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In the 1980’s, several different approaches were developed to what
one might call two-dimensional quantum gravity. I will first recall
one approach that involves a discrete approximation and the large
N limit of a matrix integral. (Among others, early contributions
were by Weingarten; F. David; Kazakov; Ambjorn, Durhuus, and
Frohlich; Kazakov, Kostov, and Migdal and then the models were
solved by Douglas and Shenker; Gross and Migdal; and Brezin and
Kazakov.)



Just to make a discrete approximation to geometry, one can
consider, for example, a random triangulation of a two-manifold
with T triangles, where T is going to be very large:

We consider each
triangle to be, for example, an equilateral triangle with a side of
length a. Then we hope that in some sort of limit with a→ 0 and
T →∞, random triangulations will generate some sort of
reasonable model of two-dimensional quantum gravity.



Very concretely, to study this we have to count triangulations of a
given two-manifold Σ with T triangles, in the limit of large T . The
answer turns out to be something like exp(cT )T s(1 + . . . ) where c
and s are constants; s, but not c , depends on the topology of Σ.
The leading exponential exp(cT ) is “renormalized” away (since the
area of the surface is a multiple of T , one can view this as the
renormalization of the cosmological constant). The physics is then
in s, as well as further corrections in the series.



It is actually a little more convenient to consider not the
triangulation itself but the dual graph
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The dual graph is trivalent, though it is built from a variety of
polygons (the original graph was built from triangles, but had
vertices of all orders).



There is a simple and convenient way to count trivalent graphs, if
one does not care about using them to triangulate a two-manifold.
One looks at the asymptotic expansion in powers of λ of the
integral
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When one expands this in powers of λ, one generates Feynman
diagrams with cubic vertices – i.e., trivalent graphs. The
propagator is 1, so the integral just counts trivalent graphs (each
one weighted by the inverse of the order of its symmetry group).



These graphs aren’t quite what we want, since they are abstract
trivalent graphs, not triangulations of a two-dimensional surface:



Counting such abstract graphs is not what we want, but anyway
they are easy to count as the number of trivalent graphs with V
vertices (and no external lines) is just the coefficient of λV in∫ ∞
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(We can do this integral in closed form, but we can also just do a
saddle point evaluation for large V .)



We actually want to count, not abstract trivalent graphs, but such
graphs that an be drawn on the surface of a two-manifold, which
we’ll take for the moment to be a closed Riemann surface without
boundary, with some given genus:



How to count graphs that are drawn on such a two-manifold was
explained by ’t Hooft over 40 years ago. One simply replaces the
real variable x by an N × N hermitian matrix M and considers a
matrix version of the integral:∫

dM exp
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)
.

Now one expands the integral in powers of λ and 1/N. The
coefficient of N2−2gλV is the number of trivalent graphs with V
vertices that can be drawn on a Riemann surface of genus g . As
first shown by Brezin, Parisi, Itzykson, and Zuber in 1977, this
integral can be effectively analyzed for large N by random matrix
methods that go back to Wigner, Dyson, and Mehta, among
others.



The contribution of the physicists whom I cited at the start was to
show that one gets a more interesting result if, while taking N to
infinity, one adjusts λ to a critical value at which the perturbation
expansion diverges. In this “scaling limit,” the number of triangles
in a typical triangulation diverges and one gets what is believed to
be a good model of two-dimensional gravity. The model is
completely soluble in this limit and the solution was given almost
30 years ago by Douglas and Shenker; Gross and Migdal; and
Brezin and Kazakov, in terms of the solutions of certain KdV
and/or Virasoro equations.



That is about as much as I will be able to say about this approach
at the moment. A second approach to two-dimensional gravity
involves a conventional string theory with a certain matter system
(a Liouville field). This is actually an important part of the subject,
but we do not have time for it today.



