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Introduction

Our observation: For a class of gapped quantum spin systems
@ satisfying Lieb-Robinson bounds,
@ admitting single-particle states

Haag-Ruelle scattering theory can be developed in a natural,
model independent manner.
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Our observation: For a class of gapped quantum spin systems
@ satisfying Lieb-Robinson bounds,
@ admitting single-particle states
Haag-Ruelle scattering theory can be developed in a natural,
model independent manner.
Comparison with the literature

© Haag-Ruelle scattering theory for Euclidean lattice quantum
field theories.

[Barata-Fredenhagen 91, Barata 91, 92, Auil-Barata 01,05]
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Introduction

Our observation: For a class of gapped quantum spin systems
@ satisfying Lieb-Robinson bounds,
@ admitting single-particle states
Haag-Ruelle scattering theory can be developed in a natural,
model independent manner.
Comparison with the literature

© Haag-Ruelle scattering theory for Euclidean lattice quantum
field theories.

[Barata-Fredenhagen 91, Barata 91, 92, Auil-Barata 01,05]

@ Scattering theory for quantum spin systems relying on
properties of concrete Hamiltonians.

[Hepp 65, Graf-Schenker 97, Malyshev 78, Yarotsky 04... |
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@ Scattering in Quantum Mechanics
© Scattering in QFT and spin systems
© The problem of asymptotic completeness

@ Conclusions and outlook
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Scattering in Quantum Mechanics

O Hilbert space: H := L?(R3, dx)
@ Hamiltonian: H = —3A + V(x)
© Schrédinger equation: i0;V; = HV,

Q Time evolution: WV, := e itHy,_,
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Scattering in Quantum Mechanics

O Hilbert space: H := L?(R3, dx)
@ Hamiltonian: H = —3A + V(x)
© Schrédinger equation: i0;V; = HV,

Q Time evolution: WV, := e itHy,_,
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Scattering in Quantum Mechanics

@ There are states W' € H of the particle in potential V which
for large times evolve like states of the free particle.
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Scattering in Quantum Mechanics

@ There are states W' € H of the particle in potential V which
for large times evolve like states of the free particle.

@ For any such WO there exists W € H s.t.
y

tll[go HefitHwout . efitHo\UH =0
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Scattering in Quantum Mechanics

@ There are states W' € H of the particle in potential V which
for large times evolve like states of the free particle.

@ For any such WO there exists W € H s.t.
lim ||‘Uout . eitHefitHo\UH -0

t—o0

© Def: WUt :— |im,_, e'tHe~itHoy js the scattering state.
g
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Scattering in Quantum Mechanics

@ There are states W' € H of the particle in potential V which
for large times evolve like states of the free particle.

@ For any such WO there exists W € H s.t.

lim ||‘Uout . eitHefitHo\UH -0

t—o0
© Def: WOUl = [im,_,, eltHe 1Moy is the scattering state.
Q Def: WO = lim;_, e'te~itH0 is the wave-operator.
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Cook's method

Q Let Y, ;= eitHeitHoy
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Cook's method

Q Let Y, ;= eitHeitHoy
@ Suppose we can show

0.V, || = |l Ve itHow|| e [Y(R, dt).
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Cook's method

Q Let Y, ;= eitHeitHoy
@ Suppose we can show

0.V, || = |l Ve itHow|| e [Y(R, dt).

© Then limiLoo Vi = ftZO(GT\IJT)dT + Wy, exists.
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Framework for QFT and spin systems

© T - the abelian group of space translations (R or Z%).
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Framework for QFT and spin systems

© T - the abelian group of space translations (R or Z%).

@ T - Pontryagin dual of I (R or S¢).

© (A, 7) - C*-dynamical system with R x I > (t, x) = 7(¢ .

© B C2A -almost-local operators: |[[B1, 7(s,vs)(B2)]|| = O(|s|~>).

Lieb-Robinson bounds:

I[7e(A), B|| < Cageirt=d(AB) A B e 9 local.
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Framework for QFT and spin systems

© T - the abelian group of space translations (R or Z%).

@ T - Pontryagin dual of I (R or S¢).

© (A, 7) - C*-dynamical system with R x I > (t, x) = 7(¢ .

