Multiplicative chaos in random matrix theory and related fields

Christian Webb

Aalto University, Finland
ICMP 2018 Montréal - July 24, 2018

The GUE eigenvalue counting function.

- Let $\lambda_{1} \leq \ldots \leq \lambda_{N}$ be the ordered eigenvalues of a GUE(N) random matrix - normalized to have limiting spectrum $[-1,1]$.

The GUE eigenvalue counting function.

- Let $\lambda_{1} \leq \ldots \leq \lambda_{N}$ be the ordered eigenvalues of a GUE(N) random matrix - normalized to have limiting spectrum $[-1,1]$.
- For $x \in(-1,1)$, let

$$
V_{N}(x)=\sum_{k=1}^{N} \mathbf{1}\left\{\lambda_{k} \leq x\right\}
$$

The GUE eigenvalue counting function.

- Let $\lambda_{1} \leq \ldots \leq \lambda_{N}$ be the ordered eigenvalues of a GUE(N) random matrix - normalized to have limiting spectrum $[-1,1]$.
- For $x \in(-1,1)$, let

$$
V_{N}(x)=\sum_{k=1}^{N} \mathbf{1}\left\{\lambda_{k} \leq x\right\}
$$

- Consider the stochastic process $\frac{e^{\gamma V_{N}(x)}}{\mathbb{E} e^{\gamma V_{N}(x)}}$ for $x \in(-1,1)$ and $\gamma \in \mathbb{R}$.

The GUE eigenvalue counting function.

- Let $\lambda_{1} \leq \ldots \leq \lambda_{N}$ be the ordered eigenvalues of a GUE(N) random matrix - normalized to have limiting spectrum $[-1,1]$.
- For $x \in(-1,1)$, let

$$
V_{N}(x)=\sum_{k=1}^{N} \mathbf{1}\left\{\lambda_{k} \leq x\right\}
$$

- Consider the stochastic process $\frac{e^{\gamma V_{N}(x)}}{\mathbb{E} e^{\gamma V_{N}(x)}}$ for $x \in(-1,1)$ and $\gamma \in \mathbb{R}$.
- Moments converge as $N \rightarrow \infty$:

Theorem (Charlier 2017)
Let $x_{1}, \ldots, x_{k} \in(-1,1)$ be fixed and distinct. Then

$$
\lim _{N \rightarrow \infty} \mathbb{E} \prod_{j=1}^{k} \frac{e^{\gamma V_{N}\left(x_{j}\right)}}{\mathbb{E} e^{\gamma V_{N}\left(x_{j}\right)}}=\prod_{1 \leq p<q \leq k}\left|\frac{1-x_{p} x_{q}+\sqrt{1-x_{p}^{2}} \sqrt{1-x_{q}^{2}}}{x_{p}-x_{q}}\right|^{\frac{\gamma^{2}}{2 \pi^{2}}}
$$

The GUE eigenvalue counting function.

- Let $\lambda_{1} \leq \ldots \leq \lambda_{N}$ be the ordered eigenvalues of a GUE(N) random matrix - normalized to have limiting spectrum $[-1,1]$.
- For $x \in(-1,1)$, let

$$
V_{N}(x)=\sum_{k=1}^{N} \mathbf{1}\left\{\lambda_{k} \leq x\right\}
$$

- Consider the stochastic process $\frac{e^{\gamma V_{N}(x)}}{\mathbb{E} e^{\gamma V_{N}(x)}}$ for $x \in(-1,1)$ and $\gamma \in \mathbb{R}$.
- Moments converge as $N \rightarrow \infty$:

Theorem (Charlier 2017)

Let $x_{1}, \ldots, x_{k} \in(-1,1)$ be fixed and distinct. Then

$$
\lim _{N \rightarrow \infty} \mathbb{E} \prod_{j=1}^{k} \frac{e^{\gamma V_{N}\left(x_{j}\right)}}{\mathbb{E} e^{\gamma V_{N}\left(x_{j}\right)}}=\prod_{1 \leq p<q \leq k}\left|\frac{1-x_{p} x_{q}+\sqrt{1-x_{p}^{2}} \sqrt{1-x_{q}^{2}}}{x_{p}-x_{q}}\right|^{\frac{\gamma^{2}}{2 \pi^{2}}}
$$

- Is there a process with such moments? Does $\frac{e^{\gamma V_{N}(x)}}{\mathbb{E}^{\gamma V_{N}(x)}}$ converge to it? What would this say about the GUE?