There is a third approach, which was also found to be equivalent
to the first two, that I want to describe today. This involves
intersection theory on the moduli space of Riemann surfaces. Let
Mg ,n be the moduli space of Riemann surfaces Σ of genus g with
n marked points or punctures that we will call x1, . . . , xn:



Associated to each of the points xi is a U(1) gauge field which is
the connection on its tangent space and this has a first Chern class

which I will call c
(i)
1 . It is the first Chern class of a “Berry-like

connection” associated to the i th point. The “correlation functions
of topological gravity” are∫
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(Otherwise the integral is 0 for trivial reasons.)



It turns out that these correlation functions are equivalent to what
one can compute in the matrix model. Cutting a few corners in the
explanation, in the matrix model one can compute

〈TrMq1 TrMq2 · · ·TrMqn〉

and this is equivalent to computing∫
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This assertion is my conjecture from around 1990, proved by
Kontsevich and then in other ways by Maryam Mirzakhani;
Okounkov and Pandharipande; and Kazarian and Lando. I will not
try to explain any of the proofs today.



Instead I will tell you about another side of the story. What
happens if the surface Σ has a boundary? In the approach based
on triangulations of moduli space, there is no problem. There is no
difficulty to triangulate a Riemann surface with boundary:



Although it is a little more subtle, there is also no problem to find
a matrix model that counts triangulations of a Riemann surface
with boundary. One merely adds “vector” degree ψ, ψ of freedom
to the matrix model and considers an integral such as∫

dM dψ dψ exp
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)
.

Equivalently, one can integrate out ψ,ψ and get such an integral
for M only. For example, if ψ,ψ are fermions, the result of
integrating them out is∫

dM exp
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It is also relatively clear, though possibly a little more subtle, how
to incorporate boundaries in the string theory description.



But what happens in the approach based on topological gravity?
Here we have a problem because there is an anomaly. The
anomaly is that the moduli space of Riemann surfaces Σ with
boundary is unorientable (even if Σ itself is orientable) and
therefore the topological correlation functions∫
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don’t make sense.



To understand why the moduli space of Riemann surfaces with
boundary is unorientable, let us compare a Riemann surface with a
marked point to one with a hole:

Adding a puncture to a Riemann surface adds two real moduli –
say Re x and Im x , where x is its position. Adding a hole adds
three real moduli, which one can think of as Re x , Im x , and b,
where again x is the position and b is the size of the hole.



Adding a puncture to a complex Riemann surface does not affect
the orientability of its moduli space, because there is no problem in
the sign of a two-form dxdx that “soaks up” the extra moduli.
Similarly there is no problem if we add one hole because there is no
sign problem for the three-form dxdxdb.



The problem comes with two or more holes:

For punctures, the two-forms dxdx are bosonic and commute, so
we don’t have to decide on an ordering of the punctures. But for
holes, we have instead a three-form dxdxdb and these
anticommute for different holes. So for a Riemann surface with
h > 1 holes, to try to orient its moduli space, we would have to
pick an ordering of the holes, modulo an even permutation.



Not having a way to do this is a kind of “gravitational anomaly”
which means that one cannot make sense of the sign of the path
integral measure.



Actually, if Σ is a Riemann surface with two or more holes, it has a
diffeomorphism (preserving the orientation of Σ) that exchanges
two of the holes, and therefore the moduli space of conformal
structures on Σ is actually unorientable, not just lacking in a
natural orientation.



Twenty-five or so years ago, it troubled me that in two of the three
approaches to two-dimensional gravity, one can allow Σ to have a
boundary, and in the third one seemingly cannot. But not seeing
what to do about it, I eventually gave up and moved on.



To my surprise, these difficulties were overcome a couple of years
ago by mathematicians Pandharipande, Solomon, and Tessler
(arXiv:1507.04951); the proof was completed by Buryak and
Tessler (arXiv:1501.07888). In arXiv:1804.03275, R. Dijkgraaf and
I have compared the PST-BT answer to the matrix integral that I
described earlier for a Riemann surface with boundary, and we also
described what they did in a somewhat more physical language. I
will use the rest of the time today to try to explain that last point.