© B C2A -almost-local operators: |[[B1, 7(s,vs)(B2)]|| = O(|s|~>).
© 2 C B(H) and 74 ) (A) = U(t, x)AU(t, x)* for A € 2.

CSpUH
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@ QFT: \¢* theory for 1 and 2 space dimensions:
1 1 A
_ - w242 4
L= 20,00 — md? — o

@ Spin systems: Ising model in transverse magnetic field for any
space dimension:

H = _% Z(U,(z) —-1)— EZO’I(X)O'}X)

i
SpU H
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Framework for QFT and spin systems

@ T - the abelian group of space translations (R or Z%).

@ T - Pontryagin dual of T (R or S¢).

© (A, 7) - C*-dynamical system with R x I 3 (t, x) = 7(¢ -

Q@ B CA -almost-local operators: ||[B1, 7(s,vs)(B2)]|l = O(|s|~>°).
© 2 C B(H) and 74 ) (A) = U(t, x)AU(t, x)* for A € 2.

H

SpU H . SpU
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Framework for QFT and spin systems

@ T - the abelian group of space translations (R or Z%).

@ T - Pontryagin dual of T (R or S¢).

© (A, 7) - C*-dynamical system with R x I 3 (t, x) = 7(¢ -

Q@ B CA -almost-local operators: ||[B1, 7(s,vs)(B2)]|l = O(|s|~>°).
© 2 C B(H) and 74 ) (A) = U(t, x)AU(t, x)* for A € 2.

SpU H  SpUH

Let Bf,...,B; € B bes.t. BfQ € 1y(A;)H are single-particle
states.
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Arveson spectrum

Let (2, 7) be a C*-dynamical system.

Definition
The Arveson spectrum of A € 2 is the support of the

(inverse) Fourier transform of R x ' 3 (¢, x) = 7(¢,)(A).

It is denoted Sp,T.
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Arveson spectrum

Let (2, 7) be a C*-dynamical system.

Definition

The Arveson spectrum of A € 2 is the support of the
(inverse) Fourier transform of R x ' 3 (¢, x) = 7(¢,)(A).

It is denoted Sp,T.

Fact 1: (Energy-momentum transfer relation)
O Let 7(;,)(A) = U(t,x)AU(t, x)* for A € 2.
@ Let 1y(-) denote the spectral measure of U.
Then

Aly(A)YH C T1y(A+ Spam)H, Aell
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Arveson spectrum

Let (2, 7) be a C*-dynamical system.

Definition

The Arveson spectrum of A € 2 is the support of the
(inverse) Fourier transform of R X ' > (¢, x) = 7(¢,)(A).

It is denoted Sp,7T.

Fact 1: (Energy-momentum transfer relation)
Q Let 7 ) (A) = U(t, x)AU(t, x)* for A € 2L
@ Let 1y(-) denote the spectral measure of U.
Then

Aly(A)YH C 1y(A+ Spar)H, AcL

Fact 2: For any compact A there are plenty almost-local operators
A with Spa7 C A.
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Framework for QFT and spin systems

@ T - the abelian group of space translations (R or Z%).

@ T - Pontryagin dual of T (R or S¢).

© (A, 7) - C*-dynamical system with R x I 3 (t, x) = 7(¢ -

Q@ B CA -almost-local operators: ||[B1, 7(s,vs)(B2)]|l = O(|s|~>°).
© 2 C B(H) and 74 ) (A) = U(t, x)AU(t, x)* for A € 2.

SpU H  SpUH

Let Bf,...,B; € B bes.t. BfQ € 1y(A;)H are single-particle
states.
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Haag-Ruelle scattering theory

Theorem (Haag-Ruelle 62, Bachmann-Naaijkens-W.D.)

The following limits exist and are called scattering states

yout - — ||m Bl (g1e) .- ;‘,‘vt(g,,yt)Q, where

Bi(gt) = fl‘ dp(X)7(t,x) (B*)gt(x), ge(x) : fr dpe” ’Z(P)“F'PXA(p)
and velocity supports V(g;) := { VX(p)|p € suppg; } are disjoint.

SpU H  Spu H
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Haag-Ruelle scattering theory

Theorem (Haag-Ruelle 62, Bachmann-Naaijkens-W.D.)

