈ (−1, 1) be fixed and distinct. Then

lim
N→∞

E
k∏

j=1

eγVN(xj )

EeγVN(xj )
=

∏
1≤p<q≤k

∣∣∣∣∣∣
1− xpxq +

√
1− x2

p

√
1− x2

q

xp − xq

∣∣∣∣∣∣
γ2

2π2

• Is there a process with such moments? Does eγVN (x)

EeγVN (x) converge
to it? What would this say about the GUE?
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The limiting process – heuristics
• For (Yk)∞k=1 i.i.d. standard Gaussians and (Uj)

∞
j=0 Chebyshev

polynomials of the second kind, let (formally):

X (x) =
1

π

∞∑
k=1

Yk√
k

Uk−1(x)
√

1− x2.

• Covariance structure (formally): for x , y ∈ (−1, 1)

EX (x)X (y) =
1

2π2
log

1− xy +
√

1− x2
√

1− y2

|x − y |
.

• For µγ(x) = eγX (x)− γ2

2
EX (x)2 (formally)

E
k∏

j=1

µγ(xj) =
∏

1≤p<q≤k

∣∣∣∣1−xpxq+√1−x2p
√

1−x2q
xp−xq

∣∣∣∣ γ2

2π2

.

• Precisely the moments we want! ,
• For each x , the sum defining X (x) diverges almost surely and
EX (x)2 =∞. What does µγ mean? /
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Gaussian multiplicative chaos – rigorous construction
• Problem: X doesn’t exist in a pointwise sense – EX (x)2 =∞?

• ”
∫ 1
−1 X (x)f (x)dx” does make sense for smooth enough f → The

sum defining X converges as a random generalized function, but how
to exponentiate such an object?

• Solution: regularize and treat as a measure or distribution:

XN(x) =
1

π

N∑
k=1

Yk√
k

Uk−1(x)
√

1− x2.

〈µγ , f 〉 := lim
N→∞

∫ 1

−1
f (x)

eγXN(x)

EeγXN(x)
dx

• Can check that for nice test functions f and for −
√

2π < γ <
√

2π
the limits exist as we’re dealing with L2-bounded martingales
(actually OK for −2π < γ < 2π – Lp-bounded martingale).

• This procedure defines random measures/distributions. These
are the objects we are after – correlation kernels agree with the
limiting GUE-moments.
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Real Gaussian multiplicative chaos – the general picture

• A centered log-correlated Gaussian field G (x) is (formally) a
Gaussian process on Rd with covariance

C (x , y) := EG (x)G (y) = − log |x − y |+ continuous

• Under mild conditions on C , honest Gaussian processes GN with
covariance converging to C exist (K-L expansion, convolution, ...).

Theorem (Kahane 1985,...)

For nice enough C (x , y), as N →∞ :

• eγGN (x)− γ2

2 EGN (x)
2

dx converges to a non-trivial random measure Mγ for

−
√

2d < γ <
√

2d. For |γ| ≥
√

2d, the limit is zero.

• For |γ| <
√

2d, Mγ lives on the random set of points (of dimension d − γ2

2 ){
x ∈ Rd : lim

N→∞
GN (x)

EGN (x)2
= γ

}
.

• Interpretation: GMC→ level sets. maxx GN(x) ∼
√

2dEGN(x)2.
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GMC in other fields of mathematics

• Initial motivation for GMC (Mandelbrot, Kahane): statistical
description of turbulence – Mγ = energy dissipation density.

• Mγ can be seen as the (unnormalized) Gibbs measure of a random
energy model with (logarithmic) correlations.

• Connections to RMT and number theory suggested by Fyodorov and
Keating.

• Connections to random planar curves (SLE) through conformal
welding. (Sheffield; Astala et al.).

• Connections to 2d quantum gravity and random planar maps. Mγ

(for suitable γ and the 2d GFF) plays a role in constructing scaling
limits of random planar maps. (Duplantier, Miller, and Sheffield)

• Plays an important role in recent developments of constructive
CFT/Liouville field theory. (David, Kupiainen, Rhodes, Vargas).

• Has also been used in some models of mathematical finance.
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• Connections to RMT and number theory suggested by Fyodorov and
Keating.

• Connections to random planar curves (SLE) through conformal
welding. (Sheffield; Astala et al.).

• Connections to 2d quantum gravity and random planar maps. Mγ

(for suitable γ and the 2d GFF) plays a role in constructing scaling
limits of random planar maps. (Duplantier, Miller, and Sheffield)
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The GUE e.v. counting function and GMC

Theorem (Claeys, Fahs, Lambert, W 2018)

Let γ ∈ (−2π, 2π) and f ∈ Cc((−1, 1)). Then as N →∞∫ 1

−1
f (x)

eγVN(x)

EeγVN(x)
dx

d→
∫ 1

−1
f (x)µγ(dx).

• Proof based on strong Gaussian approximation through
Riemann-Hilbert methods.