The unorientability of the moduli space is a kind of “gravitational
anomaly”: there is a diffeomorphism of Σ – namely one that
exchanges two holes – that reverses the sign of the integration
measure that we are trying to use in computing correlation
functions. When this happens in physics, we try to compensate by
adding a matter system that will cancel the anomaly. In the
present context, that matter system is going to have to be a
two-dimensional topological quantum field theory (TQFT).



However, the topological field theory that we add has to have the
property that it is not just anomaly-free (i.e. well-defined) but
trivial on an orientable Riemann surface. Otherwise, we would
change the theory on a closed surface. To be more exact, the
theory we add must be trivial on a closed surface up to a
renormalization of the string coupling constant gst. A g -loop
amplitude is proportional to g2g−2

st , and a renormalization of the
string coupling constant would multiply a closed-string amplitude
in genus g by c2g−2 for some constant c . So the topological field
theory we are looking for must have for its genus g partition
function on a closed Riemann surface c2−2g for some c .



The “answer” turns out to be, in part, that Σ must be endowed
with a spin structure. A spin structure is a choice of sign when a
fermion is parallel-transported around a topologically nontrivial
loop.

The Levi-Civita
connection defines parallel transport for integer spin, but for
half-integer spin there are extra sign choices when one goes around
noncontractible loops. On the sphere there is only one spin
structure, but on the torus there are 22 = 4 of them.



In two dimensions, there is a rather trivial topological field theory
in which one simply sums over spin structures, weighting each one
by a factor of 1/2 (this is a special case of dividing by the order of
the automorphism group; 2 is the number of automorphisms of a
spin structure). In genus g , there are 22g spin structures, so the
partition function of the theory that I mentioned is 1

222g = 22g−1.
This is not of the form c2−2g for any c , so we need something else.



A spin structure in two dimensions can be either “even” or “odd”
– we recall the definition shortly. There is a topological field theory
in which the spin structures are weighted by an extra factor of
(−1)w , where w is 0 or 1 for an even or odd spin structure. The
partition function is then
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and this finally is of the desired form.



The topological field theory that I have just introduced is related
to the Kitaev chain of Majorana fermions in condensed matter
physics, and it is also related to the high temperature phase of the
Ising model. Unfortunately there is not really time to explain those
points today.



So far I have described the topological field theory with the factor
(−1)w on a closed Riemann surface. Actually, this theory has an
anomaly on a Riemann surface with boundary – which is what we
want, of course. One definition of the Z2-valued invariant w on a
Riemann surface Σ without boundary is as follows. View Σ as a
complex Riemann surface and let K 1/2 be a square root of the
canonical bundle K → Σ, corresponding to a spin structure. Then
the dimension mod 2 of H0(Σ,K 1/2) is a deformation invariant
and this is w . One way to prove the deformation invariance is to
interpret the ∂ operator on K 1/2 as a Dirac operator and interpret
w as a “mod 2 index” in the sense of Atiyah and Singer.



This definition of w does not make sense if Σ has a boundary,
because there is no chiral Dirac operator on a manifold with
boundary, and indeed there is no invariant (−1)w if Σ has a
boundary. However, even if Σ has a boundary, it is possible to
define (−1)w as a unit vector in a real line associated to the
boundary. One way to do this is to use a gluing relation in index
theory:



What I’d like to say in order to finish the lecture is that (−1)w is
naturally a section of the orientation bundle of the unoriented (and
unorientable) moduli space Mg ,n,n′,h of Riemann surfaces with
holes and boundary and bulk punctures. In that case an improved
version of the definition of the correlation functions would be
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Actually, it isn’t quite true (−1)w is a section of the orientation
bundle. What is true is a little more complicated. This regrettably
also makes it a little hard to finish my lecture properly and without
getting into more details.