The following limits exist and are called scattering states

WO = lim Bf,(g1¢) .- By i(8nt)Q,  where
t—o00

Bf (gt) = fr d/.L(X T(tx (B*)gt(x) gt(X fl’ dpe iX(p)t+ipx 5 (p)
and velocity supports V(g;) := { VX(p) | p € supp &; } are disjoint.

Proof:
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Theorem (Haag-Ruelle 62, Bachmann-Naaijkens-W.D.)

The following limits exist and are called scattering states

WO = lim Bf,(g1¢) .- By i(8nt)Q,  where
t—o00

Bf (gt) = fr d/.L(X T(tx (B*)gt(x) gt(X fl’ dpe iX(p)t+ipx 5 (p)
and velocity supports V(g;) := { VX(p) | p € supp &; } are disjoint.

Proof:
Q 0:(Bi(gt))2=0.
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Haag-Ruelle scattering theory

Theorem (Haag-Ruelle 62, Bachmann-Naaijkens-W.D.)

The following limits exist and are called scattering states

WO = lim Bf,(g1¢) .- By i(8nt)Q,  where
t—o00

Bf (gt) = fr d/.L(X T(tx (B*)gt(x) gt(X fl’ dpe iX(p)t+ipx 5 (p)
and velocity supports V(g;) := { VX(p) | p € supp &; } are disjoint.

Proof:
Q 0:(Bi(gt))2=0.

Q Let W, := B} ,(g1.t)B5 1(82,)2.

Wojciech Dybalski Scattering theory for spin systems



Haag-Ruelle scattering theory

Theorem (Haag-Ruelle 62, Bachmann-Naaijkens-W.D.)

The following limits exist and are called scattering states

Vo = |im Bf (g1.t)--- Bii(gnt)Q,  where
t—oo ’

B (gt) = Jr du(x)7(t.x)(B*)ge(x). g¢(x) == [z dpe™ P (9)
and velocity supports V(g;) := { VX(p) | p € supp &; } are disjoint.

Proof:
Q 0:(Bf(g:))2=0.

Q Let W, := B} ,(g1.t)B5 1(82,1)2.

OrVe = 0r(B1c(81,t)) B2,(82,6)2 + B ¢(81,¢) 0:(Bz,¢(82,6))02
—_———
=0
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Haag-Ruelle scattering theory

Theorem (Haag-Ruelle 62, Bachmann-Naaijkens-W.D.)

The following limits exist and are called scattering states

Vo = |im Bf (g1.t)--- Bii(gnt)Q,  where
t—oo ’

B (gt) = Jr du(x)7(t.x)(B*)ge(x). g¢(x) == [z dpe™ P (9)
and velocity supports V(g;) := { VX(p) | p € supp &; } are disjoint.

Proof:
Q 0:(Bi(gt))2=0.

O Let V;:= Bik,t(gl,f)Bit(th)Q-
oV = 8t(Bit(g1,t)) Bit(gz,t)Q + Bit(th) 8t(B;’t(g27t))Q
—
=0
= [at(Bik,t(gl,t))a B;,t(gZ,t)]Q =0(t™). O
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Wave-operators and S-matrix

Q@ H; C H - single-particle subspace.
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Wave-operators and S-matrix

Q@ H; C H - single-particle subspace.

@ [(#H1) - the symmetric Fock space over #;.

© The outgoing wave-operator W : [(H;) — H is defined by
WO (2" (W) .. 3" (V)Q) = lim B (g1.e). . B (gne)2

for W; := B} (git)2- Hout .= Ran Wout,
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Wave-operators and S-matrix

Q@ H; C H - single-particle subspace.

@ [(#H1) - the symmetric Fock space over #;.

© The outgoing wave-operator W : [(H;) — H is defined by
Wt (a*(Wy)...a"(V,)Q) = tILn;o Bi i(g1,t) - - - By (8gnt)2
for U; .= Bf(gi+)Q2. H°" := Ran W,

Q S := (WOu)* Win s the scattering matrix.
g
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Wave-operators and S-matrix

© Hi1 C H - single-particle subspace.

@ [(#H1) - the symmetric Fock space over #;.

© The outgoing wave-operator W : [(H;) — H is defined by
WO (a* (W) ... 3" (Vo)) = Jim B (g10). . B e(gne)®
for W; := B} (git)2- Hout .= Ran Wout,

Q S := (WOu)* W s the scattering matrix.