The limiting process - heuristics

- For $\left(Y_{k}\right)_{k=1}^{\infty}$ i.i.d. standard Gaussians and $\left(U_{j}\right)_{j=0}^{\infty}$ Chebyshev polynomials of the second kind, let (formally):

$$
X(x)=\frac{1}{\pi} \sum_{k=1}^{\infty} \frac{Y_{k}}{\sqrt{k}} U_{k-1}(x) \sqrt{1-x^{2}}
$$

The limiting process - heuristics

- For $\left(Y_{k}\right)_{k=1}^{\infty}$ i.i.d. standard Gaussians and $\left(U_{j}\right)_{j=0}^{\infty}$ Chebyshev polynomials of the second kind, let (formally):

$$
X(x)=\frac{1}{\pi} \sum_{k=1}^{\infty} \frac{Y_{k}}{\sqrt{k}} U_{k-1}(x) \sqrt{1-x^{2}}
$$

- Covariance structure (formally): for $x, y \in(-1,1)$

$$
\mathbb{E} X(x) X(y)=\frac{1}{2 \pi^{2}} \log \frac{1-x y+\sqrt{1-x^{2}} \sqrt{1-y^{2}}}{|x-y|}
$$

The limiting process - heuristics

- For $\left(Y_{k}\right)_{k=1}^{\infty}$ i.i.d. standard Gaussians and $\left(U_{j}\right)_{j=0}^{\infty}$ Chebyshev polynomials of the second kind, let (formally):

$$
X(x)=\frac{1}{\pi} \sum_{k=1}^{\infty} \frac{Y_{k}}{\sqrt{k}} U_{k-1}(x) \sqrt{1-x^{2}}
$$

- Covariance structure (formally): for $x, y \in(-1,1)$

$$
\mathbb{E} X(x) X(y)=\frac{1}{2 \pi^{2}} \log \frac{1-x y+\sqrt{1-x^{2}} \sqrt{1-y^{2}}}{|x-y|}
$$

- For $\mu_{\gamma}(x)=e^{\gamma X(x)-\frac{\gamma^{2}}{2} \mathbb{E} X(x)^{2}}$ (formally)

$$
\mathbb{E} \prod_{j=1}^{k} \mu_{\gamma}\left(x_{j}\right)=\prod_{1 \leq p<q \leq k}\left|\frac{1-x_{p} x_{q}+\sqrt{1-x_{p}^{2}} \sqrt{1-x_{q}^{2}}}{x_{p}-x_{q}}\right|^{\frac{\gamma^{2}}{2 \pi^{2}}} .
$$

The limiting process - heuristics

- For $\left(Y_{k}\right)_{k=1}^{\infty}$ i.i.d. standard Gaussians and $\left(U_{j}\right)_{j=0}^{\infty}$ Chebyshev polynomials of the second kind, let (formally):

$$
X(x)=\frac{1}{\pi} \sum_{k=1}^{\infty} \frac{Y_{k}}{\sqrt{k}} U_{k-1}(x) \sqrt{1-x^{2}}
$$

- Covariance structure (formally): for $x, y \in(-1,1)$

$$
\mathbb{E} X(x) X(y)=\frac{1}{2 \pi^{2}} \log \frac{1-x y+\sqrt{1-x^{2}} \sqrt{1-y^{2}}}{|x-y|}
$$

- For $\mu_{\gamma}(x)=e^{\gamma X(x)-\frac{\gamma^{2}}{2} \mathbb{E} X(x)^{2}}$ (formally)

$$
\mathbb{E} \prod_{j=1}^{k} \mu_{\gamma}\left(x_{j}\right)=\prod_{1 \leq p<q \leq k}\left|\frac{1-x_{p} x_{q}+\sqrt{1-x_{p}^{2}} \sqrt{1-x_{q}^{2}}}{x_{p}-x_{q}}\right|^{\frac{\gamma^{2}}{2 \pi^{2}}} .
$$

- Precisely the moments we want! $)^{-}$

The limiting process - heuristics

- For $\left(Y_{k}\right)_{k=1}^{\infty}$ i.i.d. standard Gaussians and $\left(U_{j}\right)_{j=0}^{\infty}$ Chebyshev polynomials of the second kind, let (formally):

$$
X(x)=\frac{1}{\pi} \sum_{k=1}^{\infty} \frac{Y_{k}}{\sqrt{k}} U_{k-1}(x) \sqrt{1-x^{2}}
$$

- Covariance structure (formally): for $x, y \in(-1,1)$

$$
\mathbb{E} X(x) X(y)=\frac{1}{2 \pi^{2}} \log \frac{1-x y+\sqrt{1-x^{2}} \sqrt{1-y^{2}}}{|x-y|}
$$

- For $\mu_{\gamma}(x)=e^{\gamma X(x)-\frac{\gamma^{2}}{2} \mathbb{E} X(x)^{2}}$ (formally)

$$
\mathbb{E} \prod_{j=1}^{k} \mu_{\gamma}\left(x_{j}\right)=\prod_{1 \leq p<q \leq k}\left|\frac{1-x_{p} x_{q}+\sqrt{1-x_{p}^{2}} \sqrt{1-x_{q}^{2}}}{x_{p}-x_{q}}\right|^{\frac{\gamma^{2}}{2 \pi^{2}}} .
$$

- Precisely the moments we want! ${ }^{(3)}$
- For each x, the sum defining $X(x)$ diverges almost surely and $\mathbb{E} X(x)^{2}=\infty$. What does μ_{γ} mean? $(:$

Gaussian multiplicative chaos - rigorous construction

- Problem: X doesn't exist in a pointwise sense $-\mathbb{E} X(x)^{2}=\infty$?

Gaussian multiplicative chaos - rigorous construction

- Problem: X doesn't exist in a pointwise sense $-\mathbb{E} X(x)^{2}=\infty$?
- " $\int_{-1}^{1} X(x) f(x) d x$ " does make sense for smooth enough $f \rightarrow$ The sum defining X converges as a random generalized function, but how to exponentiate such an object?