The rule that PST-BT give to finish canceling the anomaly and to
give a proper definition of correlation functions is as follows: The
boundary of a two-manifold is, of course, a 1-manifold. In 1
dimension, there is only one gamma matrix γ1 obeying γ21 = 1, so
it can be represented by a 1× 1 real matrix, and hence (to use a
fancy language) the spin bundle of a 1-manifold is a real vector
bundle of rank 1. As such it has, up to homotopy, two real
trivializations: a trivialization is a choice of what is the “positive”
direction in the real line bundle.



The rule of PST-BT is that the spin bundle of the boundary is
everywhere trivialized away from marked points, but the sign of the
trivialization is required to “jump” when one crosses a boundary
marked point:

 

 

 

 



PST-BT show that when what I said earlier is supplemented with
this rule about local trivializations and their jumping, the anomaly
cancellation is completed and the problem with orientations goes
away. They further show that a problem with the boundary of the
moduli spaces (which I did not have time to describe) goes away,
so the correlation functions become well-defined.

Finally, they showed that these correlation functions can be
explicitly calculated: they obey an “open” version of the Virasoro
and KdV equations via which the correlation functions for closed
surfaces were computed almost 30 years ago.



Instead of going into all this, I want to use the remaining time to
give a few hints about how Dijkgraaf and I gave a more physical
interpretation to this story. Unfortunately it is difficult to do this
without assumig some familiarity with supersymmetric field
theories and their twisting to make topological field theories..



The basic approach is as follows. The theory that is trivial on a
Riemann surface without boundary and becomes anomalous when
there is a boundary can be realized by taking an N = 2
supersymmetric Landau-Ginzburg theory with a single chiral
superfield φ and a superpotential

W (φ) = imφ2.

The superpotential only has one critical point – at φ = 0 – which
is why the theory is “trivial.” Since W is quasihomogeneous – in
fact, homogeneous – we can make a topological field theory by
“twisting.” As W is supposed to have spin 1 after twisting, φ has
spin 1/2. Therefore the twisted theory requires a choice of spin
structure. It can be shown that on a closed surface Σ with a given
spin structure, the partition function is (−1)w . (There is a unique
classical solution, φ = 0, and the sign of the fermion determinant
gives the answer (−1)w .)



If we want to study this theory on a Riemann surface with
boundary, we need to pick a “brane.” Roughly speaking there is
only one natural brane in the problem – a Lefschetz thimble
associated to the unique critical point at φ = 0. To be more exact,
this is the support of the only natural branes. In general, in a
theory with a target space X , the choice of a Lagrangian
submanifold L ⊂ X is not enough to determine a brane. We also
need (among other things, which aren’t relevant here) to pick an
orientation of L. So in our problem there are two natural branes B
and B′, which correspond to the Lefschetz thimble with one or the
other orientation. Neither one is more natural than the other.



To get the PST-BT answer, one considers the theory with one
brane of each type. In the twisted theory, the branes have a special
meaning:

Away from the boundary, after twisting, φ is a spinor field on Σ, a
section of its complex spin bundle; the meaning of the brane is
that along the boundary, φ is a section of the (real) spin bundle of
the boundary. Each boundary segment is labeled by B or B′
corresponding to a choice of orientation of the spin bundle of the
boundary.



Since the spin bundle of the boundary is a real bundle of rank 1, a
choice of its orientation is the same as a trivialization of this spin
bundle (up to homotopy) and thus we have the PST-BT rule:
away from boundary punctures, the spin bundle of the boundary is
trivialized. The rest of their rule – the trivialization jumps across
each puncture – means that the operators inserted at boundary
punctures are of type BB′ or B′B, not of type BB or B′B′.



The absence of BB or B′B′ insertions has a simple explanation:
the only local BRST invariant operator of type BB or B′B′ would
be a multiple of the identity, and its 1-form descendant vanishes.
So the only boundary insertions that are interesting are the ones of
type BB′ or B′B′. Moreover one can show that globally, one
cannot distinguish BB′ from B′B, so there is essentially only one
type of boundary insertion and one boundary coupling parameter,
as in the theory of PST-BT.


