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Introduction

Our observation: For a class of gapped quantum spin systems
satisfying Lieb-Robinson bounds,
admitting single-particle states

Haag-Ruelle scattering theory can be developed in a natural,
model independent manner.
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Scattering in Quantum Mechanics

1 Hilbert space: H := L2(R3, dx)

2 Hamiltonian: H = −1
2∆ + V (x)

3 Schrödinger equation: i∂tΨt = HΨt

4 Time evolution: Ψt := e−itHΨt=0
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Scattering in Quantum Mechanics

1 There are states Ψout ∈ H of the particle in potential V which
for large times evolve like states of the free particle.

2 For any such Ψout there exists Ψ ∈ H s.t.

3 Def: Ψout := limt→∞ eitHe−itH0Ψ is the scattering state.

4 Def: W out := limt→∞ eitHe−itH0 is the wave-operator.
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Cook’s method

1 Let Ψt := eitHe−itH0Ψ.

2 Suppose we can show

‖∂tΨt‖ = ‖eitHV e−itH0Ψ‖ ∈ L1(R, dt).

3 Then limt→∞Ψt =
∫∞
t0

(∂τΨτ )dτ + Ψt0 exists.
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Framework for QFT and spin systems

1 Γ - the abelian group of space translations (Rd or Zd).

2 Γ̂ - Pontryagin dual of Γ (Rd or Sd
1 ).

3 (A, τ) - C ∗-dynamical system with R× Γ 3 (t, x) 7→ τ(t,x).

4 B⊂A -almost-local operators: ‖[B1, τ(s,vs)(B2)]‖ = O(|s|−∞).

5 A ⊂ B(H) and τ(t,x)(A) = U(t, x)AU(t, x)∗ for A ∈ A.
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Examples

1 QFT: λφ4 theory for 1 and 2 space dimensions:

L =
1
2
∂µφ∂

µφ− 1
2
m2φ2 − λ

4!
φ4

2 Spin systems: Ising model in transverse magnetic field for any
space dimension:

H = −1
2

∑
i

(σ
(z)
i − 1)− ε

∑
〈i ,j〉

σ
(x)
i σ

(x)
j
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Let B∗1 , . . . ,B
∗
n ∈ B be s.t. B∗i Ω ∈ 1lU(∆i )H are single-particle

states.
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Arveson spectrum

Let (A, τ) be a C ∗-dynamical system.

Definition
The Arveson spectrum of A ∈ A is the support of the

(inverse) Fourier transform of R× Γ 3 (t, x) 7→ τ(t,x)(A).

It is denoted SpAτ .
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2 Let 1lU( · ) denote the spectral measure of U.

Then

A 1lU(∆)H ⊂ 1lU(∆ + SpAτ)H, A ∈ A.

Fact 2: For any compact ∆ there are plenty almost-local operators
A with SpAτ ⊂ ∆.
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Haag-Ruelle scattering theory

Theorem (Haag-Ruelle 62, Bachmann-Naaijkens-W.D.)

The following limits exist and are called scattering states

Ψout := lim
t→∞

B∗1,t(g1,t) . . .B
∗
n,t(gn,t)Ω, where

B∗t (gt) :=
∫

Γ dµ(x)τ(t,x)(B∗)gt(x), gt(x) :=
∫

Γ̂
dp e−iΣ(p)t+ipx ĝ(p)

and velocity supports V (gi ) := {∇Σ(p) | p ∈ supp ĝi } are disjoint.
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Theorem (Haag-Ruelle 62, Bachmann-Naaijkens-W.D.)
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∗
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= [∂t(B
∗
1,t(g1,t)),B∗2,t(g2,t)]Ω = O(t−∞). �
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Wave-operators and S-matrix

1 H1 ⊂ H - single-particle subspace.

2 Γ(H1) - the symmetric Fock space over H1.

3 The outgoing wave-operator W out : Γ(H1)→ H is defined by

W out(a∗(Ψ1) . . . a∗(Ψn)Ω) = lim
t→∞

B∗1,t(g1,t) . . .B
∗
n,t(gn,t)Ω

for Ψi := B∗i ,t(gi ,t)Ω. Hout := RanW out.

4 S := (W out)∗W in is the scattering matrix.

5 Def. If Hout = H the theory is asymptotically complete.
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3 The outgoing wave-operator W out : Γ(H1)→ H is defined by

W out(a∗(Ψ1) . . . a∗(Ψn)Ω) = lim
t→∞

B∗1,t(g1,t) . . .B
∗
n,t(gn,t)Ω

for Ψi := B∗i ,t(gi ,t)Ω. Hout := RanW out.