Gaussian multiplicative chaos - rigorous construction

- Problem: X doesn't exist in a pointwise sense $-\mathbb{E} X(x)^{2}=\infty$?
- " $\int_{-1}^{1} X(x) f(x) d x$ " does make sense for smooth enough $f \rightarrow$ The sum defining X converges as a random generalized function, but how to exponentiate such an object?
- Solution: regularize and treat as a measure or distribution:

$$
X_{N}(x)=\frac{1}{\pi} \sum_{k=1}^{N} \frac{Y_{k}}{\sqrt{k}} U_{k-1}(x) \sqrt{1-x^{2}}
$$

Gaussian multiplicative chaos - rigorous construction

- Problem: X doesn't exist in a pointwise sense $-\mathbb{E} X(x)^{2}=\infty$?
- " $\int_{-1}^{1} X(x) f(x) d x$ " does make sense for smooth enough $f \rightarrow$ The sum defining X converges as a random generalized function, but how to exponentiate such an object?
- Solution: regularize and treat as a measure or distribution:

$$
X_{N}(x)=\frac{1}{\pi} \sum_{k=1}^{N} \frac{Y_{k}}{\sqrt{k}} U_{k-1}(x) \sqrt{1-x^{2}}
$$

$$
\left\langle\mu_{\gamma}, f\right\rangle:=\lim _{N \rightarrow \infty} \int_{-1}^{1} f(x) \frac{e^{\gamma X_{N}(x)}}{\mathbb{E} e^{\gamma X_{N}(x)}} d x
$$

Gaussian multiplicative chaos - rigorous construction

- Problem: X doesn't exist in a pointwise sense $-\mathbb{E} X(x)^{2}=\infty$?
- " $\int_{-1}^{1} X(x) f(x) d x$ " does make sense for smooth enough $f \rightarrow$ The sum defining X converges as a random generalized function, but how to exponentiate such an object?
- Solution: regularize and treat as a measure or distribution:

$$
X_{N}(x)=\frac{1}{\pi} \sum_{k=1}^{N} \frac{Y_{k}}{\sqrt{k}} U_{k-1}(x) \sqrt{1-x^{2}}
$$

$$
\left\langle\mu_{\gamma}, f\right\rangle:=\lim _{N \rightarrow \infty} \int_{-1}^{1} f(x) \frac{e^{\gamma X_{N}(x)}}{\mathbb{E} e^{\gamma X_{N}(x)}} d x
$$

- Can check that for nice test functions f and for $-\sqrt{2 \pi}<\gamma<\sqrt{2 \pi}$ the limits exist as we're dealing with L^{2}-bounded martingales (actually OK for $-2 \pi<\gamma<2 \pi-L^{p}$-bounded martingale).

Gaussian multiplicative chaos - rigorous construction

- Problem: X doesn't exist in a pointwise sense $-\mathbb{E} X(x)^{2}=\infty$?
- " $\int_{-1}^{1} X(x) f(x) d x$ " does make sense for smooth enough $f \rightarrow$ The sum defining X converges as a random generalized function, but how to exponentiate such an object?
- Solution: regularize and treat as a measure or distribution:

$$
X_{N}(x)=\frac{1}{\pi} \sum_{k=1}^{N} \frac{Y_{k}}{\sqrt{k}} U_{k-1}(x) \sqrt{1-x^{2}}
$$

$$
\left\langle\mu_{\gamma}, f\right\rangle:=\lim _{N \rightarrow \infty} \int_{-1}^{1} f(x) \frac{e^{\gamma X_{N}(x)}}{\mathbb{E} e^{\gamma X_{N}(x)}} d x
$$

- Can check that for nice test functions f and for $-\sqrt{2 \pi}<\gamma<\sqrt{2 \pi}$ the limits exist as we're dealing with L^{2}-bounded martingales (actually OK for $-2 \pi<\gamma<2 \pi-L^{p}$-bounded martingale).
- This procedure defines random measures/distributions. These are the objects we are after - correlation kernels agree with the limiting GUE-moments.

Real Gaussian multiplicative chaos - the general picture

- A centered log-correlated Gaussian field $G(x)$ is (formally) a Gaussian process on \mathbb{R}^{d} with covariance

$$
C(x, y):=\mathbb{E} G(x) G(y)=-\log |x-y|+\text { continuous }
$$

Real Gaussian multiplicative chaos - the general picture

- A centered log-correlated Gaussian field $G(x)$ is (formally) a Gaussian process on \mathbb{R}^{d} with covariance

$$
C(x, y):=\mathbb{E} G(x) G(y)=-\log |x-y|+\text { continuous }
$$

- Under mild conditions on C, honest Gaussian processes G_{N} with covariance converging to C exist (K-L expansion, convolution, ...).

Real Gaussian multiplicative chaos - the general picture

- A centered log-correlated Gaussian field $G(x)$ is (formally) a Gaussian process on \mathbb{R}^{d} with covariance

$$
C(x, y):=\mathbb{E} G(x) G(y)=-\log |x-y|+\text { continuous }
$$

- Under mild conditions on C, honest Gaussian processes G_{N} with covariance converging to C exist (K-L expansion, convolution, ...).