© Def. If H°" = H the theory is asymptotically complete.
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The problem of asymptotic completeness in QM

A QM theory given by H = —%A + V is asymptotically complete

if scattering states and bound states of H span the entire Hilbert
space.
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Proving asymptotic completeness in QM

Excluding ‘fuzzy’ configurations in which the particle cannot decide
between a bound state and a scattering state.

iy
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Proving asymptotic completeness in QM

Excluding ‘fuzzy’ configurations in which the particle cannot decide
between a bound state and a scattering state.

y

A proof of asymptotic completeness is available in N-body QM
[Faddeev 63,..., Sigal-Soffer 87, Graf 90, Derezinski 93]

Wojciech Dybalski Scattering theory for spin systems




Asymptotic completeness in QFT and spin systems

@ In systems with infinitely many degrees of freedom
there is an additional difficulty:
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@ In systems with infinitely many degrees of freedom
there is an additional difficulty:

o The Stone-von Neumann uniqueness theorem may break down.

e That is, the algebra of observables 20 may have many
inequivalent representations.

Q P
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Generalized asymptotic completeness

@ Conventional asymptotic completeness:

o

| \P> — | \Pout> o
Q
N
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Generalized asymptotic completeness

@ Conventional asymptotic completeness:

o

| \I;> — | \Pout> o
Q
N

@ Generalized asymptotic completeness [C. Gérard-W.D. 16]:

|\P\____ A)ut____|\Pout> o

Q

N
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Generalized asymptotic completeness

@ Conventional asymptotic completeness:

o

| \I;> — | \Pout> o
Q
N

@ Generalized asymptotic completeness [C. Gérard-W.D. 16]:

|\P\____ A)ut____|\Pout> o

Q

N

© Fact. Generalized asymptotic completeness holds under our
assumptions.
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Araki-Haag detectors

Theorem (Araki-Haag 67, Buchholz 90)
Let C; := [i dp(x)m(e ) (B*B)h(%), h € C§°(R3).

Wojciech Dybalski Scattering theory for spin systems



Araki-Haag detectors

Theorem (Araki-Haag 67, Buchholz 90)
Let C; := [i dp(x)7(e ) (B*B)h(%), h € C°(R3). Then

<wout , thout >

lim
t—00
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Araki-Haag detectors

Theorem (Araki-Haag 67, Buchholz 90)
Let C; := [i dp(x)7(e ) (B*B)h(%), h € C°(R3). Then

<wout , thout >

lim
t—00

- /de (pIB*BIp)(VE(B)) (WO, &% (P) 2ot (P)V°)

Vv Vv
sensitivity of the detector particle density
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Generalized asymptotic completeness

Theorem (Gérard-W.D. 14, W.D. 16)

Let Ay +---+ A, C A and h; have disjoint supports. Then the
following limits exist

. . X
At = s-tILn;o G...Coely(d), G = /rdM(X)T(t,x)(B B)h(?)

Also, generalized AC holds, i.e. H°" = [A°""H] & CQ.

SpU H

SpUu H -

\ ‘
- Q S

Wojciech Dybalski Scattering theory for spin systems



Generalized asymptotic completeness

Theorem (Gérard-W.D. 14, W.D. 16)

Let Ay +---+ A, C A and h; have disjoint supports. Then the
following limits exist

. . X
At = s-tILn;o G...Coely(d), G = /rdM(X)T(t,x)(B B)h(?)
Also, generalized AC holds, i.e. H°" = [A°""H] & CQ.

@ Generalized asymptotic completeness:

|\Ij\____ Aout ____|\Pout> o
Q,

N
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Conclusions and outlook

© We developed Haag-Ruelle scattering theory for a class of
gapped quantum spin systems.
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Conclusions and outlook

© We developed Haag-Ruelle scattering theory for a class of
gapped quantum spin systems.

@ The construction relies on the Lieb-Robinson bounds and on
the existence of isolated mass-shells of (quasi-)particles.

© Our work provides a basis for a systematic study of the
problem of asymptotic completeness for quantum spin systems.

@ A related future direction is scattering of charged particles.

(anyons, topological order, Kitaev-type models...)
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