• Using intuition of GMC→ level sets, one can prove global rigidity
estimates.

Corollary (Claeys, Fahs, Lambert, W 2018)

For any ε, δ > 0 fixed, λ1 ≤ ... ≤ λN as before, and ρk the classical
locations of the eigenvalues:

lim
N→∞

P

 1

π
− ε ≤ sup

δN≤k≤(1−δ)N

N 2
π

√
1− ρ2k

log N
|λk − ρk | ≤

1

π
+ ε

 = 1.
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The Riemann zeta function

ζ(s) =
∞∑
n=1

n−s =
∏

p prime

1

1− p−s
, Re(s) > 1.

• Has a meromorphic continuation to C, with a single pole at s = 1.
Behavior of ζ(12 + it) is of fundamental importance in analytic
number theory (distribution of primes etc).

• Statistical behavior of ζ(12 + it) expected to be similar to
characteristic polynomials of random matrices, but little is known
rigorously.

Theorem (Ingham 1926, Bettin 2010)

Let ω be uniformly distributed on [0, 1] and x , y ∈ R be fixed. As T →∞

Eζ
(
1
2 + ix + iωT

)
ζ
(
1
2 + iy + iωT

)
= ζ(1 + i(x − y)) + ζ(1−i(x−y))

1−i(x−y)
(
T
2π

)−i(x−y)
+O(T−1/12).

• Does limT→∞ ζ(12 + ix + iωT ) exist? ...
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Multiplicative chaos and the Riemann zeta

Theorem (Saksman, W (2016))

• For any f ∈ C∞c (R,C),∫
ζ
(
1
2 + iωT + ix

)
f (x)dx

d→ 〈ξ, f 〉 as T →∞

• ξ =
∏∞

k=1(1− p
− 1

2
−ix

k e iθk )−1
d
= eEυ, where θk i.i.d. and uniform on

[0, 2π], E is a random smooth function, and υ is a complex GMC
distribution.

• On a suitable mesoscopic scale, ζ(12 + iωT + ix) is asymptotically
proportional to the characteristic polynomial of a Haar distributed
random unitary matrix.

• (Stronger results) conjectured by Fyodorov and Keating.

• Proof philosophy similar to GUE. Methods fairly basic number theory.

• Geometric interpretation? Interesting results about
maxRe/Im log ζ(12 + ix + iωT ) exist: see Najnudel; Arguin et al.
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The critical Ising model

• Let U be a bounded simply connected domain in C and Uδ a lattice
approximation of U of mesh δ > 0.

• Let (σδ(a))a∈Uδ
be a spin configuration distributed according to the

critical Ising model on Uδ with + b.c. Extend σδ to U.

Theorem (Chelkak, Hongler, and Izyurov 2015)

Let ψ be any conformal bijection from U to the upper half plane and C a
suitable constant. Then for x1, ..., xk ∈ U fixed and distinct,

lim
δ→0+

δ−k/4
(
E
[ k∏
j=1

σδ(xj)

])2

= Ck
k∏

j=1

(
|ψ′(xj)|

2Im(ψ(xj))

)1/4 ∑
µ∈{−1,1}k

∏
1≤p<q≤k

∣∣∣∣∣ψ(xp)− ψ(xq)

ψ(xp)− ψ(xq)

∣∣∣∣∣
µpµq

2

• If σδ and σ̃δ are independent copies, does x 7→ δ−1/4σδ(x)σ̃δ(x)
converge to some process (known that δ−1/8σδ(x) does)? ...
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The critical Ising model

Theorem (Junnila, Saksman, W 2018)

Let σδ and σ̃δ be independent copies of the Ising spin field. Then for any
f ∈ C∞c (U), as δ → 0

δ−1/4
∫
U

f (x)σδ(x)σ̃δ(x)dx
d→
∫
C
(
|ψ′(x)|

2Im ψ(x)

)
: cos GFF (x) : f (x)dx .

• Known well in the physics literature – bosonization of the Ising
model. See also work of Dubédat.

• Proof is through method of moments: Chelkak, Hongler, and Izyurov
+ some rather easy bounds near the diagonal.

• Geometric interpretation?
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• Proof is through method of moments: Chelkak, Hongler, and Izyurov
+ some rather easy bounds near the diagonal.

• Geometric interpretation?

11/12



The critical Ising model

Theorem (Junnila, Saksman, W 2018)

Let σδ and σ̃δ be independent copies of the Ising spin field. Then for any
f ∈ C∞c (U), as δ → 0

δ−1/4
∫
U

f (x)σδ(x)σ̃δ(x)dx
d→
∫
C
(
|ψ′(x)|

2Im ψ(x)

)
: cos GFF (x) : f (x)dx .

• Known well in the physics literature – bosonization of the Ising
model. See also work of Dubédat.

• Proof is through method of moments: Chelkak, Hongler, and Izyurov
+ some rather easy bounds near the diagonal.

• Geometric interpretation?

11/12



The GFF and cos(GFF): images
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