Theorem (Kahane 1985,...)

For nice enough $C(x, y)$, as $N \rightarrow \infty$:

- $e^{\gamma G_{N}(x)-\frac{\gamma^{2}}{2} \mathbb{E} G_{N}(x)^{2}} d x$ converges to a non-trivial random measure M_{γ} for $-\sqrt{2 d}<\gamma<\sqrt{2 d}$. For $|\gamma| \geq \sqrt{2 d}$, the limit is zero.
- For $|\gamma|<\sqrt{2 d}, M_{\gamma}$ lives on the random set of points (of dimension $d-\frac{\gamma^{2}}{2}$)

$$
\left\{x \in \mathbb{R}^{d}: \lim _{N \rightarrow \infty} \frac{G_{N}(x)}{\mathbb{E} G_{N}(x)^{2}}=\gamma\right\}
$$

Real Gaussian multiplicative chaos - the general picture

- A centered log-correlated Gaussian field $G(x)$ is (formally) a Gaussian process on \mathbb{R}^{d} with covariance

$$
C(x, y):=\mathbb{E} G(x) G(y)=-\log |x-y|+\text { continuous }
$$

- Under mild conditions on C, honest Gaussian processes G_{N} with covariance converging to C exist (K-L expansion, convolution, ...).

Theorem (Kahane 1985, ...)

For nice enough $C(x, y)$, as $N \rightarrow \infty$:

- $e^{\gamma G_{N}(x)-\frac{\gamma^{2}}{2} \mathbb{E} G_{N}(x)^{2}} d x$ converges to a non-trivial random measure M_{γ} for $-\sqrt{2 d}<\gamma<\sqrt{2 d}$. For $|\gamma| \geq \sqrt{2 d}$, the limit is zero.
- For $|\gamma|<\sqrt{2 d}, M_{\gamma}$ lives on the random set of points (of dimension $d-\frac{\gamma^{2}}{2}$)

$$
\left\{x \in \mathbb{R}^{d}: \lim _{N \rightarrow \infty} \frac{G_{N}(x)}{\mathbb{E} G_{N}(x)^{2}}=\gamma\right\}
$$

- Interpretation: $\mathrm{GMC} \rightarrow$ level sets. $\max _{x} G_{N}(x) \sim \sqrt{2 d} \mathbb{E} G_{N}(x)^{2}$.

GMC in other fields of mathematics

- Initial motivation for GMC (Mandelbrot, Kahane): statistical description of turbulence $-M_{\gamma}=$ energy dissipation density.

GMC in other fields of mathematics

- Initial motivation for GMC (Mandelbrot, Kahane): statistical description of turbulence $-M_{\gamma}=$ energy dissipation density.
- M_{γ} can be seen as the (unnormalized) Gibbs measure of a random energy model with (logarithmic) correlations.

GMC in other fields of mathematics

- Initial motivation for GMC (Mandelbrot, Kahane): statistical description of turbulence $-M_{\gamma}=$ energy dissipation density.
- M_{γ} can be seen as the (unnormalized) Gibbs measure of a random energy model with (logarithmic) correlations.
- Connections to RMT and number theory suggested by Fyodorov and Keating.

GMC in other fields of mathematics

- Initial motivation for GMC (Mandelbrot, Kahane): statistical description of turbulence $-M_{\gamma}=$ energy dissipation density.
- M_{γ} can be seen as the (unnormalized) Gibbs measure of a random energy model with (logarithmic) correlations.
- Connections to RMT and number theory suggested by Fyodorov and Keating.
- Connections to random planar curves (SLE) through conformal welding. (Sheffield; Astala et al.).

GMC in other fields of mathematics

- Initial motivation for GMC (Mandelbrot, Kahane): statistical description of turbulence $-M_{\gamma}=$ energy dissipation density.
- M_{γ} can be seen as the (unnormalized) Gibbs measure of a random energy model with (logarithmic) correlations.
- Connections to RMT and number theory suggested by Fyodorov and Keating.
- Connections to random planar curves (SLE) through conformal welding. (Sheffield; Astala et al.).
- Connections to 2d quantum gravity and random planar maps. M_{γ} (for suitable γ and the 2d GFF) plays a role in constructing scaling limits of random planar maps. (Duplantier, Miller, and Sheffield)

GMC in other fields of mathematics

- Initial motivation for GMC (Mandelbrot, Kahane): statistical description of turbulence $-M_{\gamma}=$ energy dissipation density.
- M_{γ} can be seen as the (unnormalized) Gibbs measure of a random energy model with (logarithmic) correlations.
- Connections to RMT and number theory suggested by Fyodorov and Keating.
- Connections to random planar curves (SLE) through conformal welding. (Sheffield; Astala et al.).
- Connections to 2d quantum gravity and random planar maps. M_{γ} (for suitable γ and the 2d GFF) plays a role in constructing scaling limits of random planar maps. (Duplantier, Miller, and Sheffield)
- Plays an important role in recent developments of constructive CFT/Liouville field theory. (David, Kupiainen, Rhodes, Vargas).

