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e Consider the stochastic process EAVNGD

e Moments converge as N — co:

Theorem (Charlier 2017)
Let xi,...,xx € (—1,1) be fixed and distinct. Then
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. V(%)
e Is there a process with such moments? Does %

to it? What would this say about the GUE?

converge
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polynomials of the second kind, let (formally):
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Covariance structure (formally): for x,y € (—1,1)

EX(x)X(y) = 7| 1—xy+v1—x2y/1
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For p,(x) = X ()= FEX(x)* (formally)
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E H py (%) = H
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Precisely the moments we want! ©®
For each x, the sum defining X(x) diverges almost surely and
EX(x)? = co. What does 1, mean? ®

3/12



Gaussian multiplicative chaos — rigorous construction

e Problem: X doesn't exist in a pointwise sense — EX(x)? = c0?

4/12



Gaussian multiplicative chaos — rigorous construction

e Problem: X doesn't exist in a pointwise sense — EX(x)? = c0?

o’ f_ll X(x)f(x)dx" does make sense for smooth enough f — The
sum defining X converges as a random generalized function, but how
to exponentiate such an object?

4/12



Gaussian multiplicative chaos — rigorous construction

e Problem: X doesn't exist in a pointwise sense — EX(x)? = oo?
" f X(x)f(x)dx" does make sense for smooth enough f — The
sum deﬂnlng X converges as a random generalized function, but how
to exponentiate such an object?

e Solution: regularize and treat as a measure or distribution:

Z U (V1= J

4/12



Gaussian multiplicative chaos — rigorous construction

e Problem: X doesn't exist in a pointwise sense — EX(x)? = oo?
" f X(x)f(x)dx" does make sense for smooth enough f — The
sum deﬂnlng X converges as a random generalized function, but how
to exponentiate such an object?

e Solution: regularize and treat as a measure or distribution:

Z U (V1= J

. 1 e'YXN( )
(1, ) = Jim_ / ) J

4/12



Gaussian multiplicative chaos — rigorous construction

e Problem: X doesn't exist in a pointwise sense — EX(x)? = oo?
" f X(x)f(x)dx" does make sense for smooth enough f — The
sum defmlng X converges as a random generalized function, but how
to exponentiate such an object?

e Solution: regularize and treat as a measure or distribution:

Z U (V1= J

N—oo 1

. 1 e'YXN( )

e Can check that for nice test functions f and for —v/27m < v < 27
the limits exist as we're dealing with L2-bounded martingales
(actually OK for —27 < v < 27 — LP-bounded martingale).

4/12



Gaussian multiplicative chaos — rigorous construction

Problem: X doesn’t exist in a pointwise sense — EX(x)? = oo?

" f X(x)f(x)dx" does make sense for smooth enough f — The
sum defmlng X converges as a random generalized function, but how
to exponentiate such an object?

Solution: regularize and treat as a measure or distribution:

Z Uk 1(x)V1—x2 ’

. 1 e'YXN(X)
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Can check that for nice test functions f and for —/2m < v < /27
the limits exist as we're dealing with L2-bounded martingales
(actually OK for —27 < v < 27 — LP-bounded martingale).

This procedure defines random measures/distributions. These
are the objects we are after — correlation kernels agree with the

limiting GUE-moments. s
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covariance converging to C exist (K-L expansion, convolution, ...).

Theorem (Kahane 1985,...)

For nice enough C(x,y), as N — oo :

2
o &YW~ TEG) dx converges to a non-trivial random measure M., for
—V2d <y < V2d. For |y| > 2d, the limit is zero.

e For |y| < V2d, M, lives on the random set of points (of dimension d — 772

e Interpretation: GMC— level sets. max, Gn(x) ~ vV2dEGp(x)?.
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limits of random planar maps. (Duplantier, Miller, and Sheffield)

e Plays an important role in recent developments of constructive
CFT /Liouville field theory. (David, Kupiainen, Rhodes, Vargas).

e Has also been used in some models of mathematical finance.
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The GUE e.v. counting function and GMC

Theorem (Claeys, Fahs, Lambert, W 2018)
Let v € (—2m,27) and f € Cc((—1,1)). Then as N — oo

1 e'yVN(X) d 1
/1 )y /1 o (@)

e Proof based on strong Gaussian approximation through
Riemann-Hilbert methods.

e Using intuition of GMC— level sets, one can prove global rigidity
estimates.

Corollary (Claeys, Fahs, Lambert, W 2018)

For any €,0 > 0 fixed, A1 < ... < Ay as before, and py the classical
locations of the eigenvalues:

1
Iim P ——e< sup
N—o0 s SN<k<(1—8)N log N
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rigorously.
Theorem (Ingham 1926, Bettin 2010)
Let w be uniformly distributed on [0,1] and x,y € R be fixed. As T — oo

JEC( +lx+le)C(l+iy+in)
= ((1+i(x — y)) + L2 (L) 70T 4 o(T12),

i(x—y

e Does lim7r_ C( + ix + iwT) exist? ...
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Theorem (Saksman, W (2016))
e Forany f € CX(R,C),

LijwT +ix f(x)dx % ,f as T —

2
E=Tlr(1- p;i_ixe"‘gk)_1 2 eEy, where Ok i.i.d. and uniform on
[0,27], E is a random smooth function, and v is a complex GMC
distribution.

e On a suitable mesoscopic scale, ¢ (% + iwT + ix) is asymptotically
proportional to the characteristic polynomial of a Haar distributed
random unitary matrix.

e (Stronger results) conjectured by Fyodorov and Keating.
e Proof philosophy similar to GUE. Methods fairly basic number theory.
e Geometric interpretation? Interesting results about

max Re/Im log ((% + ix + iwT) exist: see Najnudel; Arguin et al.
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critical Ising model on Us with + b.c. Extend o5 to U.

Theorem (Chelkak, Hongler, and Izyurov 2015)

Let 1) be any conformal bijection from U to the upper half plane and C a
suitable constant. Then for x1, ..., xx € U fixed and distinct,

Lm“(E[H“])
-1 (amitn) 2,1

pe{—1,1}k 1<p<q<k

Kphq
2

$0) ~ $lxg)
Y(xp) — ¥U(xq)

e If o5 and & are independent copies, does x — 6 1/455(x)s(x)
converge to some process (known that §—1/855(x) does)? ...
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images

The GFF and cos(GFF)
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