4 S := (W out)∗W in is the scattering matrix.

5 Def. If Hout = H the theory is asymptotically complete.
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The problem of asymptotic completeness in QM

Definition

A QM theory given by H = −1
2∆ + V is asymptotically complete

if scattering states and bound states of H span the entire Hilbert
space.
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Definition

A QM theory given by H = −1
2∆ + V is asymptotically complete

if scattering states and bound states of H span the entire Hilbert
space.
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Proving asymptotic completeness in QM

Excluding ‘fuzzy’ configurations in which the particle cannot decide
between a bound state and a scattering state.
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Proving asymptotic completeness in QM

Excluding ‘fuzzy’ configurations in which the particle cannot decide
between a bound state and a scattering state.

V

x

y

v

v

A proof of asymptotic completeness is available in N-body QM
[Faddeev 63,..., Sigal-Soffer 87, Graf 90, Dereziński 93]
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Asymptotic completeness in QFT and spin systems

1 In systems with infinitely many degrees of freedom
there is an additional difficulty:

The Stone-von Neumann uniqueness theorem may break down.

That is, the algebra of observables A may have many
inequivalent representations.
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Asymptotic completeness in QFT and spin systems

1 In systems with infinitely many degrees of freedom
there is an additional difficulty:

The Stone-von Neumann uniqueness theorem may break down.

That is, the algebra of observables A may have many
inequivalent representations.
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Asymptotic completeness in QFT and spin systems

1 In systems with infinitely many degrees of freedom
there is an additional difficulty:

The Stone-von Neumann uniqueness theorem may break down.

That is, the algebra of observables A may have many
inequivalent representations.

p
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Generalized asymptotic completeness

1 Conventional asymptotic completeness:

out

Ψ = Ψ
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Generalized asymptotic completeness

1 Conventional asymptotic completeness:

out

Ψ = Ψ

2 Generalized asymptotic completeness [C. Gérard-W.D. 16]:

out
Ψ Ψ

out

Α
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Generalized asymptotic completeness

1 Conventional asymptotic completeness:

out

Ψ = Ψ

2 Generalized asymptotic completeness [C. Gérard-W.D. 16]:

out
Ψ Ψ

out

Α

3 Fact. Generalized asymptotic completeness holds under our
assumptions.
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Araki-Haag detectors

Theorem (Araki-Haag 67, Buchholz 90)

Let Ct :=
∫

Γ dµ(x)τ(t,x)(B∗B)h
(
x
t

)
, h ∈ C∞0 (R3).
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Araki-Haag detectors

Theorem (Araki-Haag 67, Buchholz 90)

Let Ct :=
∫

Γ dµ(x)τ(t,x)(B∗B)h
(
x
t

)
, h ∈ C∞0 (R3). Then

lim
t→∞
〈Ψout,CtΨ

out〉
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Araki-Haag detectors

Theorem (Araki-Haag 67, Buchholz 90)

Let Ct :=
∫

Γ dµ(x)τ(t,x)(B∗B)h
(
x
t

)
, h ∈ C∞0 (R3). Then

lim
t→∞
〈Ψout,CtΨ

out〉

=

∫
Γ̂
dp 〈p|B∗B|p〉h(∇Σ(p))︸ ︷︷ ︸

sensitivity of the detector

〈Ψout, a∗out(p)aout(p)Ψout〉︸ ︷︷ ︸
particle density

.

Wojciech Dybalski Scattering theory for spin systems



Generalized asymptotic completeness

Theorem (Gérard-W.D. 14, W.D. 16)

Let ∆1 + · · ·+ ∆n ⊂ ∆ and hi have disjoint supports. Then the
following limits exist

Aout := s- lim
t→∞

C1,t . . .Cn,t1lU(∆), Ct :=

∫
Γ
dµ(x)τ(t,x)(B∗B)h

(x
t

)
.

Also, generalized AC holds, i.e. Hout = [AoutH]⊕ CΩ.

∗

Sp U

Ω

H

P

∆

∆

∆1 2

Β
2

∗
Β1

1

Sp U

Ω

H

−π π

∆∆

∆

Β Β
∗ ∗

1 2

2
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Generalized asymptotic completeness

Theorem (Gérard-W.D. 14, W.D. 16)

Let ∆1 + · · ·+ ∆n ⊂ ∆ and hi have disjoint supports. Then the
following limits exist

Aout := s- lim
t→∞

C1,t . . .Cn,t1lU(∆), Ct :=

∫
Γ
dµ(x)τ(t,x)(B∗B)h

(x
t

)
.

Also, generalized AC holds, i.e. Hout = [AoutH]⊕ CΩ.

1 Generalized asymptotic completeness:

out
Ψ Ψ

out

Α
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Conclusions and outlook

1 We developed Haag-Ruelle scattering theory for a class of
gapped quantum spin systems.

2 The construction relies on the Lieb-Robinson bounds and on
the existence of isolated mass-shells of (quasi-)particles.

3 Our work provides a basis for a systematic study of the
problem of asymptotic completeness for quantum spin systems.

4 A related future direction is scattering of charged particles.
(anyons, topological order, Kitaev-type models...)
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