GMC in other fields of mathematics

- Initial motivation for GMC (Mandelbrot, Kahane): statistical description of turbulence $-M_{\gamma}=$ energy dissipation density.
- M_{γ} can be seen as the (unnormalized) Gibbs measure of a random energy model with (logarithmic) correlations.
- Connections to RMT and number theory suggested by Fyodorov and Keating.
- Connections to random planar curves (SLE) through conformal welding. (Sheffield; Astala et al.).
- Connections to 2d quantum gravity and random planar maps. M_{γ} (for suitable γ and the 2d GFF) plays a role in constructing scaling limits of random planar maps. (Duplantier, Miller, and Sheffield)
- Plays an important role in recent developments of constructive CFT/Liouville field theory. (David, Kupiainen, Rhodes, Vargas).
- Has also been used in some models of mathematical finance.

The GUE e.v. counting function and GMC

Theorem (Claeys, Fahs, Lambert, W 2018)
Let $\gamma \in(-2 \pi, 2 \pi)$ and $f \in C_{c}((-1,1))$. Then as $N \rightarrow \infty$

$$
\int_{-1}^{1} f(x) \frac{e^{\gamma V_{N}(x)}}{\mathbb{E} e^{\gamma V_{N}(x)}} d x \xrightarrow{d} \int_{-1}^{1} f(x) \mu_{\gamma}(d x) .
$$

The GUE e.v. counting function and GMC

Theorem (Claeys, Fahs, Lambert, W 2018)
Let $\gamma \in(-2 \pi, 2 \pi)$ and $f \in C_{c}((-1,1))$. Then as $N \rightarrow \infty$

$$
\int_{-1}^{1} f(x) \frac{e^{\gamma V_{N}(x)}}{\mathbb{E} e^{\gamma V_{N}(x)}} d x \xrightarrow{d} \int_{-1}^{1} f(x) \mu_{\gamma}(d x) .
$$

- Proof based on strong Gaussian approximation through Riemann-Hilbert methods.

The GUE e.v. counting function and GMC

Theorem (Claeys, Fahs, Lambert, W 2018)
Let $\gamma \in(-2 \pi, 2 \pi)$ and $f \in C_{c}((-1,1))$. Then as $N \rightarrow \infty$

$$
\int_{-1}^{1} f(x) \frac{e^{\gamma V_{N}(x)}}{\mathbb{E} e^{\gamma V_{N}(x)}} d x \xrightarrow{d} \int_{-1}^{1} f(x) \mu_{\gamma}(d x) .
$$

- Proof based on strong Gaussian approximation through Riemann-Hilbert methods.
- Using intuition of GMC \rightarrow level sets, one can prove global rigidity estimates.

The GUE e.v. counting function and GMC

Theorem (Claeys, Fahs, Lambert, W 2018) Let $\gamma \in(-2 \pi, 2 \pi)$ and $f \in C_{c}((-1,1))$. Then as $N \rightarrow \infty$

$$
\int_{-1}^{1} f(x) \frac{e^{\gamma V_{N}(x)}}{\mathbb{E} e^{\gamma V_{N}(x)}} d x \xrightarrow{d} \int_{-1}^{1} f(x) \mu_{\gamma}(d x) .
$$

- Proof based on strong Gaussian approximation through Riemann-Hilbert methods.
- Using intuition of GMC \rightarrow level sets, one can prove global rigidity estimates.

Corollary (Claeys, Fahs, Lambert, W 2018)

For any $\epsilon, \delta>0$ fixed, $\lambda_{1} \leq \ldots \leq \lambda_{N}$ as before, and ρ_{k} the classical locations of the eigenvalues:

$$
\lim _{N \rightarrow \infty} \mathbb{P}\left(\frac{1}{\pi}-\epsilon \leq \sup _{\delta N \leq k \leq(1-\delta) N} \frac{N \frac{2}{\pi} \sqrt{1-\rho_{k}^{2}}}{\log N}\left|\lambda_{k}-\rho_{k}\right| \leq \frac{1}{\pi}+\epsilon\right)=1
$$

The Riemann zeta function

$$
\zeta(s)=\sum_{n=1}^{\infty} n^{-s}=\prod_{p \text { prime }} \frac{1}{1-p^{-s}}, \quad \operatorname{Re}(s)>1
$$

The Riemann zeta function

$$
\zeta(s)=\sum_{n=1}^{\infty} n^{-s}=\prod_{p \text { prime }} \frac{1}{1-p^{-s}}, \quad \operatorname{Re}(s)>1
$$

- Has a meromorphic continuation to \mathbb{C}, with a single pole at $s=1$. Behavior of $\zeta\left(\frac{1}{2}+i t\right)$ is of fundamental importance in analytic number theory (distribution of primes etc).

The Riemann zeta function

$$
\zeta(s)=\sum_{n=1}^{\infty} n^{-s}=\prod_{p \text { prime }} \frac{1}{1-p^{-s}}, \quad \operatorname{Re}(s)>1
$$

- Has a meromorphic continuation to \mathbb{C}, with a single pole at $s=1$. Behavior of $\zeta\left(\frac{1}{2}+i t\right)$ is of fundamental importance in analytic number theory (distribution of primes etc).
- Statistical behavior of $\zeta\left(\frac{1}{2}+i t\right)$ expected to be similar to characteristic polynomials of random matrices, but little is known rigorously.

The Riemann zeta function

$$
\zeta(s)=\sum_{n=1}^{\infty} n^{-s}=\prod_{p \text { prime }} \frac{1}{1-p^{-s}}, \quad \operatorname{Re}(s)>1 .
$$

- Has a meromorphic continuation to \mathbb{C}, with a single pole at $s=1$. Behavior of $\zeta\left(\frac{1}{2}+i t\right)$ is of fundamental importance in analytic number theory (distribution of primes etc).
- Statistical behavior of $\zeta\left(\frac{1}{2}+i t\right)$ expected to be similar to characteristic polynomials of random matrices, but little is known rigorously.

Theorem (Ingham 1926, Bettin 2010)

Let ω be uniformly distributed on $[0,1]$ and $x, y \in \mathbb{R}$ be fixed. As $T \rightarrow \infty$

$$
\begin{aligned}
& \mathbb{E} \zeta\left(\frac{1}{2}+i x+i \omega T\right) \overline{\zeta\left(\frac{1}{2}+i y+i \omega T\right)} \\
& \quad=\zeta(1+i(x-y))+\frac{\zeta(1-i(x-y))}{1-i(x-y)}\left(\frac{T}{2 \pi}\right)^{-i(x-y)}+\mathcal{O}\left(T^{-1 / 12}\right)
\end{aligned}
$$

The Riemann zeta function

$$
\zeta(s)=\sum_{n=1}^{\infty} n^{-s}=\prod_{p \text { prime }} \frac{1}{1-p^{-s}}, \quad \operatorname{Re}(s)>1 .
$$

- Has a meromorphic continuation to \mathbb{C}, with a single pole at $s=1$. Behavior of $\zeta\left(\frac{1}{2}+i t\right)$ is of fundamental importance in analytic number theory (distribution of primes etc).
- Statistical behavior of $\zeta\left(\frac{1}{2}+i t\right)$ expected to be similar to characteristic polynomials of random matrices, but little is known rigorously.

Theorem (Ingham 1926, Bettin 2010)

Let ω be uniformly distributed on $[0,1]$ and $x, y \in \mathbb{R}$ be fixed. As $T \rightarrow \infty$

$$
\begin{aligned}
& \mathbb{E} \zeta\left(\frac{1}{2}+i x+i \omega T\right) \overline{\zeta\left(\frac{1}{2}+i y+i \omega T\right)} \\
& \quad=\zeta(1+i(x-y))+\frac{\zeta(1-i(x-y))}{1-i(x-y)}\left(\frac{T}{2 \pi}\right)^{-i(x-y)}+\mathcal{O}\left(T^{-1 / 12}\right)
\end{aligned}
$$

- Does $\lim _{T \rightarrow \infty} \zeta\left(\frac{1}{2}+i x+i \omega T\right)$ exist? ...

Multiplicative chaos and the Riemann zeta

Theorem (Saksman, W (2016))

- For any $f \in C_{c}^{\infty}(\mathbb{R}, \mathbb{C})$,

$$
\int \zeta\left(\frac{1}{2}+i \omega T+i x\right) f(x) d x \xrightarrow{d}\langle\xi, f\rangle \quad \text { as } \quad T \rightarrow \infty
$$

Multiplicative chaos and the Riemann zeta

Theorem (Saksman, W (2016))

- For any $f \in C_{c}^{\infty}(\mathbb{R}, \mathbb{C})$,

$$
\int \zeta\left(\frac{1}{2}+i \omega T+i x\right) f(x) d x \xrightarrow{d}\langle\xi, f\rangle \quad \text { as } \quad T \rightarrow \infty
$$

- $\xi=\prod_{k=1}^{\infty}\left(1-p_{k}^{-\frac{1}{2}-i x} e^{i \theta_{k}}\right)^{-1} \stackrel{d}{=} e^{E} v$, where θ_{k} i.i.d. and uniform on $[0,2 \pi], E$ is a random smooth function, and v is a complex GMC distribution.

Multiplicative chaos and the Riemann zeta

Theorem (Saksman, W (2016))

- For any $f \in C_{c}^{\infty}(\mathbb{R}, \mathbb{C})$,

$$
\int \zeta\left(\frac{1}{2}+i \omega T+i x\right) f(x) d x \xrightarrow{d}\langle\xi, f\rangle \quad \text { as } \quad T \rightarrow \infty
$$

- $\xi=\prod_{k=1}^{\infty}\left(1-p_{k}^{-\frac{1}{2}-i x} e^{i \theta_{k}}\right)^{-1} \stackrel{d}{=} e^{E} v$, where θ_{k} i.i.d. and uniform on $[0,2 \pi], E$ is a random smooth function, and v is a complex GMC distribution.
- On a suitable mesoscopic scale, $\zeta\left(\frac{1}{2}+i \omega T+i x\right)$ is asymptotically proportional to the characteristic polynomial of a Haar distributed random unitary matrix.

Multiplicative chaos and the Riemann zeta

Theorem (Saksman, W (2016))

- For any $f \in C_{c}^{\infty}(\mathbb{R}, \mathbb{C})$,

$$
\int \zeta\left(\frac{1}{2}+i \omega T+i x\right) f(x) d x \xrightarrow{d}\langle\xi, f\rangle \quad \text { as } \quad T \rightarrow \infty
$$

- $\xi=\prod_{k=1}^{\infty}\left(1-p_{k}^{-\frac{1}{2}-i x} e^{i \theta_{k}}\right)^{-1} \stackrel{d}{=} e^{E} v$, where θ_{k} i.i.d. and uniform on $[0,2 \pi], E$ is a random smooth function, and v is a complex GMC distribution.
- On a suitable mesoscopic scale, $\zeta\left(\frac{1}{2}+i \omega T+i x\right)$ is asymptotically proportional to the characteristic polynomial of a Haar distributed random unitary matrix.
- (Stronger results) conjectured by Fyodorov and Keating.

Multiplicative chaos and the Riemann zeta

Theorem (Saksman, W (2016))

- For any $f \in C_{c}^{\infty}(\mathbb{R}, \mathbb{C})$,

$$
\int \zeta\left(\frac{1}{2}+i \omega T+i x\right) f(x) d x \xrightarrow{d}\langle\xi, f\rangle \quad \text { as } \quad T \rightarrow \infty
$$

- $\xi=\prod_{k=1}^{\infty}\left(1-p_{k}^{-\frac{1}{2}-i x} e^{i \theta_{k}}\right)^{-1} \stackrel{d}{=} e^{E} v$, where θ_{k} i.i.d. and uniform on $[0,2 \pi], E$ is a random smooth function, and v is a complex GMC distribution.
- On a suitable mesoscopic scale, $\zeta\left(\frac{1}{2}+i \omega T+i x\right)$ is asymptotically proportional to the characteristic polynomial of a Haar distributed random unitary matrix.
- (Stronger results) conjectured by Fyodorov and Keating.
- Proof philosophy similar to GUE. Methods fairly basic number theory.

Multiplicative chaos and the Riemann zeta

Theorem (Saksman, W (2016))

- For any $f \in C_{c}^{\infty}(\mathbb{R}, \mathbb{C})$,

$$
\int \zeta\left(\frac{1}{2}+i \omega T+i x\right) f(x) d x \xrightarrow{d}\langle\xi, f\rangle \quad \text { as } \quad T \rightarrow \infty
$$

- $\xi=\prod_{k=1}^{\infty}\left(1-p_{k}^{-\frac{1}{2}-i x} e^{i \theta_{k}}\right)^{-1} \stackrel{d}{=} e^{E} v$, where θ_{k} i.i.d. and uniform on $[0,2 \pi], E$ is a random smooth function, and v is a complex GMC distribution.
- On a suitable mesoscopic scale, $\zeta\left(\frac{1}{2}+i \omega T+i x\right)$ is asymptotically proportional to the characteristic polynomial of a Haar distributed random unitary matrix.
- (Stronger results) conjectured by Fyodorov and Keating.
- Proof philosophy similar to GUE. Methods fairly basic number theory.
- Geometric interpretation? Interesting results about $\max \operatorname{Re} / \operatorname{Im} \log \zeta\left(\frac{1}{2}+i x+i \omega T\right)$ exist: see Najnudel; Arguin et al.

The critical Ising model

- Let U be a bounded simply connected domain in \mathbb{C} and U_{δ} a lattice approximation of U of mesh $\delta>0$.

The critical Ising model

- Let U be a bounded simply connected domain in \mathbb{C} and U_{δ} a lattice approximation of U of mesh $\delta>0$.
- Let $\left(\sigma_{\delta}(a)\right)_{a \in U_{\delta}}$ be a spin configuration distributed according to the critical Ising model on U_{δ} with + b.c. Extend σ_{δ} to U.

The critical Ising model

- Let U be a bounded simply connected domain in \mathbb{C} and U_{δ} a lattice approximation of U of mesh $\delta>0$.
- Let $\left(\sigma_{\delta}(a)\right)_{a \in U_{\delta}}$ be a spin configuration distributed according to the critical Ising model on U_{δ} with + b.c. Extend σ_{δ} to U.

Theorem (Chelkak, Hongler, and Izyurov 2015)

Let ψ be any conformal bijection from U to the upper half plane and \mathcal{C} a suitable constant. Then for $x_{1}, \ldots, x_{k} \in U$ fixed and distinct,

$$
\begin{aligned}
& \lim _{\delta \rightarrow 0^{+}} \delta^{-k / 4}\left(\mathbb{E}\left[\prod_{j=1}^{k} \sigma_{\delta}\left(x_{j}\right)\right]\right)^{2} \\
&=\mathcal{C}^{k} \prod_{j=1}^{k}\left(\frac{\left|\psi^{\prime}\left(x_{j}\right)\right|}{2 \operatorname{Im}\left(\psi\left(x_{j}\right)\right)}\right)^{1 / 4} \sum_{\mu \in\{-1,1\}^{k}} \prod_{1 \leq p<q \leq k}\left|\frac{\psi\left(x_{p}\right)-\psi\left(x_{q}\right)}{\psi\left(x_{p}\right)-\overline{\psi\left(x_{q}\right)}}\right|^{\frac{\mu_{p} \mu_{q}}{2}}
\end{aligned}
$$

The critical Ising model

- Let U be a bounded simply connected domain in \mathbb{C} and U_{δ} a lattice approximation of U of mesh $\delta>0$.
- Let $\left(\sigma_{\delta}(a)\right)_{a \in U_{\delta}}$ be a spin configuration distributed according to the critical Ising model on U_{δ} with + b.c. Extend σ_{δ} to U.

Theorem (Chelkak, Hongler, and Izyurov 2015)

Let ψ be any conformal bijection from U to the upper half plane and \mathcal{C} a suitable constant. Then for $x_{1}, \ldots, x_{k} \in U$ fixed and distinct,

$$
\begin{aligned}
& \lim _{\delta \rightarrow 0^{+}} \delta^{-k / 4}\left(\mathbb{E}\left[\prod_{j=1}^{k} \sigma_{\delta}\left(x_{j}\right)\right]\right)^{2} \\
& \quad=\mathcal{C}^{k} \prod_{j=1}^{k}\left(\frac{\left|\psi^{\prime}\left(x_{j}\right)\right|}{2 \operatorname{Im}\left(\psi\left(x_{j}\right)\right)}\right)^{1 / 4} \sum_{\mu \in\{-1,1\}^{k}} \prod_{1 \leq p<q \leq k}\left|\frac{\psi\left(x_{p}\right)-\psi\left(x_{q}\right)}{\psi\left(x_{p}\right)-\overline{\psi\left(x_{q}\right)}}\right|^{\frac{\mu_{p} \mu_{q}}{2}}
\end{aligned}
$$

- If σ_{δ} and $\widetilde{\sigma}_{\delta}$ are independent copies, does $x \mapsto \delta^{-1 / 4} \sigma_{\delta}(x) \widetilde{\sigma}_{\delta}(x)$ converge to some process (known that $\delta^{-1 / 8} \sigma_{\delta}(x)$ does)? ...

The critical Ising model

Theorem (Junnila, Saksman, W 2018)
Let σ_{δ} and $\widetilde{\sigma}_{\delta}$ be independent copies of the Ising spin field. Then for any $f \in C_{c}^{\infty}(U)$, as $\delta \rightarrow 0$
$\delta^{-1 / 4} \int_{U} f(x) \sigma_{\delta}(x) \widetilde{\sigma}_{\delta}(x) d x \xrightarrow{d} \int \mathcal{C}\left(\frac{\left|\psi^{\prime}(x)\right|}{2 \operatorname{Im} \psi(x)}\right): \cos G F F(x): f(x) d x$.

The critical Ising model

Theorem (Junnila, Saksman, W 2018)
Let σ_{δ} and $\widetilde{\sigma}_{\delta}$ be independent copies of the Ising spin field. Then for any $f \in C_{c}^{\infty}(U)$, as $\delta \rightarrow 0$
$\delta^{-1 / 4} \int_{U} f(x) \sigma_{\delta}(x) \widetilde{\sigma}_{\delta}(x) d x \xrightarrow{d} \int \mathcal{C}\left(\frac{\left|\psi^{\prime}(x)\right|}{2 \operatorname{Im} \psi(x)}\right): \cos G F F(x): f(x) d x$.

- Known well in the physics literature - bosonization of the Ising model. See also work of Dubédat.

The critical Ising model

Theorem (Junnila, Saksman, W 2018)
Let σ_{δ} and $\tilde{\sigma}_{\delta}$ be independent copies of the Ising spin field. Then for any $f \in C_{c}^{\infty}(U)$, as $\delta \rightarrow 0$

$$
\delta^{-1 / 4} \int_{U} f(x) \sigma_{\delta}(x) \widetilde{\sigma}_{\delta}(x) d x \xrightarrow{d} \int \mathcal{C}\left(\frac{\left|\psi^{\prime}(x)\right|}{2 \operatorname{Im} \psi(x)}\right): \cos G F F(x): f(x) d x .
$$

- Known well in the physics literature - bosonization of the Ising model. See also work of Dubédat.
- Proof is through method of moments: Chelkak, Hongler, and Izyurov + some rather easy bounds near the diagonal.

The critical Ising model

Theorem (Junnila, Saksman, W 2018)

Let σ_{δ} and $\widetilde{\sigma}_{\delta}$ be independent copies of the Ising spin field. Then for any $f \in C_{c}^{\infty}(U)$, as $\delta \rightarrow 0$

$$
\delta^{-1 / 4} \int_{U} f(x) \sigma_{\delta}(x) \widetilde{\sigma}_{\delta}(x) d x \xrightarrow{d} \int \mathcal{C}\left(\frac{\left|\psi^{\prime}(x)\right|}{2 \operatorname{Im} \psi(x)}\right): \cos G F F(x): f(x) d x .
$$

- Known well in the physics literature - bosonization of the Ising model. See also work of Dubédat.
- Proof is through method of moments: Chelkak, Hongler, and Izyurov + some rather easy bounds near the diagonal.
- Geometric interpretation?

The GFF and $\cos (G F F)$: images

-4

